
International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

1 

 Analysis of Test Case Prioritization in Regression 

Testing using Genetic Algorithm 

 

Pradipta Kumar Mishra    B.K.S.S Pattanaik 
     CUTM, Bhubaneswar          GITA,Bhubaneswar          

     Odisha,India                   Odisha,India 
                            Pin – 752054 
 
 
 

ABSTRACT 

Testing is an accepted technique for improving the quality 

of developed software with the increase in size and 

complexity of modern software products, the importance of 

testing is rapidly growing. Regression testing plays a vital 

role for software maintenance when software is modified. 

The main purpose of regression testing is to ensure the 

bugs are fixed and the new functionality that are 

incorporated in a new version of a software do not 

unfavorably affect the correct functionality of the previous 

version. So to revalidate the modified software, regression 

testing is the right testing process. Though it is an 

expensive process which requires executing maintenance 

process frequently but it becomes necessary for subsequent 

version of test suites. To evaluate the quality of test cases 

which are used to test a program.Testing requires execution 

of a program. In this paper it is proposed a new test case 

prioritization technique using genetic algorithm. The 

proposed technique separate the test case detected as 

severe by customer and among the rest test case prioritizes 

subsequences of the original test suite so that the new suite, 

which is to run within a time-constrained execution 

environment. It will have a superior rate of fault detection 

when compared to rates of randomly prioritized test suites. 

This experiment analyzes the genetic algorithm with regard 

to effectiveness and time overhead by utilizing structurally-

based criterion to prioritize test cases.  

 

Keywords 

 Regression testing, object-oriented, software testing, 

regression test selection, software maintenance, Genetic 

algorithm. 

 

1. INTRODUCTION 
It is a basic phenomenon that changes in software is one of 

the most foreseeable part when computer based system are 

made. So often it has been observed that the functionalities 

which were working in the previous version are still 

working in the new version also. With the existing errors 

and necessity for changing requirements propels the 

software to be reworked. Through the new uses of the 

previous version software, one can obtain new 

functionality that is not originally conceived in the 

requirements. To properly manage these changing concepts 

play a crucial role in the enduring efficacy of the software.  

               

 

 

 

 The basic purpose of regression testing is to revalidate the 

old functionality that was inherited from the previous 

version. Once the new functionality is added to the system 

then it can be accommodated by the distinctive software 

development process. The new version is required to 

behave exactly same in the previous version except the 

new included part. In other way, regression tests for a 

system may be perceived as partial operational 

requirements intended for the new version of a system.  

Let’s take an example of a sequence of time intervals 

during the life cycle of software which is depicted in the 

Fig. 1. It is already a known fact that the regression testing 

intervals take up a considerable portion of the system’s life 

time for which the importance of regression testing cannot 

be overlooked. Due to time constraint a complete 

regression testing cannot be always possible for an updated 

version of the software. It may be in the software 

revalidation process one cannot completely omit or 

randomly reduce the regression testing interval. 

 
Fig. 1.   Sequence of time intervals during a software’s 

life cycle 

 

When a software/program is modified, it should not only 

look at whether the modifications work properly or not but 

it should be checked whether there have been any adverse 

side effect in the unmodified parts of the software/program 

because even if a small change in one part of a program 

can affect with the unrelated part of the program. It may 

happen the modified program may yield correct results on 

specially designed test cases for modification testing 

whereas it may produce incorrect results on other test cases 

on which the original program produce right outputs. To 

ensure the modified program’s effectiveness, the modified 

program is executed on all existing regression tests to 

ascertain that it still works the same way as the original 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

2 

program except the modified parts of the program where 

the change is expected. 

Like other application programs, object oriented 

application programs also requires testing. Therefore for 

proper testing of object oriented software, specific type of 

testing classes is required. In class testing technique, in the 

first step, a sequence of methods with varying orders are 

invoked. Then after each sequence, it is verified whether 

the resulting state of the objects manipulated by the method 

is correct or not as proposed in [10], [11] and  [12]. 

By utilizing a distinctive approach for performing class 

test, a test driver is used which invokes a sequence of 

methods. The test driver performs its task in different steps. 

In the first step, the driver performs setup tasks which is 

comprised of task like constructor routines calling as well 

as different initialization methods are utilized also. In the 

second step, the sequence of methods under test is invoked 

by the test driver. At the end, a special method called 

oracle method is invoked by the test driver to ascertain 

whether objects have attained proper states or not. As 

specified in [11], [13] when a class is modified it is 

required to retest the class itself as well classes derived by 

that class. As found in [13], [14]  a function which has 

been effectively tested in segregation may not be 

sufficiently tested in combing with other functions for 

which it is suggested to test the application programs 

which use the modified class. But reality is that  it is 

impossible to retest all such application programs. 

Therefore the testers should be well aware about the 

bottleneck. To overcome this problem, the testers can be 

able to reduce the associated risks by regression testing 

those application programs which test cost will be 

economical. 

             In the last two decades solutions to these problems 

for traditional programs have been proposed by researchers 

Fischer,  Harrold, Laski, Leung, Prathar, and white in [15], 

[1],[16],[29],[42],[18] and [28] respectively. However less 

attention had given to testing of OO programs and 

regression testing of object oriented programs has not 

considered at all.  

Many new concepts like inheritance, encapsulation, 

polymorphism and dynamic binding are introduced by 

object oriented model for software development process. 

Due to these new concepts a complex relationship occurs 

in between classes and their members.   

As a result of which new testing problems find their place 

in the software field which are acknowledged by the 

different researchers as proposed in [24], [43], [38] and 

[35]. Along with that it also raises a tough challenge for 

conducting regression testing for object-oriented programs. 

Although the existing results can be functional to 

regression testing of member functions of a class at the unit 

and integration levels. They lack suitability for testing 

object oriented components at higher levels like a class, a 

group of classes, or class libraries. Basically the traditional 

approaches lack three measure difficulties while handling 

object oriented features. 

i)  The complex relationships and dependencies, 

such as inheritance, aggregation, and association 

properties which exist between different classes 

cannot be addressed by traditional approaches. 

ii) As most traditional approaches are control flow 

model oriented whereas class models exhibit 

state dependant behavior which has various 

changing nature for which traditional approaches 

cannot be applied to the class testing. 

iii) Traditional approaches use test stubs to simulate 

the modules that are invoked but in OO programs 

this is difficult and costly because it requires 

understanding of many related classes, their 

member functions and how the member 

functions are invoked in [38] and [27].  

 The organization of this paper is as follows. In section II, 

it is specified the existing regression testing technique. In 

section III, briefly identified some importance  about 

previous related work. In section IV it is describe about 

some available   soft computing approach. In section V it is 

elaborately discussed proposed model  prioritization 

technique using genetic algorithm. It followed with 

conclusion . 

2. EXISTING TEST CASE PRIORITI- 

ZATION TECHNIQUES 

As the regression testing is quite expensive for reducing 

the cost, researchers have done many works other than test 

selection technologies. The test case prioritization 

technology is addressed in [25],[26] and [21]. They 

prioritize the test cases according to certain measures. 

After which in the regression testing cycle, the test cases 

will be used to test the modified program P' in accordance 

with the same order.So that the “better” test cases can able 

to run first. The purpose of the prioritization is either to 

increase the rate of fault detection or increase the rate of 

code coverage. 

Here it is taken example-1 for better understanding about 

this technique. 

Example 1 

Let T1, T2, T3 and T4 are four test cases. 

Suppose, T1 has the coverage of 60% 

                T2 has the coverage of 15% 

                T3 has the coverage of 35% and 

                T4 has the coverage of 45% 

According to the second goal, by applying such 

technology, the test cases can be run in the order of T1, T4, 

T3, and T2. Like that according to the first goal, the order 

of the four test cases will depend on their ability to expose 

the fault. 

As it is proposed in [30] test case prioritization techniques 

can be divided into three categories as depicted in Fig. 2. 

 
 

Fig. 2.   Phases of Prioritization Test Case Techniques 

But there are 18 different test case prioritizations 

techniques which are numbered from P1 to P18 in these 

three categories which are discussed below. 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

3 

2.1    Comparator Techniques 

Random ordering (P1): Here the test cases in test suite 

are randomly prioritized. 

Optimal ordering (P2): In this case the test cases are 

prioritized to optimize rate of fault detection.  

 

2.2 Statement level Techniques (Fine Granularity)     

Total statement coverage prioritization (P3): Here the 

test cases are prioritized in terms of total number of 

statements according to sorted order of coverage achieved. 

If test cases are having same number of statements they 

can be ordered pseudo randomly.  

 

Additional statement coverage prioritization (P4): It is 

likely similar to total coverage prioritization which 

depends upon feedback about coverage attained to focus on 

statements that are not yet covered.  

 

Total FEP prioritization (P5): Here prioritization is done 

on the probability of exposing faults by test cases. 

Mutation analysis is used for approximation of the Fault-

Exposing-Potential (FEP) of a test case. Additional FEP 

prioritization (P6): In this case, the total FEP 

prioritization is extensive to additional FEP prioritization 

due to the total statement coverage prioritization is also 

extended to additional statement coverage prioritization. 

 

2.3 Function level Techniques: (Coarse   

Granularity)  
Total function coverage prioritization (P7): Though it is 

similar to total statement coverage but here functions are 

used. As it has possessed coarse granularity level so the 

process of collecting function level traces is cheaper as 

compared to the process of collecting statement level traces 

in total statement coverage.  

Additional function coverage prioritization (P8): 
Though it is similar to additional statement coverage 

prioritization with a slight difference i.e.  it considers 

function level coverage instead of statements.  

 

Total FEP prioritization (function level) (P9): It is 

equivalent to Total FEP prioritization with one difference 

that is instead of using statements, functions are used here. 

 

Additional FEP prioritization (function level) (P10): 
This technique also similar to additional FEP prioritization. 

Instead of using statements it is using functions.  

 

Total Fault Index (FI) prioritization (P11): In this 

technique a measurable software attribute called fault 

proneness is used.  

 

Additional Fault Index  prioritization (P12): Here, the 

total function coverage prioritization is extended to 

additional function coverage prioritization and the total 

Fault Index  prioritization is extended to additional Fault 

Index prioritization similarly also.  

 

Total Fault Index with FEP coverage prioritization 

(P13): It combines both total Fault Index and FEP 

coverage prioritization to achieve a superior rate of fault 

detection.  

 

Additional Fault Index with FEP coverage 

prioritization (P14): Here also, the total function coverage 

prioritization is extended to additional function coverage 

prioritization as well as the total Fault Index with FEP 

coverage prioritization is extended to Additional Fault 

Index with FEP coverage prioritization in a similar manner.  

 

Total Diff prioritization (P15): It is similar to Total Fault 

Index prioritization but here, the total FI prioritization 

requires collection of metrics whereas total Diff 

prioritization requires only the calculation of syntactic 

differences between the program and the modified 

program. Diff means that merely syntactic differences are 

given consideration.  

 

Additional Diff prioritization P16: Here the total Diff 

prioritization is extended to additional Diff prioritization in 

the same manner as the total function coverage 

prioritization is extended to additional function coverage 

prioritization.  

 

Total Diff with FEP prioritization (P17): It is precisely 

similar to total FI with FEP coverage prioritization but it is 

dependent upon changed data that is derived from Diff.  

 

Additional Diff with FEP prioritization (P18): The total 

Diff with FEP prioritization is extended to additional Diff 

with FEP prioritization in a similar approach as Total 

function coverage prioritization is extended to additional 

function coverage prioritization. 

 

3. RELATED WORK 

Different research work on regression testing proposed by 

various researchers have briefly analyzed in this section. 

Harroldet al. in [37] proposed a technique which 

emphasizes on changing effects within a module when the 

software is modified.  Data flow graphs are used for 

identifying the pretentious definition use pairs. Also sub 

paths are used not necessarily. As, retesting is performed 

here for affected define use paths and newer paths, so the 

test effort is reduced comparatively which is an added 

advantage of this technique. According to [39] the 

technique was expanded so that it can also be used to 

identify affected procedures at inter procedural level. 

The three other researchers named Laski, Benedusi, and  

Prather have also proposed techniques in [29], [17] and 

[18] which is based upon control flow graph techniques 

that works on for both procedures and functions for 

identifying the affected control paths in a module.  

H. K. J. Leung and L. White have introduced firewall 

concept which enclosed the affected modules that arises 

due to module modification in [42]. A call graph is defined 

according to the concept of a control related firewall. Here 

test effort is reduced by augmenting the retesting factor of 

modules and links in the firewall of the changed module. 

In [20] significant test approaches are introduced like top-

down, bottom-up, and sandwich approach. In the approach 

the tester performs selections to minimize test effort and 

cost. 

The researcher L. White in [28] introduced data related 

firewall. It was based on a data flow graph which enclosed 

all affected modules where coupling arises due to global 

data. 

In  [18], an adaptive path prefix software testing strategy 

was proposed where previous test paths were utilized as a 

guide in the selection of consequent paths. In this 

approach, branch coverage is ensured and a less number of 

computational resources were utilized. 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

4 

In [24] an incremental object oriented testing methodology 

was presented according to class inheritance hierarchy. In 

this approach, the researcher suggested about that testing of 

base class in proximity before derived class such that the 

base class' test cases and relevant information can be 

reused in testing the derived classes. 

In [19] and [18] to fulfill coverage criteria factor of 

regression testing with different types of retesting criteria 

were proposed where path coverage of a procedure or 

function is utilized. 

In [19] researcher Fischer discussed a test case selection 

strategy that deals with the set covering problem syndrome. 

The indispensable plan was to use the 0-1 integer 

programming models where minimum test cases were 

found out and that covers one of the path criteria especially 

in case of  unit regression testing. 

In [40]  a specific 0-1 integer programming model was also 

used on a test matrix for minimizing the test efforts in 

functional regression testing. 

In [23] a retest strategy was proposed by Leung and White 

to perform corrective regression testing. Here, they have 

planned to outlook the regression testing as collected of 

two sub problems i.e. the test selection problem and the 

test plan update problem. As a result the re-testing process 

is alienated into two phases i.e. test classification and the 

test plan update. In the classification, the existing test cases 

are classified into three tests i.e. i) reusable tests, ii) 

obsolete tests and iii) re-testable tests. In the new 

regression test plan the  re-testable test cases and new test 

cases are considered as tests. 

The existing methods can be functional to regression 

testing of member functions as proposed in [41]. 

Conventionally testing uses test stubs and drivers for 

simulating the calling functions and called functions.  

But they are difficult as well as costly in object oriented 

testing as the tester is required to understand a set of 

member functions and classes before constructing a driver 

or stub. 

To reduce the test effort, a technique was presented in [22] 

and [24] which was required to test subclasses. But the 

drawback of this approach is that, it requires the hand 

analysis ought to be performed and it does not reuse test 

cases that are associated with the parent class. 

In the design of test suites for derived classes, three 

researchers called Harrold, McGregor, and Fitzpatrick 

presented a technique in [24] where reusing testing 

information associated with a parent class was utilized. But 

this technique does not deal with the problems in 

regression test selection for modified classes or derived 

classes, or problems in test selection for modified object 

oriented application software. It does not overcome 

problems of that software which use modified classes. 

Apart from that, their technique reuses test cases which are 

based on their association with modified methods and 

attributes. 

Kung et al. and Hsia et al. have presented a technique in 

[22], [19] and [16] for selecting regression tests for class 

testing which is based on the firewalls concept that was 

presented  originally in [42] first for procedural software 

and later applied for object oriented software [15]. They 

have defined a concept called construction of object 

relation diagram which establishes static relationship 

among classes. This relationship comprises inheritance, 

aggregation i.e. use of composite objects and association 

which deals with data dependence, control dependence or 

message passing relationship among classes. The object 

relation datagram instruments code to account the classes 

which are exercised by test cases. The firewall for a class C 

is defined as the set of classes which are directly or 

transitively dependent on C with the virtue of all three 

properties i.e. inheritance, aggregation, and association in 

object relation datagram concept. When the C class is 

adapted, the object relation datagram technique selects 

almost all test cases which were determined through 

instrumentation to put into effect, one or more classes 

within the firewall for C. 

  

4. SOFT COMPUTING APPROACHES 
There are several steps involved in order to automate a test 

case. They are automation of test case selection criteria, 

test case minimization, test execution and test case 

evaluation  

4.1 Genetic Algorithm 
Basically, Genetic Algorithms  are adaptive heuristic 

search algorithm based on the evolutionary ideas of 

expected collection of genetics and Genetic algorithms are 

based on the mechanics of natural selection and natural 

genetics [8]. Genetic algorithms have been applied in 

different areas such as machine learning, search and 

optimization. These algorithms have been considered an 

efficient and robust method for solving complex problems 

[9]. 

Based on Natural Selection, a genetic algorithm uses the 

following operators: 

 Selection 

 Reproduction 

 Mutation 

Selection: It is the process of picking out a suitable 

individual from the population. Suitable individuals are 

individuals with a good fitness. Selection at times faces 

problem called crowding. Crowding occurs when the fit 

individuals are selected quickly to reproduce. Which leads 

to a large percentage of the entire population looking very 

similar. Diversity in the population is greatly reduced and 

may hinder the long-run progress of the algorithm. 

Reproduction: During reproduction new chromosomes are 

created out of existing chromosomes in the population. 

Mutation: The mutation operator modifies one or several 

genes’ value (e.g. if an individual is a bit string, mutation 

means changing a 1 to 0 and vice versa). The reproduction 

and crossover operators are so powerful in improving the 

search that the mutation operator usually plays a secondary 

role, i.e., it modifies the value of the test methods.  

When there are these three operators and the fitness 

function, a genetic algorithm can be easily formulated as 

follows: 

 

1.Randomly initialize population(t)  

2. Determine fitness of population(t)  

3.repeat  

  i. Select parents from population(t)  

  ii. Perform crossover on parents creating   

      population(t+1)  

  iii. Perform mutation of population(t+1)  

4. Replace old with new population as the new   

   generation. 

5. Test problem criterion. 

6. Back to step 2. 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

5 

Therefore by using the genetic algorithms, it can generate 

better test cases. This improves the difficulty of having to 

run many test cases   against mutants. This shows that, 

genetic algorithms improve the generation of effective test 

cases. This way they also reduce the cost as well as  time 

of executing the test cases over mutated programs . 

There are two popular swarm inspired methods in 

computational intelligence areas: Ant colony optimization 

(ACO) and particle swarm optimization (PSO). ACO was 

inspired by the behaviors of ants. 

 

4.2 Particle swarm optimization (PSO): 
Basically it is a population based stochastic optimization 

technique that incorporates swarm intelligence with respect 

to socio-behaviour phenomenon. It shares many similar 

features of evolutionary computation techniques like 

Genetic Algorithms (GA). The system is initialized with a 

population of random solutions  which is known as 

particles and searching for optima is done by updating 

generations. However, unlike GA, PSO does not utilize 

genetic operators like  crossover and mutation. In PSO, the 

potential solutions (particles), fly/move through the 

problem search space by following the current optimum 

particles or solutions.  

 

4.3   An artificial neural network (ANN): 

It is an analysis paradigm which is modeled after human 

Brain’s powerful computing ability. Though a set of 

different types of algorithms used, one of the best 

algorithm used to train the artificial neural network is 

known as Back Propagation algorithm which is performed 

effectively. A significant research works are going on 

which utilizes evolutionary computation techniques and in 

turn it helps to evolve more and more aspects of artificial 

neural networks. Different models of ANN employs soft 

computing platform for solving a lot of applications in 

diversified areas. 

 

 

5. PROPOSED PRIORITIZATION  

TECHNIQUE 
The proposed prioritization technique is based on both 

testing time and potential code coverage information to 

intelligently reorder a test suite using Genetic Algorithm as 

shown in Fig. 3. Our prioritization algorithm reorders the 

tests in any sequence that maximizes the suite's ability to 

cover the code. 

 

 
Fig. 3.  Proposed model from test case reduction to test 

result generation. 

When customer detected some of the test case as sever then 

that test case are automatically part of the new test suit. 

Only it is to detect the remaining test cases according to 

code coverage and time. For example  if there are 100 test 

cases and the customer choose<T9,T6,T73,T60,T89> as 

sever than these test cases must be present in our new test 

suit after prioritization. From the remaining test cases it is 

to choose them which take less time and cover more code. 

The remaining number of test case to be chosen must be 

pre decided. which is depicted in Fig. 4. 

 
 

Fig. 4.  Test case prioritization based on Severity, 

Code coverage & Time using Genetic Algorithm 
 

Here utilization of Genetic algorithm in the proposed 

prioritization technique to select among the left test case 

after severity test case is identify by customer. It is to first 

record the execution time of each test case, because time 

constraint could be very short. Test case execution times 

must be exact in order to properly prioritize. Only the 

execution time of the test case is included in the recorded 

time and not that of class loading. Timing  information is 

additionally includes any initialization and shutdown time 

required by a test. Inclusion of initial time and shutdown 

time is necessary because these operations can greatly 

increase the execution time required by the test case. The 

program P and each Test case in a test suite are input into 

the genetic algorithm, along with the following user 

specified parameters: 

 Test suite – T 

 Number of initial population-n 

 Number of test suites to be created - s 

 Maximum iterations – dmax 

 Crossover probability - pC 

 Mutation probability - pM 

 Initial Population I 

Because two test cases may cover all or part of the 

same code, one cannot simply calculate the coverage 

of each test case and sum the products of the time 

required by each test case and the associated coverage 

amounts. Rather the secondary fitness measurement is 

partially calculated by summing the products of the 

test case time and the incremental coverage and 

algorithm is shown in the Fig. 5. 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

6 

Algorithm 

GAPRIORITIZE(T,s,n, dmax,pc,pm) 

Input: program  

Initial Papulation P 

Output : Minimum fitness combination of test 

case 

i 1  

repeat 

Pi null; 

repeat 

Pi  Pi U { Randomly 

from T } 

until | Pi |=S 

ii+1 

until i=n 

g  1 

repeat 

i1 

repeat 

Fi CalculateFitness(Pi) 

ii+1 

until in 

P1 ChooseParent(P[random()]). 

P2  ChooseParent(P[random()]). 

 C1, C2Crossover(pC, P1, P2) 

 C1Mutation(pM, C1) 

 C2Mutation(pM, C2 ) 

gg+1 

until g=dmax 

minFindMinFitnessTuple(P,F) 

return min 

 

Fig. 5.  Genetic Algorithm For prioratisation 

 

5.1   Fitness function 
The calculation of the fitness function is broken up into 

three parts. The primary component of the fitness function 

is calculated by measuring the test adequacy of the final 

test suite prioritization. In these experiments, this value 

was multiplied by 100 to mark the total adequacy as the 

principle measurement. Next, favor is given to test suites 

ordered in such a way that test cases most likely to reveal 

faults in the program under test are executed first. 

Coverage versus time are considered. Because two test 

cases may cover all or part of the same code, one cannot 

simply calculate the coverage of each test case and sum the 

products of the time required by each test case and the 

associated coverage amounts. Rather the secondary fitness 

measurement is  partially calculated by summing the 

products of the test case time and the incremental 

coverages. For example, suppose P = <T1, T2, T3> where 

T1 takes 5 seconds, T2 requires 3 seconds, and T3 needs 1 

second. Assume <T1>, <T1, T2 >, and <T1, T2, T3> have 

calculated coverages of 0.3, 0.4, and 0.6 respectively. Then 

the principle component of the fitness value is Fp = 0.6 

*100 = 60. Next, favor is given to faster fault detection. In 

order to weight the prioritizations appropriately, the 

amount of code covered by <T1>, <T1; T2>, and finally 

<T1; T2; T3> related to time must all be considered. The 

secondary fitness measurement based on the prioritized test 

suite, Fst , is calculated as follows:  

Fst(P) = (5  X .3) + (3 X .4) + (1 X. 6) 

= 3.3 

Fst is then compared to the highest value Fst could have. 

This will be called the optimal secondary fitness, Fso. 

Because test suites with tests that are likely to find the most 

faults first are weighted, the optimal secondary fitness 

would be the fitness of a prioritization whose first test 

covers all code for that test suite. For example, in the 

example above, if T1 covered 100% of all code covered by 

T, Fso = .6(5+3+1) = 5.4. Fst is compared to the best value 

it could be, Fso , by dividing the two results to give the 

secondary coverage. Hence, the secondary fitness is 

Fs(P) =Fst(P)  Fso(P) 

=3.3  5.4 

= .61 

Adding together the fitness values, the total fitness is 

obtained. Therefore, this example has a final  fitness of 

F(P) = Fp(P) + Fs(P)  

= 60 + 0.61  

= 60.61    

Code coverage by different case is depicted in Fig. 6. 

Example of calculation of fitness function 

Coverage:  

{T1}   =.32 

{T1,T2}   =.40 

{T1.T2,T3}  =.41 

{T1.T2,T3,T4}  =.55 

{T1.T2,T3,T4,T5}  =.60 

 

Primary Fitness=.60 X100=60 

Secondary Fitness 

=5*.32+2*40+1*.41+3*.55+4*.60/.60*(5+2+1+3+4) 

=6.86/9=.76 

Total fitness=60+.76=60.76  

 
Fig 6.  Code coverage by diff test case 

 

5.2  The Initial Population 
Each individual in the initial population should contain 

number of test case decided to take which is equal to total 

test case decided to take minus number of test case which 

are severe . First, randomly  test cases, T1, T2, T3, T4,…., 

TS are randomly generated for  individual P1 where s is 

total number of test case to be selected by GA and  initially 

P1 an empty Vector. The fitness, which we have discuss 

above added to P1. Again another test case which is not 

already in Pi is chosen, and fitness is again calculated. This 

continues until n number of initial unique population 

created.  

 

5.3   Selection 
As just mentioned, the ”optimal” test suite prioritization 

teeters on the edge of going over the designated fitness 

value. Thus, it is important to keep the best individuals 

from one generation to the next in case some slight 

addition or change immediately invalidates them. For this 

reason, two individuals were kept per generation using an 

elitist selection strategy. The remaining individuals needed 

to be used for reproduction were selected using a roulette 

wheel selection technique or using random selection 

technique. 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

7 

 

5.4   Crossover  
After two individuals are selected for reproduction, a 

random number R1 between 0 and 1 is chosen using 

random method. If R1 is less than the user-given value for 

pC, the crossover operator is applied. Otherwise, the parent 

individuals are unchanged and await the next step 

mutation. If crossover is to occur, another random number 

R2 from 0 to the number of genes of the smallest 

individual is selected as the crossover point. The 

subsequences before and after the crossover point are then 

exchanged to produce two new offspring as seen in Fig 7. 

As another example, consider the individuals P1 = <T1; 

T3; T6; T4> and P2 = <T2; T3; T5; T9; T4>. 

 

 
Fig 7.  Example of Crossover  

 

If 1 is picked, P1 and P2 could be crossed over after the 

first locus in each to produce the two offspring P1 = <T1; 

T3; T5; T9; T4> and P2 = <T2; T3; T6; T4>.  A crossover 

selection is depicted in Fig. 7. The first issue arises if 

crossover causes two of the same test cases to be in the 

same individual. Although a test case may be run more 

than once in a test suite, there is no benefit to executing it 

again. Because the original test suite was independent, The 

first issue arises if crossover causes two of the same test 

cases to be in the same individual. Although a test case 

may be run more than once in a test suite, there is no 

benefit to executing it again. Because the original test suite 

was independent, a second execution would produce 

exactly the same result as the first execution and would 

cover no new code. Instead of including this test case, 

another random test not in the current individual is selected 

from the original pool of test cases. If the individual 

already includes all tests, no additions are made. 

 

5.5   Mutation 

In these experiments, individuals are subject to mutation at 

each locus with probability  pM. If a random number R3 is 

drawn such that R3 is less than pM, a new test not included 

in the current individual is randomly chosen from the 

original pool of test cases as demonstrated in Fig. 8. 

 

 
Fig. 8.   Mutation was performed as displayed above. At 

each locus, a random number R3 is selected. If R3 is 

less than pM, the individual is mutated at that point. 

5.6   Empirical Evaluation 

 

The primary goal of this paper's empirical study is to 

identify and evaluate the challenges that are associated 

with time-aware regression test suite prioritization. The 

goals of the experiment are as follows:  

1. Identify the execution time of each test case. 

2. Find out code coverage of test case to be 

prioritized. 

3. Generate using GA the remaining test case after 

severe test case have been detected. 

To practically implement our algorithm we have configure  

JUnit, Ant and Eclipse Emma to work with Eclipse editor. 

First the execution time of all the test case are determined 

by running all the test case using ant make file in JUnit 

environment. Eclipse Emma is used to find out code 

coverage of each test case. The summary of all test case is 

given in table1.  

Once these value are determined next implementation of 

the algorithm using met Lab to find out remaining test case 

for the test suit after severe test case is added. Below is the 

met lab program code of implementation. In met lab 

implementation. Combination of test case as initial 

population are taken. Calculate fitness value for each 

population, do crossover and mutation with given mutation 

probability. This sequence is repeated for given number of 

generation. A Test case number,time of execution, code 

coverage derived by JUnit and Eclipes Emma taken for GA 

implementation is shown in table I. 

 

Table I 

Test case number,time of execution, code coverage derived 

by JUnit and Eclipes Emma taken for GA implementation.  

 

 
 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

8 

After running the  metlab implementations with the detail 

given in Fig. 7 it gives the following sequence of test case 

as prioritized test case and the graph is given in Fig 8. 

 
Prioritize test suite generated by given algorithm 

5.7   Experiments and Results 
Experiments are run in order to analyze (i) the 

effectiveness and the efficiency of the genetic algorithm. In 

order to compare this test suit with  

 
Fig. 9.  Graph showing generation and best test suit 

other available prioritization technique. The “random test 

case prioritization” were choosen . 

Here is done an experiment by randomly taking test case 

from the test case given in Fig 10. 

 
 Fig. 10.   Prioritize test suite generated by the given 

algorithm 

The experiment show that test case generated by GA takes 

less time as compared to test case generated by random 

test, goal oriented and path oriented test case prioritization,  

which is depicted in Fig 11,Fig 12 and Fig 13. 

 
Fig. 11. Time of execution comparision between 

random test case prioritization and given algorithm 

 

  
Fig. 12. Time of execution comparision between goal 

oriented  case prioritization and given algorithm 

 
Fig. 13. Time of execution comparision between path 

oriented case prioritization and given algorithm 

 

The experiment further show that the code coverage by test 

case generated by given algorithm is more than that of the 

test case generated by random test, goal oriented and path 

oriented test case prioritization which is depicted in Fig. 

14, Fig 15, Fig 16. 

 
Fig. 14.  Code coverage  comparision between random  

test case prioritization and given algorithm 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

9 

 
Fig. 15.  Code coverage  comparision between goal 

oriented  test case prioritization and given algorithm 

 
Fig. 16.  Code coverage  comparision between path 

oriented test case prioritization and given algorithm 

 

6. CONCLUSIONS 
In this paper it is described to generate test cases which are 

severe as per customer, takes less time and cover more 

code. Here it is compared test case generated by GA with 

test case generated by goal oriented, random and path 

oriented test prioritization technique and found some better 

result in terms time and code coverage. 

 

7. REFERENCES 
[1] R.A. DeMillo, R.J. Lipton, F.G. Sayward(1978), 

"Hints on Test Data Selection:     Help for the 

Practicing Programmer", IEEE Computer, Vol. 11,  

No. 4,  pp. 34-41. 

[2] R.G. Hamlet (1977), "Testing Programs with the Aid 

of a Compiler",IEEE   Transactions on Software 

Engineering, Vol. 3,  No. 4,  pp. 279-290. 

[3] David Banks, William Dashiell, Leonard Gallagher, 

Charles Hagwood, Raghu  Kacker and Lynne 

Rosenthal: “Software Testing by Statistical Methods   

Preliminary Success Estimates for Approaches based 

on Binomial Models”,  Coverage Designs, Mutation 

Testing, and Usage Models 

[4] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, 

and F. G. Sayword (1979),  "Mutation analysis," 

Tech. Rep. GIT-ICS-79/08, School of Inform. and 

Computer.   Science, Georgia Institute. of 

Technology, Atlanta GA 

[5] William E. Howden (1982), “Weak mutation testing 

and completeness of test sets”,  IEEE Trans. On 

Software Engineering, Vol. SE-8,pp. 371-379. 

[6] William E. Howden (1987), “Functional 

Programming Testing and Analysis.” , New York: 

McGraw-Hill. 

[7] W. M. Spears and V. Anand, “A study of Crossover 

Operators in Genetic Programming,” Proc. 6th Int. 

Symp. On Methodologies for Intelligent Systems,  

1991. 

[8] C. C. Michael, G. McGraw, M. A. Schatz, 

“Generating Software TestData by    Evolution,” 

IEEE Trans. on Software Engineering, Vol. 27, 

No.12, pp. 1085-1110,    2001. 

[9] M. D. Smith and D. J. Robson, \Object-oriented 

programming | the problems of validation," Proc. 

IEEE Conference on Software Maintenance | 1990. 

pp. 272 { 281. 

[10] C.D. Turner and D.J. Robson. The state based testing 

of object oriented programs. In Proc. Of the Conf. on 

Software Maintenance, 1993, p. 302-11, Sept’1993.  

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A 

methodology for controlling the size of a test suite. 

ACM, Transactions on Software Engineering and 

Methodology 2(3):270–285, July 1993.  

[12]  J. Lee and X. He, A methodology for test selection," 

Journal of Systems and  Software, Vol. 13, pp. 177 - 

185, 1990.  

[13]K.F. Fischer, F. Raji and A. Chruscicki, "A 

Methodology for Re-Testing Modi_ed Software", 

National Telecomms. Conf. Procs., pp. B6.3.1-6, Nov. 

1981.   

[14] K.F. Fischer, "A Test Case Selection Method for the 

Validation of Software Maintenace Modi_cations", 

IEEE COMPSAC 77 Int. Conf. Procs., pp. 421-426, 

No. 1977.  

[15] H.K.N Leung and L. White, "Insights into regression 

testing", Proc. Conf. Software Maintenance, pp. 60-

69, Miami, FL, Oct. 1989. 

[16] Ronald E. Prather and J. Paul Myers, JR, "The Path 

Prefix Software Testing Strategy", IEEE Transactions 

On Software Engineering, Vol. SE-13, NO. 7, July 

1987.  

[17] F.J. Weyukar. Axiomatizing software test data 

accuracy. IEEE transactions on Software Engineering 

SE-12(12):1128-38 Dec’1986.  

[18]  K.F. Fischer, "A Test Case Selection Method for the 

Validation of Software Maintenace Modi_cations", 

IEEE COMPSAC 77 Int. Conf. Procs., pp. 421-426, 

No. 1977.  

[19] P. Coad and Yourdon, E. \Object-oriented Analysis." 

Yourdon Press, 1990.  

[20] G. Rothermel and M. J. Harrold, A Safe, Efficient 

Regression Test Set Selection Technique, ACM 

Transactions on Software Engineering and 

Methodology, V.6, no. 2, April 1997, pages 173-210.  

[21]D.Hoffman and C.Brealey. Module test case 

generation. IN Proceedings of the Third Workshop on 

Software Testing, Analysis, and Verification, pages 

97-102, December 1989.. 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

10 

 [22]M. J. Harrold and M. L. Soa, "An incremental 

approach to unit testing during maintenance", Proc. 

Conf. Software Maintenance, pp. 362-367, Phoenix, 

1988.  

 [23] C.D. Turner and D.J. Robson. The state based testing 

of object oriented programs. In Proc. Of the Conf. on 

Software Maintenance, 1993, p. 302-11, Sept’1993.  

[24]G. Rothermel, R. Untch, C. Chu, and M.J. Harrold. 

Prioritizing test cases for regression testing. IEEE 

Transactions on Software Engineering, 27(10):929–

948, October 2001.  

[25]Wei-Tek Tsai, Xiaoying Bai, Ray Paul, Lian Yu. 

Scenario-Based Functional Regression Testing, , 

COMPSAC 2001  

[26] L. White and H.K.N. Leung, "A Firewall Concept for 

both Control-Flow and Data-Flow in  Regression 

Integration Testing", Proc. Conf. Software 

Maintenance, pp. 262-271, 1992. 

[27] Janusz Laski and Wojciech Szermer, "Identi_cation of 

Program Modi_cations and its Applications in 

Software Maintenance", Proc. Conf. Software 

Maintenance, pp.282-290, 1992.  

[28] R. Gupta, M.J. Harrold and M.L. Soffa, “An 

Approach to Regression Testing Using Slicing”, 

Proceedings of the Conference on Software 

Maintenance, 1992, pp. 299-308.  

[29] M. Dyer, The Cleanroom Approach to Quality 

Software Development, Wiley, New York, New York, 

1992. 

[30] G. Booch, Object-Oriented Design with Applications" 

Redwood City, Calif.: Benjamin/Cummings, 1991.  

[31] T.Y. Chen and M.F. Lau. Dividing strategies for the 

optimization of a test suite. Information Processing 

Letters, 60(3):135–141, March 1996.  

[32] J. Offutt, J. Pan, and J. M. Voas. Procedures for 

reducing the size of coverage-based test sets. In 

Proceedings of the Twelfth International Conference 

on Testing Computer Software, pages 111–123, June 

1995.  

[33] D. Kung, J. Gao, P Hsia,  Y. Toyoshima, C. Chen, Y-

S. Kim, and Y-K. Song. Developing an object 

oriented software testing and maintenance 

environment. Communications of the ACM, 

38(10):75-87, Oct’1995  

[34] N. Wilde and R. Huitt, \Issues in the maintenanceof 

object-oriented programs," University of West Florida 

and Bell Communications Research, 1991. 

[35] G. Rothermel, M.J. Herrold, J. Dedhia. Regression 

Test selection for C++ software. Journal of software 

testing, verification and reliability, V. 10, No. 2, June 

2000.  

[36] G. Rothermel. Efficient, effective regression testing 

using safe test selection techniques, Technical Report 

96-101, Clemson University, Jan’ 1996. 

[37] B. Beizer, Software Testing Techniques," 2nd ed., 

Van Hostrand Reinhold, 1990.  

[38] G. Rothermel and M. J. Harrold, Analyzing 

Regression Test Selection Techniques, IEEE 

Transactions on Software Engineering, V.22, no. 8, 

August 1996, pages 529-551.  

[49] P.A Brown and D. Hoffman. The application of 

module  Engineering Conference Proceedings, pages 

487-496,  September 1989. regression testing at 

TRIUMF  Nuclear Instruments and Methods in Pysics 

Research, Section A, . A293(1-2):377- 381, August 

1990.  

[40] S. P. Fiedler, Object-oriented unit testing," Hewlett-

Packard Journal, pp. 69 - 74, April 1989.   

[41] D. E. Perry and G. E. Kaiser, Adequate testing and 

object-oriented program-ming," Journal of Object-

Oriented Programming, Vol. 2, pp. 13 - 19, 

January/February 1990.  

[42] J. Lee and X. He, A methodology for test selection," 

Journal of Systems and  Software, Vol. 13, pp. 177 - 

185, 1990.  

 

 

 

 

 

 

 

IJCATM : www.ijcaonline.org 


