
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

1

Energy and Synchronization-Aware Mapping of Real-

Time Tasks on Asymmetric Multicore Platforms

E. M. Saad, A. M. Elewi
Electro., Comm. and Comp.

Eng. Dept., Helwan University
Cairo, Egypt

M. Shalan
Computer Science and
Engineering Dept., AUC

Cairo, Egypt

M. H. Awadalla
Electrical and Computer
Engineering Dept., SQU

Muscat, Oman

ABSTRACT

Efficient task mapping plays a crucial role in saving energy in

asymmetric multiprocessor platforms. This paper considers

the problem of energy-aware static mapping of periodic real-

time dependent tasks sharing resources on asymmetric

multi/many-core embedded systems. The paper extends an

existing synchronization-aware bin-packing (BP) variant

when the full-chip dynamic voltage and frequency scaling

(DVFS) is supported by the asymmetric multicore platform.

Then, the paper proposes another BP variant when DVFS is

not supported. The simulation results showed that the

proposed BP variant can reduce energy consumption

significantly in the presence of shared resources.

General Terms

Operating systems: Real-time embedded systems

Keywords

task partitioning; task assignment; asymmetric

multiprocessors; bin-packing; shared resources; DVFS.

1. INTRODUCTION
Embedded systems are playing important roles in our lives

every day. As the applications on these devices are becoming

more complex, there is a need to increase the performance

while keeping the energy consumption at low levels,

especially for the portable battery-powered ones. Multi/many-

core embedded systems can deliver higher performance while

consuming lower power compared to uniprocessor systems.

Embedded systems today are often implemented using

platforms comprised of multiple processing units (cores).

These cores may be identical in symmetric multiprocessor

(SMP) platforms, different (unrelated) in heterogeneous MP

(HMP) [1] platforms or asymmetric in performance, power

and size but have the same instruction set architecture (ISA)

as in asymmetric MP (AMP) [2, 3] platforms. TI’s OMAP™

[4] application processors provide good examples for these

different types of platforms. This paper considers asymmetric

multiprocessor platforms where the processors have the same

ISA but they are different in performance, size and power.

The multiprocessor real-time scheduling can be generally

done under the partitioned scheme or under the global scheme

[5]. In the partitioned scheme, the tasks are statically

partitioned among the cores and all instances (jobs) of a task

are executed on the same processor and no job is permitted to

migrate among processors. In the global scheme, a task can

migrate from one processor to another during the execution of

different jobs. Furthermore, an individual job of a task that is

preempted from some processor, may resume execution on a

different processor. Nevertheless, in both schemes, no job of

any task can be executed at the same time on more than one

processor.

This paper considers the partitioned scheme using earliest

deadline first (EDF) as a uniprocessor-scheduling algorithm.

The main advantage of the partitioned scheduling is that after

partitioning the tasks among processors, the multiprocessor

scheduling problem is reduced to a set of traditional

uniprocessor ones. As the problem of partitioning tasks

among multiple processors is NP-Hard [6], approximation

algorithms and heuristics are used to solve this problem.

Fortunately, task partitioning problem is analogous to the

famous bin-packing problem (BPP) [5]. When the processors

are asymmetric, it is analogous to the variable-sized BPP

(VSBPP) [7].

When exclusive-access shared resources are involved in a

real-time system, resource contention problems will arise. So,

resource access protocols such as stack resource policy (SRP)

[8] and priority ceiling protocol (PCP) [9] are needed to

manage the access to shared resources while scheduling real-

time tasks. Multiprocessor PCP (MPCP) [10] and

multiprocessor SRP (MSRP) [11] have been also proposed.

This paper proposes BP variants for partitioning dependent

tasks on asymmetric multi/many-core platforms and compares

them from the energy-awareness perspective with/out DVFS.

The rest of this paper is organized as follows: Section 2

reviews the related work. Section 3 defines the system model.

Section 4 shows the proposed techniques. Section 5 presents

simulation results. Lastly, section 6 summarizes conclusions.

2. RELATED WORK
Task mapping (assignment) on multiprocessor (multicore)

systems has been explored in the literature for symmetric,

heterogeneous and asymmetric multiprocessors especially

with independent tasks. When tasks are dependent due to

exclusive access shared resources, few researches have

addressed this case especially from energy-awareness

perspective.

Aydin and Yang [6] showed that energy-aware task

partitioning on SMP systems problem, called power partition,

is also an NP-hard problem. They showed that among well-

known bin-packing heuristics, worst-fit decreasing (WFD) is

the most energy-efficient one and first-fit decreasing (FFD) is

the best from schedulability perspective. They built their

results on symmetric multicore systems with independent

tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

36

For independent tasks on AMP systems, Funk and Baruah

[12] worked on utilization bounds of FFD and AFD (any-fit

decreasing) that assigns each task to any processor upon

which it will fit, while FFD must assign the task to the first

(fastest) processor. They did not take-energy awareness into

account as their goal was toward feasibility and utilization

bounds. Andersson and Tovar [13] considered partitioned

scheduling on uniform (asymmetric) multiprocessors and

proposed a FFD variant with increasing-speed ordered

processors. They showed that it has a competitive factor of

three, i. e., it can schedule all task sets that any other possible

algorithm can schedule assuming that the algorithm is given

processors that are three times faster. They did not take

energy-awareness into account.

For dependent tasks that share resources, Lakshmanan et al.

[14] proposed a synchronization-aware task allocation

algorithm which bundles tasks that access a common shared

resource and co-locate them, thereby transforming global

resource sharing into local sharing and reducing the overall

blocking time. Then, Nemati et al. [15] developed a two-

round blocking-aware partitioning algorithm (BPA) which

allocates tasks onto processors in a way that reduces the

overall amount of blocking times of tasks. The both

algorithms works under MPCP with fixed priority scheduling

algorithm. They did not take energy- awareness into account

and they considered SMP systems. Recently, Han et al. [16]

proposed a synchronization-aware WFD (SA-WFD)

algorithm that allocates tasks accessing the same resources to

the same core to effectively reduce synchronization overhead.

The SA-WFD works under an enhanced version of MSRP and

partitioned EDF on SMP platforms taking energy-efficiency

into account.

This paper extends SA-WFD algorithm to consider AMP

platforms and proposes another BP variant when DVFS is not

supported by the platform.

3. SYSTEM MODEL

3.1 Task and Resource Models
A periodic real-time task τ generates an infinite sequence of

task instances (jobs). Each job executes for C time units at

most, be generated every T time units, and has a relative

deadline D time units after its arrival.

This paper considers a periodic task set },...,,{ 21 n

of n dependent real-time tasks and a set of r serially reusable

resources },...,{ 1 rRRR  . A task τi is represented as

}){,,,(,, qjiiiii cCTD where Di is the relative deadline,

Ti is the period, Ci is the worst-case execution time (WCET)

of task τi with respect to (w.r.t.) the maximum frequency

(speed) of the slowest processor, and ci,j,q represents the

WCET of the jth critical section of task τi when locks resource

Rq. For a task τi, Ci is the sum of all critical and non-critical

sections. Implicit deadlines are considered in this paper, i.e.,

the relative deadline is assumed to be the same as the period.

Each task τi has utilization
iii TCu / on the slowest

processor and utilization uij on processor pj, i.e.,

jiji Suu / where Sj represents the relative maximum

speed of processor pj to the slowest processor as will be

shown later. The hyperperiod T of all tasks is the least

common multiple of periods, i.e., T = lcm(T1, T2, . . . , Tn).

3.2 Power and Platform Models
The power consumption in CMOS circuits has two main

components: dynamic and static power. The dynamic power

consumption which arises due to switching activity can be

represented as [17]:

fVCP ddeffdynamic .. 2 (1)

Where Ceff is the effective switching capacitance, Vdd is the

supply voltage, and f is the processor clock frequency (speed)

which can be expressed in terms of a constant k, supply

voltage Vdd and threshold voltage Vth as follows [17]:

ddthdd VVVkf /).(2 (2)

The static power consumption is primarily occurred due to

leakage currents Ileak [18], and the static (leakage) power Pleak

can be expressed as:

ddleakleak VIP . (3)

The total power consumption is the sum of dynamic and

leakage power (and other types of power like short-circuit

power not mentioned here). However, the total power can be

considered to be composed of two parts [17]: the speed

dependent part k

k

kd ffP


)(for any α k >0 and 3 ≥ βk ≥0,

and the speed independent part Pind that may be ignored if it is

small when compared to Pd(f). However, the total power

function is convex and strictly increasing function with

respect to speed [6, 17].

An asymmetric multiprocessor platform with m preemptive

processors (cores) based on CMOS technology is defined as

П={p1,p2,…,pm} with maximum speeds {S1,S2,…,Sm} where

each processor pi is characterized by its relative maximum

speed Si that represents the ratio between the maximum speed

(frequency) of processor pi and the maximum speed of the

slowest processor in the platform. The processors are ordered

in non-decreasing order of their relative maximum speeds,

i.e., 1=S1≤S2≤…≤Sm. An asymmetric multiprocessor platform

considered here contains processors that have the same ISA

but they are different in performance, power and size where

for some frequency f ≤ Sj then Pj(f) ≤ Pj+1(f) for any 1≤ j<m.

The paper takes into account DVFS processors that supports

multiple voltage/speed levels. An ideal DFVS processor can

operate at any voltage/speed level continuously, but practical

DVFS processors support multiple discrete voltage/speed

levels. When muli/many-core platforms are considered, there

are the full-chip, per-core and per-island DVFS techniques

[19]. The practical full-chip DVFS restricts all the cores in the

chip to operate at the same voltage/speed level. In the per-core

DVFS, each core operates at individual voltage/frequency

(speed) independently of other cores, and has no operating

frequency constraint. Furthermore, voltage/frequency island

(VFI) technique is also proposed to get the per-island DVFS.

It supports different voltage supplies and frequencies for

different clusters on a multi/many-core system, where the

cores on one chip can be partitioned into clusters (islands), on

each of which all cores operate at a common frequency

(speed). In other words, all cores in one island share a

common voltage/frequency while those cores between islands

may operate at different frequencies [19].

The tasks are scheduled according to EDF for each processor

(core). So, a processor utilization Uj which is the sum of the

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

37

utilizations of tasks assigned to this processor must not exceed

1 else deadlines will be missed, i.e.,  
i

ijj uU 1 .

The energy consumption of a task τi running on a processor pj

with maximum speed Sj in an asymmetric multiprocessor

platform during the hyperperiod T when executed with

constant speed f (f ≤ Sj) is given by: Pj(f).(T/Ti).(Ci /f) [6].

Then, the energy consumption Ej of all tasks τi allocated to the

processor pj during the hyperperiod T can be expressed as

follows:

f

SU
fPTufP

f

T

f

C

T

T
fPE

jj

j

p

ij
i

p i

jj

jiji

.
).(.).(..).( 

 

 (4)

Where 1jU and
jjj SfSU . to assure that no

deadlines will be missed. Furthermore, ignoring the speed-

independent power Pind, the minimum (optimal) energy

consumption the single processor pj consumes is when

jj SUf . as follows:

).(.*

jjjj SUPTE  (5)

4. PROPOSED MAPPING TECHNIQUES
This paper extends the SA-WFD proposed in [16] to AMP

systems. Before introducing the extended version of SA-WFD

for AMPs, an overview of the suspension-based MSRP

version considered in [16] is presented.

4.1 Suspension-Based MSRP
In [16], Han et al. considered an enhanced suspension-based

version that extends MSRP [11] and OMLP [20] with the

following properties:

Property 1. for local blocking time, a task can be blocked at

most once by a low priority task on the same core [11].

Property 2. The local blocking time for a task is upper-

bounded by the longest duration for executing a low priority

task’s critical section (including the low priority task’s global

waiting time, if any) on the same core [11].

Property 3. For any core, at any given time, there exists at

most one task that is either a) accessing a resource; or b)

suspended and waiting for a resource (which is currently

accessed by a task on another core) [20].

Some definitions and notations from [16] need to be adapted

to get along with AMP platforms:

BWi denotes the worst-case global waiting time that can be

experienced by task τi to access all its resources.






cs
iN

x

xii BWBW
1

,
 (6)

Where Ni
cs is the number of critical sections of τi and BWi,x

indicates the maximum global waiting time for task τi

assigned to core pk when executing its xth critical section

}|
)(

{

max

, mj

m

aj

km

xi p
S

Rtt
MaxBW  



 (7)

Where the arrow here means that a task on the left assigned to

the core on the right, Sm is the maximum relative speed of core

pm and)(max

aj Rtt is the maximum amount of time for task τj to

access resource Ra once (the longest critical section of τj that

accesses Ra).

}|{)(,,

max xcMaxRtt axjaj 
 (8)

From Property 1, task τi on core pk can only be blocked at

most once by a task τj where τj assigned to core pk and Tj > Ti.

Therefore, according to Property 2, we have the maximum

local blocking time for task τi as follows:

},:|{
,,

, ijkj

k

qyj

yji TTpj
S

c
BWMaxB   (9)

To adapt with AMP systems, the schedulability condition in

[16] can be rewritten as follows: For a given task-to-core

mapping, the tasks are schedulable under EDF on their cores

if, for every core (processor) pj, there is:







ikjk TTp k

kjk

i

i

ji
T

BWSC

T

B
p

,

)/(



 (10)

4.2 The Proposed Synchronization-Aware

Techniques
The SA-WFD [16] considers values such as pessimistic

estimated utilization (peui) of a task τi that incorporates its

maximum global waiting time
max

iBW . For AMP systems,

the peuik of a task τi on a core pk with maximum relative

speed Sk can be rewritten as follows:

i

iki

ik
T

BWSC
peu

max)/(
 (11)






cs
iN

x

xii BWBW
1

max

,

max
 (12)





xij

lqjxi SRttBW
,

/)(maxmax

,



 (13)

Where Θi,x contains up to (m−1) other tasks that access the

resource Rq that is accessed by xth critical section of task τi and

have the longest access time. That is, whenever task τi

accesses its resource Rq, it is assumed to wait for other tasks,

up to (m−1), on different cores pl (1 ≤ l ≤ m and l ≠ k) to

access Rq for the longest time. If no other task accesses Rq,

then Θi,x is empty and 0max

, xiBW . The overall estimated

utilization of a core px is defined as:





xj p

jxx peuEU


 (14)

Also, the resource similarity wi,j between two tasks τi and τj is

defined as the number of resources that are accessed by both

tasks τi and τj. The overall resource similarity between task τi

and core pk is defined as follows:





kj p

jik wi


,)((15)

The utilization for each core pk is defined as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

38











 

 



ijkj

ki TTp j

jkj

i

i

p
k

T

BWSC

T

B
MaxU

,

)/(




 (16)

The SA-WFD [16] is adapted to AMP systems by computing

values such as pessimistic estimated utilization (peuik) for

each task τi and core pk. Then, a task is assigned to the core

with maximum overall resource similarity or to the core with

minimum estimated utilization behaving like WF manner. As

soon as the task is assigned to some core, the estimated

utilization of that core has to be updated. Then, after assigning

all tasks, the actual utilization of each core is computed. Thus,

an asymmetric version of SA-WFD which is still valid for

SMP systems is obtained. Algorithm 1 shows this AMP

version of SA-WFD.

Algorithm 1. SA-WFD for AMPs

Input: A task set τ = {τ 1, τ 2, … , τ n} and a set of

 processors {p1, … , pm} with maximum speeds

 {S1, …, Sm} where S1≤…≤Sm.

Output:{U1,…,Um} utilizations of processors.

1. for (each task τi and core pk) do

2. calculate
max

iBW from (12);

3. calculate peuik from (11);

4. end for

5. Sort tasks in non-increasing order of peui1

6. for (each task τi in the above sorted order) do

7. Find core px with the maximum Ωx(i) (if more cores

 have the same maximum Ω(i), the core with the

 minimum (EUx+ peuix) is chosen; if there is still a

 tie, the core with smallest index is chosen);

8. if (EUx+ peuix) ≤ Max{EUj ; 1 ≤ j ≤ m}then

9. Assign task τi to core px ;

10. else

11. Find core py with the minimum

 (EUy+ peuiy) (if there is a tie, the core with

 smallest index is chosen);

12. Assign task τi to core py ;

13. end if

14. end for

15. For each task τi calculate BWi and Bi from (6) and (9)

 respectively;

16. For each core pk calculate Uk from (16);

The important feature of WFD is that it balances the workload

among cores. So, it is the most energy-efficient bin-packing

technique as shown in [6] on SMP systems. With AMP

systems, this result is not always true. It is true with platforms

support full-chip DVFS.

This paper considers AMP platforms that support full-chip

DVFS or do not support DVFS at all assuming that unused or

idle cores are shut down.

4.2.1 Full-Chip DVFS (FC-DVFS)
When the full-chip DVFS is supported, the energy consumed

by the m-core AMP platform during the hyperperiod T can be

expressed as:




 
m

j

jjjdfvsfc USPUUTE
1

maxmax).().(. (17)

Where Umax is the maximum processor utilization among

processors assuming ideal DVFS processors.

According to (17), balancing workload among cores results in

minimizing Umax and reducing energy consumption

consequently. Thus, SA-WFD is the proposed energy-efficient

technique for task mapping on AMP systems when FC-DVFS

is supported.

4.2.2 Without DVFS (NO-DVFS)
When DVFS is not supported, the energy consumed by the m-

core AMP platform during the hyperperiod T can be

expressed as:




 
m

j

jjjdvfsno SPUTE
1

)(.. (18)

Algorithm 2. SA-FFD for AMPs

Input: A task set τ = {τ 1, τ 2, … , τ n} and a set of

 processors {p1, … , pm} with maximum speeds

 {S1, …, Sm} where S1≤…≤Sm.

Output:{U1,…,Um} utilizations of processors.

1. for (each task τi and core pk) do

2. calculate
max

iBW from (12);

3. calculate peuik from (11);

4. end for

5. Sort tasks in non-increasing order of peui1

6. for (each task τi in the above sorted order) do

7. Find core px with the maximum Ωx(i) (if more

 cores have the same maximum Ω(i), the core

 with smallest index is chosen);

8. if (EUx+ peuix) ≤ 1 then

9. Assign task τi to core px ;

10. else

11. Find first (smallest index) core py with

 (EUy+ peuiy) ≤ 1 ;

12. Assign task τi to core py ;

13. end if

14. end for

15. For each task τi calculate BWi and Bi from (6) and (9)

 respectively;

16. For each core pk calculate Uk from (16);

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

39

According to (18), assigning tasks to the slowest cores and

saving the fastest cores will reduce the energy consumption.

This paper proposes a BP variant, called SA-FFD, that

emulates the SA-WFD but behaves like FF manner by

assigning tasks to the first (slowest) core that fits. The

processors are indexed where the slowest processor has the

lowest index and so on. Algorithm 2 shows SA-FFD for AMP

systems.

5. SIMULATION RESULTS
The SA-WFD and SA-FFD techniques have been

implemented using MATLABTM. Task utilization values have

been randomly (uniformly) generated to get tasks with

utilization less than 0.25 or 0.5; all utilizations are considered

with respect to the slowest processor. The number of

resources ranges from 2 to 10. The number of critical sections

of a task is 0 or 1. The critical section ratio (CSR) ranges from

0.01 to 0.10 of the WCET of a task. The asymmetric

multi/many-core platforms shown here are the 4-core platform

П4 with maximum relative speeds {1,2,3,4} and the 8-core

platform П8 with speeds {1,1,1,1,2,2,2,2}. For simplicity

reasons, power consumption model implemented here is a

simplified power model P(f)= α f
3 using normalized (relative)

values where f is the processor speed (frequency) and α is a

processor-dependent constant. The faster the processor is the

bigger the constant α is. The processor pj’s constant α is

assumed to be equal to its maximum relative speed Sj.

Very extensive experiments and multiple runs have been done

on different platforms to verify the proposed techniques.

Figures 1 and 2 show the normalized energy consumption

when tasks with utilization less than 0.25 are partitioned

among cores on П4 platform with full-chip DVFS and without

DVFS respectively.

The SA-WFD is the most energy-efficient algorithm when

full-chip DVFS is supported. When DVFS is not support, it is

clear that the proposed SA-FFD outperforms SA-WFD.

Figures 3 and 4 show the same behavior when the

comparisons are done with task utilization less than 0.5 and

П8 as a target platform.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

F
C

-D
V

F
S

 N
o
rm

a
liz

e
d
 E

n
e
rg

y

SA-WFD

SA-FFD

Fig 1: Comparing the proposed techniques with task

utilizations less than 0.25 on П4 with full-chip DVFS.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of tasks

N
O

-D
V

F
S

 N
o
rm

a
liz

e
d
 E

n
e
rg

y

SA-WFD

SA-FFD

Fig 2: Comparing the proposed techniques with task

utilizations less than 0.25 on П4 platform without DVFS.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of tasks

F
C

-D
V

F
S

 N
o
rm

a
liz

e
d
 E

n
e
rg

y
SA-WFD

SA-FFD

Fig 3: Comparing the proposed techniques with task

utilizations less than 0.5 on П8 with full-chip DVFS.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of tasks

N
O

-D
V

F
S

 N
o
rm

a
liz

e
d
 E

n
e
rg

y

SA-WFD

SA-FFD

Fig 4: Comparing the proposed techniques with task

utilizations less than 0.5 on П8 platform without DVFS.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.11, August 2013

40

Generally, when DVFS is not supported the energy

consumption can be reduced by 80% using SA-FFD compared

to SA-WFD with light workloads as SA-WFD starts with the

fastest cores while SA-FFD starts with the slowest cores. With

heavy workloads, the SA-FFD consumes more energy and it

approaches to SA-WFD when the cores approximate to be

fully utilized.

Platforms and processor maximum speeds have a role in

energy consumption. The less speed differences are, the

smoother the curves are.

6. CONCLUSION
This paper addressed the problem of energy and

synchronization-aware partitioning of periodic real-time

dependent tasks due to shared resources on asymmetric

multi/many-core embedded systems.

The paper extended the existing SA-WFD algorithm to

asymmetric multicore systems and proposed SA-FFD

algorithm and showed that it is the most energy-efficient

technique when DVFS is not supported on AMP platforms.

The simulation results showed that when DVFS is not

supported, the SA-FFD could reduce the energy by 80%

compared to SA-WFD with light workloads in the presence of

shared resources. As a future work, other DVFS models such

as per-core and per-island models will be taken into account.

7. REFERENCES
[1] Baruah, S. K., 2004, “Task partitioning upon

heterogeneous multiprocessor platforms,” in Proc. of

RTAS'04, pp. 536 - 543.

[2] Lakshminarayana, N., Rao S. and Kim H., 2008,

“Asymmetry aware scheduling algorithms for

asymmetric multiprocessors,” in WIOSCA’08, pp. 1 - 7 .

[3] Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A.

and Prieto M., 2012, “Survey of energy-cognizant

scheduling techniques,” IEEE Transactions on Parallel

and Distributed Systems, pp. 1 - 19.

[4] Texas Instruments (TI), OMAP™ Application

Processors. http://www.ti.com/lsds/ti/omap-applications-

processors/features.page [last accessed 15/5/2013].

[5] Zapata O. U. P. and Alvarez P. M., 2005, “EDF and RM

Multiprocessor Scheduling Algorithms: Survey and

Performance Evaluation”, technical report, pp. 1 - 24.

[6] Aydin, H. and Yang, Q., 2003, “Energy-aware

partitioning for multiprocessor real-time systems,” in

Proc. of IPDPS, pp. 1-9.

[7] Haouari M. and Serairi M., 2009, “Heuristics for the

variable sized bin-packing problem”, journal of

Computers & Operations Research, Vol. 36, pp. 2877 –

2884.

[8] Baker T P., 1991, “Stack-Based Scheduling of Real-

Time Processes”. Journal of Real-Time Systems,

3(1):67–99.

[9] Sha L., Rajkumar R., and Lehoczky J.P., 1990, “Priority

inheritance protocols: an approach to real-time

synchronization,” IEEE Trans. on Computers,

39(9):1175–1185.

[10] Rajkumar R., 1991, Synchronization in Real-Time

Systems: A Priority Inheritance Approach. Kluwer

Academic Publishers.

[11] Gai P., Lipari G., and Natale M. D., 2001, “Minimizing

memory utilization of real-time task sets in single and

multi-processor systems-on-a-chip,” in 22nd IEEE Real-

Time Systems Symposium (RTSS’01), pp. 73–83.

[12] Funk S., and Baruah S., 2005, “Task assignment on

uniform heterogeneous multiprocessors”, in Proc. of

ECRTS, pp. 219 - 226.

[13] Andersson B. and Tovar E., 2007, “Competitive analysis

of partitioned scheduling on uniform multiprocessors,” in

Proc. of IDPDS, pp. 1- 8.

[14] Lakshmanan K., de Niz D., and Rajkumar R., 2009,

“Coordinated task scheduling, allocation and

synchronization on multiprocessors,” in 30th IEEE Real-

Time Systems Symposium (RTSS’09), pp. 469–478.

[15] Nemati F., Nolte T., and Behnam M., 2010, “Partitioning

real-time systems on multiprocessors with shared

resources,” in 14th Int. Conf. On Principles Of

Distributed Systems (OPODIS’10), pp. 253-269.

[16] Han J.-J. et al., 2012, “Synchronization-aware energy

management for VFI-based multicore real-time systems,”

IEEE Transactions on Computers, pp.1682-1696.

[17] Chen J., and Kuo C., 2007, “Energy-efficient scheduling

for real-time systems on dynamic voltage scaling (DVS)

platforms”, in Proc. RTCSA, pp. 28-38.

[18] Venkatachalam V., and Franz M., 2005, “Power

reduction techniques for microprocessor systems,” ACM

Computing Surveys (CSUR), Vol. 37, Issue 3, 195-237.

[19] Kong F., Yi W., and Deng Q., 2011, “Energy-efficient

scheduling of real-time tasks on cluster-based

multicores,” in Proc. DATE’11, pp. 1-6.

[20] Brandenburg B. and Anderson J., 2010, “Optimality

results for multiprocessor real-time locking,” in Proc. of

31st IEEE Real-Time Systems Symposium (RTSS’10),

pp. 49–60.

IJCATM : www.ijcaonline.org

http://www.ti.com/lsds/ti/omap-applications-processors/features.page
http://www.ti.com/lsds/ti/omap-applications-processors/features.page

