
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

5

Cross Company and within Company Fault Prediction
using Object Oriented Metrics

Pradeep Singh

National Institute of Technology

 Shrish Verma
National Institute of Technology

O P Vyas
Indian Institute of information

Technology

ABSTRACT

This paper investigates fault predictions in the cross-project

context focusing on the object oriented metrics for the

organizations that do not track fault related data. In this study,

empirical analysis is carried out to validate object-oriented

Chidamber and Kemerer (CK) design metrics for cross project

fault prediction. The machine learning techniques used for

evaluation are J48, NB, SVM, RF, K-NN and DT. The results

indicate CK metrics can be used as initial guideline for the

projects where no previous fault data is available. Overall, the

results of cross company is comparable to the within company

data learning. Our analysis is in favour of reusability in object

oriented technology and it has been empirically shown that

object oriented metric data can be used for cross company

fault prediction in initial stage when previous fault data of the

project is not available.

Keywords

Fault prediction, cross company, Software metric, open source

software.

1. INTRODUCTION
Modern software engineering and programming practices

stress to develop similar products using reusable core assets.

Modularization or component-based software designs,

architecture and implementation are the basic technique for

building software with new or reusable parts. The general

aim of reusability is to enhance quality and to minimize the

development effort and time. Software reuse can result in

substantial savings in the development costs as well as in

development of low complexity end-products that are

relatively small in size. In order to increase productivity and

quality, organizations develops a module once, verifies that it

functions correctly and properly, and then reuses it in different

applications where the same functionality is required. In the

age of open source development it is quite possible that

organizations can also make use of reusable components from

outside their organization than within the organization. The

software reuse concept is probably the most significant part of

object-oriented based information system development. It is

hence reasonable to use such cross company data which are

developed using object oriented methodology. According to

Kitchenham et.al. [1] : “The time required to collect enough

data on past projects from within a company may be

prohibitive. Collecting within-company data may take so

long that technologies change and older projects do not

represent current practice.” Object-oriented development

methodology is greatly used in software industry and many

design metrics of object-oriented programs have been

proposed for fault prediction, but there is no cross company

investigation has been reported so far. In this study, empirical

analysis is carried out to validate object-oriented design

metrics for cross project fault prediction .The Chidamber and

Kemerer metrics suite is adopted to predict the faults in the

projects using same and cross company data. We use CK

metric suite from software developed by different

organization, using different object oriented language. The

machine learning techniques used for evaluation are

statistical, J48, NB, SVM, RF, K-NN and DT. The result

indicates that CK metrics can be used as initial guideline for

the projects where no fault data is available. Overall, the

results of cross company is comparable to the within company

data learning.

Software fault prediction using various techniques on

software repository for predicting the fault-prone software

modules is of a great interest among the software testing

researchers and industry professionals for reducing the cost

occurring in software testing. Researchers have used metric

based classification for software components as fault-prone

and non-fault-prone [6][7]. Researchers and engineers have

used static design metrics of the programs for this purpose.

Many researchers have explored issues like the relative merits

of McCabes cyclomatic complexity, Halsteads software

science measures, and lines of code counts for building fault

predictors [6,7,16]. After object-oriented programming

dominated software development, a vast variety of design

metrics have been adapted for estimating the quality of object-

oriented programs. Chidamber and Kemerer[4] introduced

their OO design and complexity metrics and demonstrated the

strong impact on software quality. The CK metrics suite

invoked great enthusiasm among researchers and software

engineers, and a great amount of empirical studies have been

conducted to evaluate those metrics. In this study, data from

the industry is used to analyze the relationships between CK

metrics and faults in the OO programs.

Metrics data can be computed by using automatic tools, but it

is not so easy to collect bug data. In the present work, we try

to reuse the fault data of one project to generated prediction

model for another project.

To achieve this, the metrics and bug data computed from C++

and Java projects, then selection of CK metric for both project

are used to create fault prediction model. Fault prediction

models focuses on predicting the fault-prone modules

precisely and helps software manager and testers to allocate

limited resources in testing and maintenance Studies on this

issue, usually trained predictors from data of historical

releases in the same project (i.e., faults distributional data and

software metrics such as static code features, code change

histories, and process metrics) and predicted faults in the

upcoming releases, or reported the results of cross-validation

on the same data set.

To build a fault predictor we need to extract the fault and

software code data from the software repositories of the same

project that is, training data for the predictor. However,

sometimes in real practice, such faulty chronological data is

not always accessible, because either it does not yet exist due

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

6

to the starting of project or was not well collected. That

means, having a fault prediction model for those companies

which do not track fault related to the same project is

impossible initially in some cases. On the other hand, open

source repositories provides plenty of public fault related data.

A potential way of predicting faults for projects of these

companies without historical fault data is to make use of these

public and open source projects as training data. Cross-project

fault prediction refers to predicting faults in a project using

prediction models trained from historical data of other

projects [9,10]. There are some studies focusing on this issue

and their results show that cross-project fault prediction is still

a serious challenge [9,11].For machine learning based

predictions, the effect of a predictor depends on two factors:

the training data and the learning algorithm. Consequently

there are two potential ways for cross-project fault prediction:

first one is collecting the best suitable training data for the

project to be predicted, ideally we may find a training data

presenting the same fault pattern with the target project, which

will lead to acceptable prediction results and the other is by

using learning algorithms with high ability to classify the

fault prone and non-fault prone class .This method assumes

that there exists a general fault pattern between different data

sets. If we can learn this pattern successfully, we can predict

faults in one projects based on the data of other project. In this

paper, we investigate the empirical evidences to answer the

following questions in context of cross-project fault

prediction:

Can raining data from different projects developed in different

environment by using different object oriented language

provide acceptable prediction results by using CK metric?

Does training data from the same project always lead to better

prediction results than training data from other projects?

The rest of this paper is structured as follows: Sect. 2

summarizes some related work; Sect. 3 describes the data set,

and the performance evaluation criteria; Sect. 4 describes the

learning algorithms and the experiments we conducted. Sect.

5 explains threats to validity .Finally we conclude this study

in Sect. 6.

2. RELATED WORK
Software testing is one of the most important and critical

quality assurance activities. It is a time consuming and labor-

intensive activity in software development life cycle while

resources allocated for testing are usually limited[11,12].

Fault prediction has been proved to be effective for

optimizing testing resource allocation by identifying the

modules that are more likely to be fault prone prior to testing

[14]. In the past decade, various fault prediction models have

been proposed and machine learning techniques have become

more and more popular in constructing fault prediction

models [6, 15,16]. Menzies [6] also evaluated the error

proneness for C and Java projects. However, most prediction

models reported are intra-project applicable, i.e., learning

from data of historical releases and then applying to the

upcoming release in the same project. The application field of

these models is restricted for data of historical releases is

unavailable sometimes. This research aims to extend the

application field of fault prediction. It is unlike most previous

software fault prediction research for its focus on a cross-

project context. The problem of predicting faults in a cross-

project context drew the attention of many researchers in

recent years. To the best of our knowledge, studies on cross

project fault prediction do not show a conclusive picture so

far. However, there are considerable studies focusing on this

issue. Zimmermann et al. [17] used 12 real world application

for cross-project fault predictions and found that only few

predictions worked successfully .That means cross-project

fault prediction will fail in most cases if not selecting training

data carefully. They also found that cross-project fault

prediction is not symmetry. For example, data of Firefox can

predict Internet Explorer faults well (Precision equal to

76.47% and Recall equal to 81.25%) but the opposite

direction does not work (Recall equal to 4.12%). They argued

that characteristics of data and process are vital factors for the

effective fault prediction of cross-project rather than domain.

Consequently they concluded that simply using historical data

of projects in the same domain does not lead to good

prediction results. Zimmermann et al. pointed out that cross-

project fault prediction is a serious challenge and more

attention should be paid to this problem. Turhan et al. [11]

also studied a cross-company fault prediction problem , that

is, using data from other companies to build fault predictors

for local projects. In their experiments they used only static

code features to build fault predictors. They concluded that

cross-company data increase the probability of fault detection

(pd) at the cost of increasing false positive rate (pf). Their

experimental results show that nearest neighbor filtering can

help to reduce pf when using cross-company data.

3. DATA SET USED
Our project data are taken from software developed on

different standards, language and location .KC1 developed in

North America (NASA) and JEdit is an open source software.

Therefore, the code features that are available for each project

vary. KC1 have 95 features available, we extracted only the

CK metric from both different projects. Table 1 shows the

common features for both sources. The data set KC1 from the

NASA IV and V Facility Metrics Data Program data

repository (http://mdp.ivv.nasa.org), which is comprised of 43

KSLOC of C++ code for a ground system. There are 145

classes and altogether 2107 methods. The faults information

in the original data set is at method level, while metrics

information is at class level. For this study, those files have to

be combined to get all class level information. We generate all

class level information and validate it with the above data

resource. Descriptive information about this public data set is

listed in Table 1. Since six CK metrics are examined to

evaluate their impact on the quality of the code, only related

information is included in the Table 1. JEdit a text editor

developed using Java language. It is an open source project

and its software and the source code is freely available. The

LOC of JEdit is 169,107. The number of developers involved

in this project was 144. The project was started in 1999. The

number of bugs was computed using SVN repositories. The

release point for the project was identified in 2002. The log

data from that point to 2007 was collected. The word bug or

fixed was counted. Details of bug collection process can be

found in [19]. The intention of this study is to validate and

compare the influence of CK metrics on the cross company

software fault predictability.

CK metrics: In CK metrics suite [4], six design and

complexity metrics are used to represent the characteristics of

the code:

WMC (Weighted Methods per Class): The sum of normalized

complexity of all methods in a given class. Usually the

method complexity is measured using cyclomatic complexity.

Consider a class X1 with methods M1 ,M2,…,Mn that are

given in the class. Let C1,C2,…,Cn be the complexities of the

methods. The WMC is calculated as

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

7

WMC=

DIT (Depth of Inheritance Tree): The maximum length from

the root to a given class in the inheritance hierarchy

NOC (Number of Children): The number of immediate

subclasses of a given class in a hierarchy.

RFC (Response For a Class): The number of methods

implemented in a given class that can be invoked by a

received message

CBO (Coupling Between Object Classes): CBO for a class is

the count of the number of other class to which it is coupled.

It is the number of classes that use the member functions

and/or the instance variables of a given class .The more

independent a class is, the easier it is to reuse in different

applications.

LCOM (Lack of Cohesion on Methods): for each instance

variable calculate the percentage of methods using it, then the

average percentage for all variables subtracted from 100%.

These CK metrics express the quantifiable and measurable

characteristics of an OO program, such as complexity,

cohesion and coupling. For general design environment,

technically these CK metrics should be kept at a reasonable

level.

Table I: Descriptive information of metrics Metric of

KC1 and JEdit

 Max Mean St dev

 KC1 JEdit Mea

n

JEdit KC1 JEdit

CBO 24 105 8.3 12.64 6.37 14.13

DIT 7 7 2.0 2.49 1.258 1.97

LCO

M

100 100 68.7 46.23 36.88

9

33.51

NOC 5 35 0.214 0.715 0.699 3.1

RFC 222 843 34.4 174.9

7

36.20

3

269.5

WMC 100 407 17.4 11.72 17.44

9

31.20

Accuracy measures

The accuracy and performance of prediction models for

two-class problem, faulty or not faulty is typically evaluated

using a confusion matrix. A confusion matrix contains

information about actual and predicted classifications done by

a classification system. In this study, we used the commonly

used prediction performance measures: probability of

detection (pd), probability of false alarm (pf), precision (prec),

recall and f-measure to evaluate and compare prediction

models quantitatively. These measures are derived from the

confusion matrix.

A confusion matrix

Predicted Actual Faulty Not faulty

Faulty TP FP

Not faulty FN TN

False alarms, pf, should be 0, meaning that the predictor

should never label a fault-free module as faulty. In general, an

increase in pd would also increase pf rates since the model

triggers more often to achieve the ideal case. Precision is also

known as correctness. It is defined as the ratio of the number

of modules correctly predicted as faulty to the total number of

modules predicted as faulty.

Recall= pd =TP/ (TP+FN)

pf = FP/(FP+TN)

Precision=TP/ (TP+FP)

The precision is the ratio of the number of files inferred as

having positive bug count that has really positive bug count.

The higher the precision, the less effort is required for testing

and inspection. It has a strong relation with pd and pf, such

that when pd is fixed for a dataset, pf rate is controlled by

precision and the class distribution of the data [6].

 F-measure considers both precision and recall equally

important by taking their harmonic mean. It is calculated as

follows:

The F-measure has been widely used as a measure in the field

of Information Retrieval and Data Mining. It integrates Recall

and Precision in a single indicator. Parameter β indicates the

weight assigned to Recall and it assumes any non-negative

value. Higher β value means higher weight. If β is equal to 1,

Recall and Precision are given the equal weight. Here in our

experiments, we treat Recall and Precision equally, so we set

β to 1.The higher the quality of the predictor, the higher the F-

measure.

4. EXPERIMENT DESIGN
We employ six machine learning algorithms to construct

predictors. They are J48 (a C4.5 decision tree), Naïve Bayes

(NB), Support Vector Machine (SVM), Random forest (RF),

K-NN and Decision Table (DT). These 6 learners have been

widely used in the context of fault prediction [6][7][19].

The J48 is the java version of C4.5 decision tree learner.

C4.5 is an extension of the ID3 algorithm. It builds the tree

structure from the training data by using the concept of

information entropy. Leaves in the tree structure represent

classifications and branches represent judgment rules. More

details about the C4.5 Decision Tree learner can be found in

Quinlan [18].The Naive Bayes learner is based on probability

theory and assumes that features of the data set are

independent of each other. Although the independence

assumption is often violated in reality, the Naive Bayes

learner has been proved to be effective for fault prediction [6].

Support vector machines (SVM) are kernel based learning

algorithm introduced by Vapnik[20] using the Structural

Risk Minimization (SRM) principle which minimizes the

generalization error, i.e., true error on unseen examples. The

callecision

callecision

RePr

Re*Pr)1(
measure-F

2

2










 

n

1i iC

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

8

basic SVM classifier deals with two-class pattern recognition

problems, in which the data are separated by the optimal

hyperplane defined by a number of support vectors. The

regularization parameter (C) was set at 1; the kernel function

used was Gaussian (RBF); Comparative studies conducted by

Lessmann et al. [7] shows that the SVM learner performs

equally with the Naïve Bayes learner in the context of fault

prediction. Random Forest ensemble introduced by Breiman

[22] uses a large number of individual, unpruned decision

trees which are created by randomizing the split at each node

of the decision tree. Each tree is likely to be less accurate than

a tree created with the exact splits. But, by combining several

of these “approximate” trees in an ensemble, can improve the

accuracy and often it is doing better than a single tree with

exact splits. In k-nearest neighbor, a test sample is compared

with existing ones by using a distance metric and the majority

class of the closest k neighbors is assigned to the test case.

The distance between two samples can be computed by

using any distance metric like Euclidean and Manhattan, we

have used Euclidean distance. The Decision Table learner is a

rule based learner whose result can be easily understood.

More details of the comparison of fault prediction models

based on different learners can be found in Lessmann et al.

[7]. According to the suggestion of [6], we do not introduce

any attribute selection techniques when constructing fault

prediction models in our experiments. Previous studies show

that cross-project fault prediction remains a challenging issue.

We need to verify that whether prediction results provided by

cross-project data are acceptable, in order to validate the

above hypotheses we need at least two projects whose target

domain are different and the languages is also different but

both are of object oriented programming. Fig 1 shows the

complete process of cross company fault prediction model

using CK metric.

The pseudo code given in fig2, for within company (WC)

and cross company (CC) analysis for the projects KC1 and

JEdit. Data came from one systems written in “C++” and the

other systems was written in JAVA. For cross-company data,

an industrial practitioner may not have access to detailed

meta-knowledge (e.g. whether it was developed in “C++” or

JAVA). They may only be aware that data, from an unknown

source, are available for download. The projects data come

from different sources and, hence, have different features. For

this analysis, we have used only the six CK metric which are

common in both the projects.

Fig 1 Cross project fault prediction model using CK metrics

Project A

Release A1

Project B

Release

B1

Metric

Gathering

Fault Data Gathering

Extract Properties in

terms of CK Metric

Metric

Gathering

Project A

Release A2

Project

B

Release

B2

Extract Properties in

terms of CK Metric

Trainin

g Data

Test

Data

Learning

Algorith

m

Learning

Learner

Testing

Performance Report

Fault

Data

Fault

Data

Fault Data Gathering

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

9

DATA = [KC1, JEdit] // Different data from different

domain and

developed using different language all available data

LEARNER = [J48,Naive Bayes, SVM, RF,KNN,DT]

// fault predictor

C_FEATURES:-Find CK features IN DATA

FOR EACH data IN DATA

data = Select C_FEATURES in data // use common

features

END

FOR EACH data in DATA

CC_TRAIN = DATA - data // cross company training data

WC_TRAIN = random 90% of data // within company

training data

TEST = data - WC_TRAIN // shared test data

//construct predictor from CC data

CC_PREDICTOR = Train LEARNER with CC_TRAIN

// construct predictor from WC data

WC_PREDICTOR = Train LEARNER with WC_TRAIN

//Evaluate both predictors on the same test data

[cc_pd, cc_pf, cc_prec,cc_fmes] = CC_PREDICTOR on

TEST

[wc_pd, wc_pf, wc_prec,wc_fmes] = WC_PREDICTOR

on TEST

END

END

Fig 2 Pseudo code for Cross Company Analysis

Firstly we performed the prediction experiment by using

training data within the company by using M*N-way cross

validation where both M and N are selected as 10 [44]. We

create 10 stratified bins: 9 of these 10 bins are used as training

sets and the last one is used as the test set. We randomize the

dataset M = 10 times and create N = 10 sets in each iteration.

Next we did cross company and inter language prediction

experiments. The table 2 to table 7 shows the result of within

company and cross company prediction. In case of cross

company there are two scenarios first we collected the

training data of KC1 and extracted CK metrics and related

bug data and the test data set is JEdit with the Ck metric. In

second scenario we have used JEdit CK metric data set for

training and KC1for testing. These projects are developed in

different object oriented language and are of different domain.

For J48 we construct a decision tree on the train-test-result

instances generated. If the decision tree can identify those

successful cross-project fault predictions precisely, it means

that distributional characteristics of data set are related to

prediction results in the cross-project context.

Table II: Prediction performance measures using pd
Cross company

 Training

Project

Test

Project j48 NB SVM RF

K-

NN DT

KC1 KC1 0.633 0.583 0 0.583 0.55 0.633

JEdit JEdit 0.746 0.53 0.015 0.672 0.619 0.642

KC1 JEdit 0.47 0.575 0 0.328 0.552 0.343

JEdit KC1 0.7 0.367 0 0.667 0.467 0.583

Considering cross-project predictions when JEdit is used

for training and test set of KC1the prediction are successful

(see Table 2), we think the performance of this decision tree is

fairly high. The high performance of the decision tree

indicates that the distributional characteristics of training set

and test set are related to results of cross-project fault

predictions. In case of RF the probability of fault detection is

even better than the result when training is done with within

the project data set. When learner is J48, the pd is 70% in case

of cross project and 63.3% for within company for KC1 test

data. Form the result it is evident that open source project

JEdit when used for training and KC1 for testing which was

developed in a process oriented approach by a cost driven

government entity, the cross project fault prediction is better

for J48 and RF.

Table III Prediction performance measures using pf
Cross company

 Training

Project

Test

Project j48 NB SVM RF

K-

NN DT

KC1 KC1 0.353 0.259 0 0.247 0.282 0.376

JEdit JEdit 0.25 0.15 0 0.286 0.271 0.307

KC1 JEdit 0.157 0.193 0 0.057 0.307 0.05

JEdit KC1 0.271 0.129 0 0.353 0.224 0.529

This paper provides empirical evidences and interesting

results for both software quality assurance and computational

intelligence communities. Learner J48, NB and K-NN

produced the less pf when JEdit is used for training and KC1

is used for test. In case of J48, DT and RF, when training is

done by KC1 and testing is done on open source data JEdit,

the pf is very less compared to within project. However, in

case of SVM, there are no changes in the performance in pf.

Table IV: Prediction performance measures using

Precision
Cross company

 Training

Project

Test

Project j48 NB SVM RF

K-

NN DT

KC1 KC1 0.559 0.614 0 0.625 0.579 0.543

JEdit JEdit 0.741 0.772 1 0.692 0.686 0.667

KC1 JEdit

0.741 0.74 0 0.846

0.632 0.868

JEdit KC1 0.646 0.667 0 0.571 0.596 0.438

Average predictors based on learning methods NB and J48

can provide the best prediction results with (Precision) equal

to 0.7035 and 0.639 respectively in case of cross company

whereas the average within company performance in terms of

precision is 0.693 and 0.65 respectively. From the results it is

evident that the results using the CK metrics for fault

prediction in case of cross company is better than the within

company in case of NB learner and is competitive in case of

J48.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

10

Table V Prediction performance measures using F-

measure
Cross company

 Training
Project

Test
Project j48 NB SVM RF

K-
NN DT

KC1 KC1 0.594 0.598 0 0.603 0.564 0.585

JEdit JEdit 0.743 0.628 0.029 0.682 0.651 0.654

KC1 JEdit 0.575 0.647 0 0.473 0.59 0.492

JEdit KC1 0.672 0.473 0 0.615 0.523 0.5

From Table 5, it can be observed that for F-measure, J48,

NB, and RF achieves higher F-measure than within company

data . NB achieved f-measure (64.7%), in case of training by

KC1 and test set is JEdit but this is not higher than the

performance of learner J48, when training by JEdit and test

set is KC1.

5. THREATS TO VALIDITY
Due to the many factors that affect software development: the

type of application domain; the programming capability of the

individual programmers involved in system development;

development practices; the variation in measurement

practices; and the quality of the measurements and

instruments used to collect the data, and consequently,

software quality, controlled experiments for evaluating the

usefulness of empirical models are not practical. We adopted

a case study approach in the empirical investigations and

presented in this paper. Software engineering community

demands that the subject of an empirical software study have

the following characteristics [23]:

. Developed by a group, and not by an individual.

. Be as large as industry-size projects, and not a toy

problem.

. Developed by professionals, and not by students.

. Developed in an industry/government organization setting,

 and not in a laboratory.

We note that our case studies fulfill all of the above criteria.

The software systems investigated in our study were

developed by software professionals and government software

development organizations. In addition, each software was

developed to address a real-world problem. Another point is

that descriptions of software modules only in terms CK metric

can overlook some important aspects of software including:

the type of application domain and other important static code

attributes. Several threats to the external validity of our study

may restrict the generalization of our results. Some of the

limitations are: The degree to which the results of our study

can be generalized to other research settings is questionable.

The reason is that the system severity of faults is not taken

into account for this study. There may be different types and
different number of faults which can leave the system in

various states e.g. a failure that is caused by a fault may lead

to a system crash or a failure to process a file. The project

studied lie between 43 KSLOC and 169 KSLOC. These

programs are small as compared to large industry systems.

The prediction capabilities of the studied CK object oriented

design metrics may results very different in larger programs.

The conceptual complexity of these systems was rather

limited. Again, many different problems may arise in more

complex systems. Though these results provide guidance for

future research on the use of machine learning methods to find

the impact of OO metrics on fault proneness for cross

company, further validations are necessary with different

systems to draw further stronger conclusions.

6. CONCLUSION
Cross-project fault prediction is important for projects

without previous fault data. It extends the application field of

fault prediction models, e.g., predicting faults in the first

release of a new project. However, empirical evidences show

that cross-project fault predictions only work in a few cases.

In this study, we reported results from experiments of cross-

project fault prediction with regard to object oriented CK

metrics. The experiments were conducted on two data sets

collected from two different source projects developed in two

different object oriented programming language for fault

prediction . NASA project which we have used for cross-

company follow stringent ISO-9001 industrial practices

imposed by NASA and the other project is open source

software .Our study reveals that when training is done by the

NASA project for open source software then the false alarm

rate (pf) decreases and for probability of detecting (pd)

increases when training is done by open source software for

NASA project. The result shows that in the case of different

domain and different size, it is possible to reuse the prediction

model between languages and projects of different companies.

Finally it is evident from the result that CK based object

oriented metric value is effective for cross project fault

prediction. In overall performance evaluation J48 has

performed better that the other classifiers in pd, recall and F-

measure. It is also evident that the results in terms of precision

using CK metrics for fault prediction of cross company is

better than the within company in case of NB learner and is

competitive in case of J48.Our analysis of cross company data

and the proposed methodology allows the construction of fault

predictors even for companies where no local fault data is

available. Our final goal is to construct general fault

prediction model for successful cross project fault prediction.

7. REFERENCES
[1] Basili, V.R. and B.T. Perricone, 1984. Software errors

and complexity: An empirical investigation. Commun.

ACM, 27: 42-52.

http://portal.acm.org/citation.cfm?id=2085.

[2] Halstead, M.H., 1977. Elements of Software Science. 1st

Edn., Elsevier North Holland, New York, ISBN: 10:

0444002057 pp: 127.

[3] McCabe, T.J., 1976. A complexity measure. IEEE Trans.

Software Eng., 2: 308-320. DOI:

10.1109/TSE.1976.233837.

[4] Chidamber, S.R. and C.F. Kemerer, 1994. A metrics

suite for object-oriented design. IEEE Trans. Software

Eng., 20: 476-493. DOI:10.1109/32.295895.

[5] Basili, V.R., L.C. Briand and W.L. Melo, 1996. A

validation of object-oriented design metrics as quality

indicators. IEEE Trans. Software Eng., 22: 751-761.

DOI: 10.1109/32.544352

[6] Menzies, T., Greenwald, J., Frank, A.: Data mining

static code attributes to learn fault predictors. IEEE

Trans. Softw. Eng. 33(1), 2–13 (2007b)

[7] Lessmann, S., Baesens, B., Mues, C., Pietsch, S.:

Benchmarking classification models for software fault

prediction: a proposed framework and novel findings.

IEEE Trans. Softw. Eng. 34(4), 485–496 (2008)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.8, July 2013

11

[8] D’Ambros, M., Lanza, M., Robbes, R.: An extensive

comparison of bug prediction approaches. In:

Proceedings of the 7th IEEE Working Conference on

Mining Software Repositories, pp. 31–41 (2010)

[9] Zimmermann, T., Nagappan, N., Gall, H.: Cross-project

fault prediction: a large scale experiment on data vs.

domain vs. process. In: Proceedings of the 7th Joint

Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pp. 91–100 (2009)

[10] Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a fault

prediction model to allow inter language reuse. In:

Proceedings of the InternationalWorkshop on Predictive

Models in Software Engineering, pp. 19–24 (2008)

[11] Turhan, B., Menzies, T., Bener, A.: On the relative value

of cross-company and within_company data for fault

prediction. Empir. Softw. Eng. 14(5), 540–578 (2009)

[12] Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the

location and number of faults in large software systems.

IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

[13] Boetticher, G., Menzies, T., Ostrand, T.J.: PROMISE

repository of empirical software engineering data.

http://promisedata.org/repository (2007). Accessed 12

December 2010

[14] Tosun, A., Bener, A., Kale, R.: AI-based software fault

predictors: applications and benefits in a case study. In:

Proceedings of the 22th Innovative Applications of

Artificial Intelligence Conference, pp. 1748–1755 (2010)

[15] Nagappan, N., Ball, T.: Use of relative code churn

measures to predict system fault density. In: Proceedings

of the 27th International Conference on Software

Engineering, pp. 284–292 (2005)

[16] Catal, C., Diri, B.: A systematic review of software fault

prediction studies. Expert Syst. Appl. 36(4), 7346–7354

(2009)

[17] Zimmermann, T., Nagappan, N., Gall, H.: Cross-project

fault prediction: a large scale experiment on data vs.

domain vs. process. In: Proceedings of the 7th Joint

Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pp. 91–100 (2009)

[18] Quinlan, J.R.: C4.5: Programs for Machine Learning.

Morgan Kaufmann, San Mateo (1993)

[19] Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a fault

prediction model to allow inter language reuse. In:

Proceedings of the InternationalWorkshop on Predictive

Models in Software Engineering, pp. 19–24 (2008)

[20] Vapnik, V., 1995. The Nature of Statistical Learning

Theory. Springer, New York.

[21] D. Aha, D. Kibler (1991). Instance-based learning

algorithms. Machine Learning. 6:37-66.

[22] Breiman, L., 2001. Random forests. Machine Learning

45, 5–32.

[23] C C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B.

Regnell, and A.Wesslen, Experimentation in Software

Engineering: An Introduction. Kluwer Academic

Publishers, 2000.

IJCATM : www.ijcaonline.org

