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ABSTRACT 

In view of the fact that clusters used in large scale computing 

are on the rise, ensuring the wellbeing of these clusters is of 

paramount significance. This highlights the importance of 

supervising and monitoring the cluster. In this regard, many 

tools have been contributed that can efficiently monitor the 

Hadoop cluster. The majority of these tools congregates 

necessary information from each of the node in the cluster and 

takes it for processing. These diagnosis tools are mostly post 

execution analysis tools. This paper presents an exploratory 

assessment of the different log analyzers used for failure 

detection and monitoring in Hadoop.   
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1. INTRODUCTION 

This is the era of BigData. Massive and gargantuan amount of 

data is produced on per day basis. Such scenario elevates the 

need for apposite storage, supervision and processing of data. 

Hadoop[1], an extensively used technology includes 

distributed storage and processing of data. This framework is 

currently employed in almost all companies to deal with data-

intensive applications. Conventional infrastructures used for 

data processing prove to be less efficient in distributed 

processing of data. Thus there was a move for developing 

models for large scale distributed storage and processing. 

Architectures like shared nothing proved to work better with 

BigData primarily because of the speed of processing, storing 

and accessing data. Apache Hadoop [1] is one among the 

most widely used large scale data processing paradigm which 

is currently being employed in Facebook, Google, Amazon 

etc. The chief advantage with Hadoop is that it allows for the 

storage of data in any format. The massive use of this 

framework calls for the faster analysis and diagnosis of 

failures. Due to the distributed nature of processing, it’s 

difficult for cluster administrator to isolate the failures and 

failed nodes. Many contributions have been done for failure 

monitoring, analysis etc in the last few years. 

2. HADOOP AND STORAGE 

2.1 Framework 

Hadoop[2] is gaining popularity mainly because of its ability 

to manage huge amount of data. The clusters used for data 

storage and processing may vary from a single server to a 

group of machines, generally, commodity machines. Though  

 

 

there are some limitations with single namenode [3], this 

framework is widely used. This software framework supports 

the MapReduce programming model for performing the 

distributed processing of data stored on the cluster. Hadoop  

Distributed  File  System (HDFS) is  the  default  storage layer  

given  by  the  Hadoop  framework  and  for this reason  the 

layer  is  used  by  all  applications  that  run  on  this  Hadoop 

framework. This layer got its structure from Google File 

System (GFS) [4] and the whole framework depends on the 

efficiency of HDFS. HDFS [5]  layer  has  master-slave  

architecture  and  was designed  for  reliable  storage  of  data  

[6].  This architecture  consists  of  two  types  of  nodes  in  a  

cluster specifically  the  NameNode  and  DataNodes.  

NameNode  responsibility is  to  act  like  a  master  and  

DataNodes  takes  up  the  role  of slaves. The execution flow 

is shown in figure 1. 

 

Figure 1: Flow of execution in cluster 

2.2 MapReduce Layer 

Just  as  the  name  indicates,  the  MapReduce  [7]  is  a 

software  framework  that  supports  massive  computations, 

and  is  based  on  two  basic  steps:  Map  and  Reduce.  It is a 

programming model and has an implementation associated 

with it.  The  runtime  system  is  a  helping  hand for  the  

programmers,  in view of the fact that  it  take  care  of  all  

background details  like  input  data  partitioning,  fault  

tolerance,  task schedules  etc.  in  an  environment  having 

huge  number  of  machine  and  large  data  amounts  for 

computation,  MapReduce  becomes  an  aid.  The master 

choose some slaves to perform the map task and others to 

perform the reduce task [7]. Those  who  have to do the map 

task will read input from the corresponding file  and  perform  

the  map  task,  storing  the  intermediate data  in  the  

memory.  These  intermediate  data  will  be periodically  

transferred  to  the  local  disk  associated  with the map 

workers and the location details will be passed to the master 

node. The master node then notifies the reducer about  this  

intermediate  result  and  then  using  RPC,  they access  the  

corresponding  local  disk  of  map  workers  to  get the  

intermediate  data.  The reduce workers produce the output 
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files.  After all map and reduce task are completed, the master 

then wake up the user program. 

3. LOG ANALYZERS 

Since the big data is ever increasing (without any signs of 

decrease), the clusters dealing with this big data need to be 

monitored and maintained efficiently. Log analysis can aid in 

optimizing the overall system performance since realizing a 

system’s performance is correlated with system resource 

usage understanding. Though there are many subprojects of 

Apache Hadoop including scribe [8] [9], Chukwa [10], 

Gridmix3 [11] etc, the analysis in this paper also includes 

some of the contributions. 

3.1 Vaidya 

Vaidya [12], a very helpful tool for performance analysis of 

the applications running on the Hadoop cluster, is one of the 

contributions to Hadoop framework. This tool enables the 

cluster administrator in spotting jobs with deteriorating 

performance. Vaidya analyses the application’s performance 

through a set of diagnostic rules; which can be written by the 

user according to the application. In each diagnostic test rule, 

the importance, threshold and prescription can be detailed. 

Importance specifies the general significance of the test. The 

prescription specifies the intended advice to improve the 

performance of the particular job. The test report consists of 

test name, importance of test, description of diagnostic test, 

severity, result of the test and the prescription. In the default 

version of Vaidya, it incorporates five test rules [13]. A 

limitation with this tool is the difficulty in copping up with the 

consistency of rules against continuously increasing Hadoop 

code base. 

3.2 Salsa & Mochi 

Salsa [14] examines the Hadoop logs (Data Node logs and 

Task Tracker logs) to outline the data and control flow 

execution and presents with a state machine view of the 

execution on each node. Since a map reduce job includes 

logging statements [15], each activity will release log 

messages. In order to model the control flow, every log 

message is considered as an event which can be either a start 

or end state of execution. The identification of events from 

logs is by the use of pattern recognition. Salsa also tries to 

incorporate the fault detection and diagnosis of job MR job 

executions. This approach does not require the modification 

of operating system, middleware or the application. Hadoop 

debugging can also be done using Mochi, a log based analysis 

tool for Hadoop. Mochi [16] relates the behavior of execution 

in time, space and volume and also incorporates the 

interdependencies in the distributed environment. It first 

extracts the Job execution view per node by executing the 

Map Reduce nob and then constructs a Job Centric Data Flow 

(JCDF) which is a directed graph, by relating the collected 

execution views on each node and also with the HDFS layer. 

The JCDF is also distributed among nodes. Thus it tries to 

automatically generate and correlate the data and control flow 

between nodes and then analyze the Hadoop behavior. Mochi 

provides visualization to reason and debug performance issues 

by the users. The visualizations include: MIROS, REP and 

Swimlanes. MIROS captures the data flow on each node 

among the maps and reduces. REP check that states which 

process larger volumes of data should take larger time in 

processing. Swimlanes for capture task progress and shows 

the duration of each task. 

3.3 Chukwa 

Yet another subproject to Hadoop is Chukwa [10], similar to 

Ganglia [17] in the storage aspect. It is a data collection and 

network management system [18] that is built on top of 

Hadoop ie, Hadoop distributed File System and Map Reduce 

framework and so, is scalable. The storage of the logged data 

is done on the distributed file system of Hadoop, HDFS unlike 

other tools that store them on local storage. HDFS has high 

throughput and is highly flexible, efficient and reliable for 

storage of large files. Chukwa give support to failure 

diagnosis by continuous monitoring of the system. The basic 

architecture of Chukwa [20] consists of adaptor, agent, 

collector and HDFS storage. Chukwa collects system metrics, 

log files, arbitrary log files, logs from X-trace [19] etc. these 

data are collected by adaptors and are stored in HDFS as large 

files, since HDFS is efficient for operations on large files 

rather than small ones. For the same reason, the collector and 

agents are added between the adaptors and HDFS layer. Thus, 

this tool highly aids in the storage of outsized data and 

processing of these chunks. 

4. ANALYTICAL STUDY 

An epigrammatic comparison of the above discussed log 

analyzers are shown in table 1. Vaidya does a post execution 

log analysis and mainly focus on application failure diagnosis 

rather than hardware and network failure. The range of failure 

detection and diagnosis by Vaidya can be improved by 

incorporating further test rules. But this depends on the 

application to be monitored, and so the preciseness of failure 

diagnosis by Vaidya is mostly in the hands of the user. As 

discussed in section 3, the Salsa and Mochi identify the states 

using pattern recognition. But unfortunately when the log 

patterns have to be changed (as part of any source code 

modification) the patterns may not be easily identified by use 

of pattern matching. It can capture the task dependencies 

efficiently, as each task are depicted as states and the 

transition from one state to another shows the dependency 

between the two. Since the time aspect is considered, extra 

care has to be given for clock synchronization. Chukwa on the 

other hand takes as input all possible sources of information 

from various sources and monitors the system as a whole. It 

models a data collection and network supervision system for 

hadoop. 
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Table 1: Analytical Study of Log Analyzers 

 

Log Analyzer Feature Input Output Limitation Future Enhancements 

Vaidya [12] Rule supported 

scrutiny on logs 

 

Does rule based 

assessment  for 

every job 

execution 

 

For every problem 

diagnosed it gives 

intended guidance 

Job History log 

 

Job Configuration 

log (XML) 

XML report of 

evaluated result 

Worthless outcome, 

proviso parameters are 

improperly placed 

 

 

Online progress analysis 

 

Incorporate additional 

rules to capture all 

aspects of failure 

 

 

Salsa [14] State Machine 

outlook of the 

execution of job in 

an individual node 

 

Portrays control 

flow and data flow 

execution 

 

incorporates 

semantic 

information for 

analysis 

Datanode Log 

 

Tasktracker Log 

State machine with 

inter dependencies 

highlighted 

Synchronization of 

clocks in cluster 

Automate visualization 

of analysis 

 

generalize format and 

structure of logs for 

enhanced analysis 

 

Correlate network logs 

for failure diagnosis 

Mochi [16] Hadoop 

performance 

analysis in time, 

space and volume 

 

Spotlights the 

execution of job in 

distributed 

environment 

Datanode Log 

 

Tasktracker Log 

Number of nodes, 

jobs, task per job, 

their progress, 

duration & 

interaction among 

jobs 

Synchronization of 

clocks in cluster 

Online Mochi analysis 

 

Regression testing on 

programs 

Chukwa[10] Distributed 

gathering  of logs 

and hasty analysis 

 

Large scale 

storage (on 

HDFS) and 

processing of data 

in pipelined 

manner (using 

MapReduce) 

All Hadoop Logs 

 

System metrics 

 

Application metrics 

Toolkit that 

demonstrate 

analyzed and 

monitored results 

Being HDFS as the 

default storage, has 

limited throughput 

during heavy access 

concurrency to same 

file 

HICC graph accuracy 

improvement for 

machines with local time 

zone 
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5. CONCLUSION 

This era of BigData calls for the debugging, performance 

monitoring, storage and operation monitoring of data since the 

data is increasing exponentially without any signs of 

dwindling. Consequently a dreadful need for scalable and 

reliable scheme for the same is felt which resulted in the 

contribution of many tools for monitoring and diagnosis of 

huge clusters. Hadoop being the most popularly used 

methodology for storage and processing of BigData, has 

several subprojects for failure monitoring and analysis. The 

majority of these tools seize the log files to capture the 

behavior of the cluster and the running application. They 

process the logs to retrieve the necessary information required 

for failure diagnosis, and some of the tools even support the 

failure recovery. An expository survey of some of these log 

analyzers shows that most tools try to capture only the 

application failure diagnosis aspect ignoring the hardware and 

network failures. In such clusters, the failures are not an 

exception and so diagnosis of failures must be extended to all 

possible levels of failures ranging from node failure to 

application failures. 
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