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ABSTRACT 

Efficient task mapping plays a crucial role in saving energy in 

asymmetric multiprocessor platforms. This paper considers 

the problem of energy-aware static mapping of periodic real-

time dependent tasks sharing resources on asymmetric 

multi/many-core embedded systems. The paper extends an 

existing synchronization-aware bin-packing (BP) variant 

when the full-chip dynamic voltage and frequency scaling 

(DVFS) is supported by the asymmetric multicore platform. 

Then, the paper proposes another BP variant when DVFS is 

not supported. The simulation results showed that the 

proposed BP variant can reduce energy consumption 

significantly in the presence of shared resources.   

General Terms 

Operating systems: Real-time embedded systems 

Keywords 

task partitioning; task assignment; asymmetric 

multiprocessors; bin-packing; shared resources; DVFS. 

1. INTRODUCTION 
Embedded systems are playing important roles in our lives 

every day. As the applications on these devices are becoming 

more complex, there is a need to increase the performance 

while keeping the energy consumption at low levels, 

especially for the portable battery-powered ones. Multi/many-

core embedded systems can deliver higher performance while 

consuming lower power compared to uniprocessor systems. 

Embedded systems today are often implemented using 

platforms comprised of multiple processing units (cores). 

These cores may be identical in symmetric multiprocessor 

(SMP) platforms, different (unrelated) in heterogeneous MP 

(HMP) [1] platforms or asymmetric in performance, power 

and size but have the same instruction set architecture (ISA) 

as in asymmetric MP (AMP) [2, 3] platforms. TI’s OMAP™ 

[4] application processors provide good examples for these 

different types of platforms. This paper considers asymmetric 

multiprocessor platforms where the processors have the same 

ISA but they are different in performance, size and power. 

The multiprocessor real-time scheduling can be generally 

done under the partitioned scheme or under the global scheme 

[5]. In the partitioned scheme, the tasks are statically 

partitioned among the cores and all instances (jobs) of a task 

are executed on the same processor and no job is permitted to 

migrate among processors. In the global scheme, a task can 

migrate from one processor to another during the execution of 

different jobs. Furthermore, an individual job of a task that is 

preempted from some processor, may resume execution on a 

different processor. Nevertheless, in both schemes, no job of 

any task can be executed at the same time on more than one 

processor.  

This paper considers the partitioned scheme using earliest 

deadline first (EDF) as a uniprocessor-scheduling algorithm. 

The main advantage of the partitioned scheduling is that after 

partitioning the tasks among processors, the multiprocessor 

scheduling problem is reduced to a set of traditional 

uniprocessor ones. As the problem of partitioning tasks 

among multiple processors is NP-Hard [6], approximation 

algorithms and heuristics are used to solve this problem. 

Fortunately, task partitioning problem is analogous to the 

famous bin-packing problem (BPP) [5]. When the processors 

are asymmetric, it is analogous to the variable-sized BPP 

(VSBPP) [7]. 

When exclusive-access shared resources are involved in a 

real-time system, resource contention problems will arise. So, 

resource access protocols such as stack resource policy (SRP) 

[8] and priority ceiling protocol (PCP) [9] are needed to 

manage the access to shared resources while scheduling real-

time tasks. Multiprocessor PCP (MPCP) [10] and 

multiprocessor SRP (MSRP) [11] have been also proposed. 

This paper proposes BP variants for partitioning dependent 

tasks on asymmetric multi/many-core platforms and compares 

them from the energy-awareness perspective with/out DVFS. 

The rest of this paper is organized as follows: Section 2 

reviews the related work. Section 3 defines the system model. 

Section 4 shows the proposed techniques. Section 5 presents 

simulation results. Lastly, section 6 summarizes conclusions. 

2. RELATED WORK 
Task mapping (assignment) on multiprocessor (multicore) 

systems has been explored in the literature for symmetric, 

heterogeneous and asymmetric multiprocessors especially 

with independent tasks. When tasks are dependent due to 

exclusive access shared resources, few researches have 

addressed this case especially from energy-awareness 

perspective. 

Aydin and Yang [6] showed that energy-aware task 

partitioning on SMP systems problem, called power partition, 

is also an NP-hard problem. They showed that among well-

known bin-packing heuristics, worst-fit decreasing (WFD) is 

the most energy-efficient one and first-fit decreasing (FFD) is 

the best from schedulability perspective. They built their 

results on symmetric multicore systems with independent 

tasks. 
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For independent tasks on AMP systems, Funk and Baruah 

[12] worked on utilization bounds of FFD and AFD (any-fit 

decreasing) that assigns each task to any processor upon 

which it will fit, while FFD must assign the task to the first 

(fastest) processor. They did not take-energy awareness into 

account as their goal was toward feasibility and utilization 

bounds. Andersson and Tovar [13] considered partitioned 

scheduling on uniform (asymmetric) multiprocessors and 

proposed a FFD variant with increasing-speed ordered 

processors. They showed that it has a competitive factor of 

three, i. e., it can schedule all task sets that any other possible 

algorithm can schedule assuming that the algorithm is given 

processors that are three times faster. They did not take 

energy-awareness into account. 

For dependent tasks that share resources, Lakshmanan et al. 

[14] proposed a synchronization-aware task allocation 

algorithm which bundles tasks that access a common shared 

resource and co-locate them, thereby transforming global 

resource sharing into local sharing and reducing the overall 

blocking time. Then, Nemati et al. [15] developed a two-

round blocking-aware partitioning algorithm (BPA) which 

allocates tasks onto processors in a way that reduces the 

overall amount of blocking times of tasks. The both 

algorithms works under MPCP with fixed priority scheduling 

algorithm. They did not take energy- awareness into account 

and they considered SMP systems. Recently, Han et al. [16] 

proposed a synchronization-aware WFD (SA-WFD) 

algorithm that allocates tasks accessing the same resources to 

the same core to effectively reduce synchronization overhead. 

The SA-WFD works under an enhanced version of MSRP and 

partitioned EDF on SMP platforms taking energy-efficiency 

into account.  

This paper extends SA-WFD algorithm to consider AMP 

platforms and proposes another BP variant when DVFS is not 

supported by the platform. 

3. SYSTEM MODEL 

3.1 Task and Resource Models 
A periodic real-time task τ generates an infinite sequence of 

task instances (jobs). Each job executes for C time units at 

most, be generated every T time units, and has a relative 

deadline D time units after its arrival. 

This paper considers a periodic task set },...,,{ 21 n  

of n dependent real-time tasks and a set of r serially reusable 

resources },...,{ 1 rRRR  . A task τi is represented as 

}){,,,( ,, qjiiiii cCTD  where Di is the relative deadline, 

Ti is the period, Ci is the worst-case execution time (WCET) 

of task τi with respect to (w.r.t.) the maximum frequency 

(speed) of the slowest processor, and ci,j,q represents the 

WCET of the jth critical section of task τi when locks resource 

Rq. For a task τi, Ci is the sum of all critical and non-critical 

sections. Implicit deadlines are considered in this paper, i.e., 

the relative deadline is assumed to be the same as the period.  

Each task τi has utilization 
iii TCu /  on the slowest 

processor and utilization uij on processor pj, i.e., 

jiji Suu /  where Sj represents the relative maximum 

speed of processor pj to the slowest processor as will be 

shown later. The hyperperiod T of all tasks is the least 

common multiple of periods, i.e.,  T = lcm(T1, T2, . . . , Tn). 

3.2 Power and Platform Models 
The power consumption in CMOS circuits has two main 

components: dynamic and static power. The dynamic power 

consumption which arises due to switching activity can be 

represented as [17]: 

fVCP ddeffdynamic .. 2                              (1) 

Where Ceff  is the effective switching capacitance, Vdd is the 

supply voltage, and f is the processor clock frequency (speed) 

which can be expressed in terms of a constant k, supply 

voltage Vdd and threshold voltage Vth as follows [17]:  

ddthdd VVVkf /).( 2                         (2) 

The static power consumption is primarily occurred due to 

leakage currents Ileak [18], and the static (leakage) power Pleak 

can be expressed as: 

ddleakleak VIP .                                         (3) 

The total power consumption is the sum of dynamic and 

leakage power (and other types of power like short-circuit 

power not mentioned here). However, the total power can be 

considered to be composed of two parts [17]: the speed 

dependent part k

k

kd ffP


)(  for any α k >0 and 3 ≥ βk ≥0, 

and the speed independent part Pind that may be ignored if it is 

small when compared to Pd(f). However, the total power 

function is convex and strictly increasing function with 

respect to speed [6, 17]. 

An asymmetric multiprocessor platform with m preemptive 

processors (cores) based on CMOS technology is defined as 

П={p1,p2,…,pm} with maximum speeds {S1,S2,…,Sm} where 

each processor pi is characterized by its relative maximum 

speed Si that represents the ratio between the maximum speed 

(frequency) of processor pi and the maximum speed of the 

slowest processor in the platform. The processors are ordered 

in non-decreasing order of their relative maximum speeds, 

i.e., 1=S1≤S2≤…≤Sm. An asymmetric multiprocessor platform 

considered here contains processors that have the same ISA 

but they are different in performance, power and size where 

for some frequency f ≤ Sj then  Pj(f) ≤ Pj+1(f) for any 1≤ j<m. 

The paper takes into account DVFS processors that supports 

multiple voltage/speed levels. An ideal DFVS processor can 

operate at any voltage/speed level continuously, but practical 

DVFS processors support multiple discrete voltage/speed 

levels. When muli/many-core platforms are considered, there 

are the full-chip, per-core and per-island DVFS techniques 

[19]. The practical full-chip DVFS restricts all the cores in the 

chip to operate at the same voltage/speed level. In the per-core 

DVFS, each core operates at individual voltage/frequency 

(speed) independently of other cores, and has no operating 

frequency constraint. Furthermore, voltage/frequency island 

(VFI) technique is also proposed to get the per-island DVFS. 

It supports different voltage supplies and frequencies for 

different clusters on a multi/many-core system, where the 

cores on one chip can be partitioned into clusters (islands), on 

each of which all cores operate at a common frequency 

(speed). In other words, all cores in one island share a 

common voltage/frequency while those cores between islands 

may operate at different frequencies [19]. 

The tasks are scheduled according to EDF for each processor 

(core). So, a processor utilization Uj which is the sum of the 
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utilizations of tasks assigned to this processor must not exceed 

1 else deadlines will be missed, i.e.,  
i

ijj uU 1 .  

The energy consumption of a task τi running on a processor pj 

with maximum speed Sj in an asymmetric multiprocessor 

platform during the hyperperiod T when executed with 

constant speed f  (f ≤ Sj) is given by: Pj(f).(T/Ti).(Ci /f ) [6]. 

Then, the energy consumption Ej of all tasks τi allocated to the 

processor pj during the hyperperiod T can be expressed as 

follows: 

f

SU
fPTufP

f

T

f

C

T

T
fPE

jj

j

p

ij
i

p i

jj

jiji

.
).(.).(..).(  

 

   (4) 

Where 1jU  and 
jjj SfSU .  to assure that no 

deadlines will be missed. Furthermore, ignoring the speed-

independent power Pind, the minimum (optimal) energy 

consumption the single processor pj consumes is when 

jj SUf .  as follows: 

 ).(.*

jjjj SUPTE                                       (5) 

4. PROPOSED MAPPING TECHNIQUES 
This paper extends the SA-WFD proposed in [16] to AMP 

systems. Before introducing the extended version of SA-WFD 

for AMPs, an overview of the suspension-based MSRP 

version considered in [16] is presented. 

4.1 Suspension-Based MSRP 
In [16], Han et al. considered an enhanced suspension-based 

version that extends MSRP [11] and OMLP [20] with the 

following properties:  

Property 1. for local blocking time, a task can be blocked at 

most once by a low priority task on the same core [11].  

Property 2. The local blocking time for a task is upper-

bounded by the longest duration for executing a low priority 

task’s critical section (including the low priority task’s global 

waiting time, if any) on the same core [11].  

Property 3. For any core, at any given time, there exists at 

most one task that is either a) accessing a resource; or b) 

suspended and waiting for a resource (which is currently 

accessed by a task on another core) [20]. 

Some definitions and notations from [16] need to be adapted 

to get along with AMP platforms: 

BWi denotes the worst-case global waiting time that can be 

experienced by task τi to access all its resources. 






cs
iN

x

xii BWBW
1

,
                                                    (6) 

Where Ni
cs is the number of critical sections of τi and BWi,x 

indicates the maximum global waiting time for task τi 

assigned to core pk when executing its xth critical section 

}|
)(

{

max

, mj

m

aj

km

xi p
S

Rtt
MaxBW  



      (7) 

Where the arrow here means that a task on the left assigned to 

the core on the right, Sm is the maximum relative speed of core 

pm and )(max

aj Rtt  is the maximum amount of time for task τj to 

access resource Ra once (the longest critical section of τj that 

accesses Ra ). 

}|{)( ,,

max xcMaxRtt axjaj 
                         (8) 

From Property 1, task τi on core pk can only be blocked at 

most once by a task τj where τj assigned to core pk and Tj > Ti. 

Therefore, according to Property 2, we have the maximum 

local blocking time for task τi as follows: 

},:|{
,,

, ijkj

k

qyj

yji TTpj
S

c
BWMaxB        (9) 

To adapt with AMP systems, the schedulability condition in 

[16] can be rewritten as follows: For a given task-to-core 

mapping, the tasks are schedulable under EDF on their cores 

if, for every core (processor) pj, there is: 







ikjk TTp k

kjk

i

i

ji
T

BWSC

T

B
p

,

)/(



      (10) 

4.2 The Proposed Synchronization-Aware 

Techniques 
The SA-WFD [16] considers values such as pessimistic 

estimated utilization (peui) of a task τi that incorporates its 

maximum global waiting time 
max

iBW . For AMP systems, 

the  peuik of a task τi on a core pk with maximum relative 

speed Sk can be rewritten as follows: 

i

iki

ik
T

BWSC
peu

max)/( 
                         (11) 






cs
iN

x

xii BWBW
1

max

,

max
                                       (12) 





xij

lqjxi SRttBW
,

/)(maxmax

,



                        (13) 

Where Θi,x contains up to (m−1) other tasks that access the 

resource Rq that is accessed by xth critical section of task τi and 

have the longest access time. That is, whenever task τi 

accesses its resource Rq, it is assumed to wait for other tasks, 

up to (m−1), on different cores pl ( 1 ≤ l ≤ m and l ≠ k ) to 

access Rq for the longest time. If no other task accesses Rq, 

then Θi,x is empty and 0max

, xiBW . The overall estimated 

utilization of a core px is defined as: 





xj p

jxx peuEU


                             (14) 

Also, the resource similarity wi,j between two tasks τi and τj is 

defined as the number of resources that are accessed by both 

tasks τi and τj. The overall resource similarity between task τi 

and core pk is defined as follows: 





kj p

jik wi


,)(                               (15) 

The utilization for each core pk is defined as follows: 
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    (16) 

The SA-WFD [16] is adapted to AMP systems by computing 

values such as pessimistic estimated utilization (peuik) for 

each task τi and core pk. Then, a task is assigned to the core 

with maximum overall resource similarity or to the core with 

minimum estimated utilization behaving like WF manner. As 

soon as the task is assigned to some core, the estimated 

utilization of that core has to be updated. Then, after assigning 

all tasks, the actual utilization of each core is computed. Thus, 

an asymmetric version of SA-WFD which is still valid for 

SMP systems is obtained. Algorithm 1 shows this AMP 

version of SA-WFD.  

 

Algorithm 1. SA-WFD for AMPs  

Input: A task set τ = {τ 1, τ 2, … , τ n} and a set of  

  processors {p1, … , pm} with maximum speeds 

 {S1, …, Sm} where S1≤…≤Sm. 

Output:{U1,…,Um}  utilizations of processors. 

1. for (each task τi and core pk ) do 

2.  calculate 
max

iBW  from (12);  

3.  calculate peuik from (11);   

4. end for 

5. Sort tasks in non-increasing order of  peui1 

6. for (each task τi in the above sorted order) do  

7.  Find core px with the maximum Ωx(i) (if more cores 

 have the same maximum Ω(i), the core with the 

 minimum (EUx+ peuix) is chosen; if there is still a 

 tie, the core with smallest index is chosen); 

8.  if (EUx+ peuix) ≤ Max{EUj ; 1 ≤ j ≤ m}then 

9.   Assign task τi to core px ;  

10.  else  

11.   Find core py with the minimum  

  (EUy+ peuiy) (if there is a tie, the core with 

  smallest index is chosen); 

12.  Assign task τi to core py ; 

13. end if 

14. end for 

15. For each task τi calculate BWi and Bi from (6) and (9) 

 respectively; 

16. For each core pk calculate Uk from (16); 

 

 

The important feature of WFD is that it balances the workload 

among cores. So, it is the most energy-efficient bin-packing 

technique as shown in [6] on SMP systems. With AMP 

systems, this result is not always true. It is true with platforms 

support full-chip DVFS.  

This paper considers AMP platforms that support full-chip 

DVFS or do not support DVFS at all assuming that unused or 

idle cores are shut down.  

4.2.1 Full-Chip DVFS (FC-DVFS) 
When the full-chip DVFS is supported, the energy consumed 

by the m-core AMP platform during the hyperperiod T can be 

expressed as: 




 
m

j

jjjdfvsfc USPUUTE
1

maxmax ).().(.         (17) 

Where Umax is the maximum processor utilization among 

processors assuming ideal DVFS processors.  

According to (17), balancing workload among cores results in 

minimizing Umax and reducing energy consumption 

consequently. Thus, SA-WFD is the proposed energy-efficient 

technique for task mapping on AMP systems when FC-DVFS 

is supported.  

4.2.2 Without DVFS (NO-DVFS)  
When DVFS is not supported, the energy consumed by the m-

core AMP platform during the hyperperiod T can be 

expressed as: 




 
m

j

jjjdvfsno SPUTE
1

)(..                         (18) 

 

Algorithm 2. SA-FFD for AMPs  

Input: A task set τ = {τ 1, τ 2, … , τ n} and a set of  

  processors {p1, … , pm} with maximum speeds  

 {S1, …, Sm} where S1≤…≤Sm. 

Output:{U1,…,Um}  utilizations of processors. 

1. for (each task τi and core pk ) do 

2.  calculate 
max

iBW  from (12);  

3.  calculate peuik from (11);   

4. end for 

5. Sort tasks in non-increasing order of  peui1 

6. for (each task τi in the above sorted order) do  

7.  Find core px with the maximum Ωx(i) (if more 

 cores have the same maximum Ω(i), the core 

 with smallest index is chosen); 

8.  if (EUx+ peuix) ≤ 1 then 

9.   Assign task τi to core px ;  

10.  else  

11.   Find first (smallest index) core py with  

  (EUy+ peuiy) ≤ 1 ; 

12.  Assign task τi to core py ; 

13. end if 

14. end for 

15. For each task τi calculate BWi and Bi from (6) and (9) 

 respectively; 

16. For each core pk calculate Uk from (16); 
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According to (18), assigning tasks to the slowest cores and 

saving the fastest cores will reduce the energy consumption. 

This paper proposes a BP variant, called SA-FFD, that 

emulates the SA-WFD but behaves like FF manner by 

assigning tasks to the first (slowest) core that fits. The 

processors are indexed where the slowest processor has the 

lowest index and so on. Algorithm 2 shows SA-FFD for AMP 

systems. 

5. SIMULATION RESULTS 
The SA-WFD and SA-FFD techniques have been 

implemented using MATLABTM. Task utilization values have 

been randomly (uniformly) generated to get tasks with 

utilization less than 0.25 or 0.5; all utilizations are considered 

with respect to the slowest processor. The number of 

resources ranges from 2 to 10. The number of critical sections 

of a task is 0 or 1. The critical section ratio (CSR) ranges from 

0.01 to 0.10 of the WCET of a task. The asymmetric 

multi/many-core platforms shown here are the 4-core platform 

П4 with maximum relative speeds {1,2,3,4} and the 8-core 

platform П8 with speeds {1,1,1,1,2,2,2,2}. For simplicity 

reasons, power consumption model implemented here is a 

simplified power model P(f)= α f
3 using normalized (relative) 

values where f is the processor speed (frequency) and α  is a 

processor-dependent constant. The faster the processor is the 

bigger the constant α is. The processor pj’s constant α is 

assumed to be equal to its maximum relative speed Sj. 

Very extensive experiments and multiple runs have been done 

on different platforms to verify the proposed techniques. 

Figures 1 and 2 show the normalized energy consumption 

when tasks with utilization less than 0.25 are partitioned 

among cores on П4 platform with full-chip DVFS and without 

DVFS respectively. 

The SA-WFD is the most energy-efficient algorithm when 

full-chip DVFS is supported. When DVFS is not support, it is 

clear that the proposed SA-FFD outperforms SA-WFD. 

Figures 3 and 4 show the same behavior when the 

comparisons are done with task utilization less than 0.5 and 

П8  as a target platform. 
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Fig 1: Comparing the proposed techniques with task 

utilizations less than 0.25 on П4  with full-chip DVFS. 
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Fig 2: Comparing the proposed techniques with task 

utilizations less than 0.25 on П4 platform without DVFS. 
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Fig 3: Comparing the proposed techniques with task 

utilizations less than 0.5 on П8 with full-chip DVFS. 

 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of tasks

N
O

-D
V

F
S

 N
o
rm

a
liz

e
d
 E

n
e
rg

y

SA-WFD

SA-FFD

 

Fig 4: Comparing the proposed techniques with task 

utilizations less than 0.5 on П8 platform without DVFS. 
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Generally, when DVFS is not supported the energy 

consumption can be reduced by 80% using SA-FFD compared 

to SA-WFD with light workloads as SA-WFD starts with the 

fastest cores while SA-FFD starts with the slowest cores. With 

heavy workloads, the SA-FFD consumes more energy and it 

approaches to SA-WFD when the cores approximate to be 

fully utilized.  

Platforms and processor maximum speeds have a role in 

energy consumption. The less speed differences are, the 

smoother the curves are. 

6. CONCLUSION   
This paper addressed the problem of energy and 

synchronization-aware partitioning of periodic real-time 

dependent tasks due to shared resources on asymmetric 

multi/many-core embedded systems.  

The paper extended the existing SA-WFD algorithm to 

asymmetric multicore systems and proposed SA-FFD 

algorithm and showed that it is the most energy-efficient 

technique when DVFS is not supported on AMP platforms. 

The simulation results showed that when DVFS is not 

supported, the SA-FFD could reduce the energy by 80% 

compared to SA-WFD with light workloads in the presence of 

shared resources. As a future work, other DVFS models such 

as per-core and per-island models will be taken into account. 
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