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ABSTRACT 

This paper investigates fault predictions in the cross-project 

context focusing on the object oriented metrics for the 

organizations that do not track fault related data. In this study, 

empirical analysis is carried out to validate object-oriented 

Chidamber and Kemerer (CK) design metrics for cross project 

fault prediction.  The machine learning techniques used for 

evaluation are J48, NB, SVM, RF, K-NN and DT. The results 

indicate CK metrics can be used as initial guideline for the 

projects where no previous fault data is available. Overall, the 

results of cross company is comparable to the within company 

data learning. Our analysis is in favour of reusability in object 

oriented technology and it has been empirically shown that 

object oriented metric data can be used for cross company 

fault prediction in initial stage when previous fault data of the 

project is not available.  

Keywords 

Fault prediction, cross company, Software metric, open source 

software. 

1. INTRODUCTION 
Modern software engineering and programming practices 

stress to develop similar products using reusable core assets. 

Modularization or component-based software designs, 

architecture and implementation are the basic technique for 

building software with new or reusable parts.  The general 

aim of reusability is to enhance quality and to minimize the 

development effort and time. Software reuse can result in 

substantial savings in the development costs as well as in 

development of low complexity end-products that are 

relatively small in size. In order to increase productivity and 

quality, organizations  develops a module once, verifies that it 

functions correctly and properly, and then reuses it in different 

applications where the same functionality is required.  In the 

age of open source development it is quite possible that 

organizations can also make use of reusable components from 

outside their organization than within the organization. The 

software reuse concept is probably the most significant part of 

object-oriented based information system development. It is 

hence reasonable to use such cross company data which are 

developed using object oriented methodology. According to 

Kitchenham et.al. [1] : “The time required to collect enough 

data on past projects from within a company may be 

prohibitive.  Collecting within-company data may take so 

long that technologies change and older projects do not 

represent current practice.” Object-oriented development 

methodology is greatly used in software industry and many 

design metrics of object-oriented programs have been 

proposed for fault prediction, but there is no cross company 

investigation has been reported so far. In this study, empirical 

analysis is carried out to validate object-oriented design 

metrics for cross project fault prediction .The Chidamber and 

Kemerer metrics suite is adopted to predict the faults in the 

projects using same and cross company data. We use CK 

metric suite from software developed by different 

organization, using different object oriented language. The 

machine learning techniques used for evaluation are 

statistical, J48, NB, SVM, RF, K-NN and DT. The result 

indicates that CK metrics can be used as initial guideline for 

the projects where no fault data is available. Overall, the 

results of cross company is comparable to the within company 

data learning. 

Software fault prediction using various techniques on 

software repository for predicting the fault-prone software 

modules is of a great interest among the software testing   

researchers and industry professionals for reducing the cost 

occurring in software testing. Researchers have used metric 

based classification for software components as fault-prone 

and non-fault-prone [6][7]. Researchers and engineers have 

used static design metrics of the programs for this purpose. 

Many researchers have explored issues like the relative merits 

of McCabes cyclomatic complexity, Halsteads software 

science measures, and lines of code counts for building fault 

predictors [6,7,16]. After object-oriented programming 

dominated software development, a vast variety of design 

metrics have been adapted for estimating the quality of object-

oriented programs. Chidamber and Kemerer[4] introduced 

their OO design and complexity metrics and demonstrated the 

strong impact on software quality. The CK metrics suite 

invoked great enthusiasm among researchers and software 

engineers, and a great amount of empirical studies have been 

conducted to evaluate those metrics. In this study, data from 

the industry is used to analyze the relationships between CK 

metrics and faults in the OO programs.  

Metrics data can be computed by using automatic tools, but it 

is not so easy to collect bug data. In the present work, we try 

to reuse the fault data of one project to generated prediction 

model for another project.  

To achieve this, the metrics and bug data computed from C++ 

and Java projects, then selection of CK metric for both project 

are used to create fault prediction model. Fault prediction 

models focuses on predicting the fault-prone modules 

precisely and helps software manager and testers  to allocate 

limited resources in testing and maintenance Studies on this 

issue, usually trained predictors from data of historical 

releases in the same project (i.e., faults distributional data and 

software metrics such as static code features, code change 

histories, and process metrics) and predicted faults in the 

upcoming releases, or reported the results of cross-validation 

on the same data set.  

To build a fault predictor we need to extract the fault and 

software code data from the software repositories of the same 

project that is, training data for the predictor.  However, 

sometimes in real practice, such faulty chronological data is 

not always accessible, because either it does not yet exist due 



International Journal of Computer Applications (0975 – 8887)  

Volume 74– No.8, July 2013 

6 

to the starting of project or was not well collected. That 

means, having a fault prediction model for those companies 

which do not track fault related to the same project is 

impossible initially in some cases. On the other hand, open 

source repositories provides plenty of public fault related data. 

A potential way of predicting faults for projects of these 

companies without historical fault data is to make use of these 

public and open source projects as training data. Cross-project 

fault prediction refers to predicting faults in a project using 

prediction models trained from historical data of other 

projects [9,10]. There are some studies focusing on this issue 

and their results show that cross-project fault prediction is still 

a serious challenge [9,11].For machine learning based 

predictions, the effect of a predictor depends on two factors: 

the training data and the learning algorithm. Consequently 

there are two potential ways for cross-project fault prediction: 

first one is collecting the best suitable training data for the 

project to be predicted, ideally we may find a training data 

presenting the same fault pattern with the target project, which 

will lead to acceptable prediction results and  the other is by 

using learning algorithms with high ability to classify the  

fault prone and non-fault prone class .This method assumes 

that there exists a general fault pattern between different data 

sets. If we can learn this pattern successfully, we can predict 

faults in one projects based on the data of other project. In this 

paper, we investigate the empirical evidences to answer the 

following questions in context of cross-project fault 

prediction: 

Can raining data from different projects developed in different 

environment by using different object oriented language 

provide acceptable prediction results by using CK metric? 

Does training data from the same project always lead to better 

prediction results than training data from other projects? 

The rest of this paper is structured as follows: Sect. 2 

summarizes some related work; Sect. 3 describes the data set, 

and the performance evaluation criteria; Sect. 4 describes the 

learning algorithms and the experiments we conducted. Sect. 

5 explains threats to validity .Finally we conclude this study 

in Sect. 6. 

2. RELATED WORK  
Software testing is one of the most important and critical 

quality assurance activities. It is a  time consuming and labor-

intensive activity in software development life cycle while  

resources allocated  for testing are usually limited[11,12]. 

Fault prediction has been proved to be effective for 

optimizing testing resource allocation by identifying the 

modules that are more likely to be fault prone prior to testing 

[14]. In the past decade, various fault prediction models have 

been proposed and machine learning techniques have become 

more and more popular in constructing fault prediction 

models [6, 15,16]. Menzies [6] also evaluated the error 

proneness for C and Java projects. However, most prediction 

models reported are intra-project applicable, i.e., learning 

from data of historical releases and then applying to the 

upcoming release in the same project. The application field of 

these models is restricted for data of historical releases is 

unavailable sometimes. This research aims to extend the 

application field of fault prediction. It is unlike most previous 

software fault prediction research for its focus on a cross-

project context. The problem of predicting faults in a cross-

project context drew the attention of many researchers in 

recent years. To the best of our knowledge, studies on cross 

project fault prediction do not show a conclusive picture so 

far. However, there are considerable studies focusing on this 

issue. Zimmermann et al. [17] used 12 real world application 

for cross-project fault predictions and found that only few 

predictions worked successfully .That means cross-project 

fault prediction will fail in most cases if not selecting training 

data carefully. They also found that cross-project fault 

prediction is not symmetry. For example, data of Firefox can 

predict Internet Explorer faults well (Precision equal to 

76.47% and Recall equal to 81.25%) but the opposite 

direction does not work (Recall equal to 4.12%). They argued 

that characteristics of data and process are vital factors for the 

effective fault prediction of cross-project rather than domain. 

Consequently they concluded that simply using historical data 

of projects in the same domain does not lead to good 

prediction results. Zimmermann et al. pointed out that cross-

project fault prediction is a serious challenge and more 

attention should be paid to this problem. Turhan et al. [11] 

also studied a cross-company fault prediction problem , that 

is, using data from other companies to build fault predictors 

for local projects. In their experiments they used only static 

code features to build fault predictors. They concluded that 

cross-company data increase the probability of fault detection 

(pd) at the cost of increasing false positive rate (pf ). Their 

experimental results show that nearest neighbor filtering can 

help to reduce pf when using cross-company data. 

3. DATA SET USED  
Our project data are taken from software developed on 

different standards, language and location .KC1 developed in   

North America (NASA) and JEdit  is an open source software. 

Therefore, the code features that are available for each project 

vary. KC1 have 95 features available, we extracted only the 

CK metric from both different projects.   Table 1 shows the 

common features for both sources. The data set KC1 from the 

NASA IV and V Facility Metrics Data Program data 

repository (http://mdp.ivv.nasa.org), which is comprised of 43 

KSLOC of C++ code for a ground system. There are 145 

classes and altogether 2107 methods.  The faults information 

in the original data set is at method level, while metrics 

information is at class level. For this study, those files have to 

be combined to get all class level information. We generate all 

class level information and validate it with the above data 

resource. Descriptive information about this public data set is 

listed in Table 1. Since six CK metrics are examined to 

evaluate their impact on the quality of the code, only related 

information is included in the Table 1. JEdit a text editor 

developed using Java language. It is an open source project 

and its software and the source code is freely available.  The 

LOC of JEdit is 169,107. The number of developers involved 

in this project was 144. The project was started in 1999. The 

number of bugs was computed using SVN repositories. The 

release point for the project was identified in 2002. The log 

data from that point to 2007 was collected.  The word bug or 

fixed was counted. Details of bug collection process can be 

found in [19]. The intention of this study is to validate and 

compare the influence of CK metrics on the cross company   

software fault predictability. 

CK metrics: In CK metrics suite [4], six design and 

complexity metrics are used to represent the characteristics of 

the code: 

WMC (Weighted Methods per Class): The sum of normalized 

complexity of all methods in a given class. Usually the 

method complexity is measured using cyclomatic complexity. 

Consider a class X1 with  methods M1 ,M2,…,Mn that are 

given in the class. Let C1,C2,…,Cn be the complexities of the 

methods. The WMC is calculated as  
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WMC= 

 

DIT (Depth of Inheritance Tree): The maximum length from 

the root to a given class in the inheritance hierarchy 

NOC (Number of Children): The number of immediate 

subclasses of a given class in a hierarchy.  

RFC (Response For a Class): The number of methods 

implemented in a given class that can be invoked by a 

received message  

CBO (Coupling Between Object Classes): CBO for a class is 

the count of the number of other class to which it is coupled. 

It is the number of classes that use the member functions 

and/or the instance variables of a given class .The more 

independent a class is, the easier it is to reuse in different 

applications. 

LCOM (Lack of Cohesion on Methods): for each instance 

variable calculate the percentage of methods using it, then the 

average percentage for all variables subtracted from 100%. 

These CK metrics express the quantifiable and measurable 

characteristics of an OO program, such as complexity, 

cohesion and coupling. For general design environment, 

technically these CK metrics should be kept at a reasonable 

level. 

Table I: Descriptive information of metrics Metric of 

KC1 and JEdit 

 Max Mean St dev 

 KC1 JEdit Mea

n  

JEdit KC1 JEdit 

CBO  24  105 8.3 12.64 6.37 14.13 

DIT  7  7 2.0 2.49 1.258 1.97 

LCO

M  

100  100 68.7 46.23 36.88

9 

33.51 

NOC  5  35 0.214 0.715 0.699 3.1 

RFC  222  843 34.4 174.9

7 

36.20

3 

269.5 

WMC  100  407 17.4 11.72 17.44

9 

31.20 

 

Accuracy measures 

The accuracy and performance of prediction models for 

two-class problem, faulty or not faulty is typically evaluated 

using a confusion matrix. A confusion matrix contains 

information about actual and predicted classifications done by 

a classification system.  In this study, we used the commonly 

used prediction performance measures: probability of 

detection (pd), probability of false alarm (pf), precision (prec), 

recall and f-measure to evaluate and compare prediction 

models quantitatively. These measures are derived from the 

confusion matrix. 

 

 

 

 

A confusion matrix 

 

Predicted Actual Faulty Not faulty 

Faulty  TP  FP  

Not faulty  FN  TN  

 

False alarms, pf, should be 0, meaning that the predictor 

should never label a fault-free module as faulty. In general, an 

increase in pd would also increase pf rates since the model 

triggers more often to achieve the ideal case. Precision is also 

known as correctness. It is defined as the ratio of the number 

of modules correctly predicted as faulty to the total number of 

modules predicted as faulty. 

 

Recall= pd =TP/ (TP+FN) 

 

pf = FP/(FP+TN) 

 

Precision=TP/ (TP+FP) 

 

The precision is the ratio of the number of files inferred as 

having positive bug count that has really positive bug count. 

The higher the precision, the less effort is required for testing 

and inspection. It has a strong relation with pd and pf, such 

that when pd is fixed for a dataset, pf rate is controlled by 

precision and the class distribution of the data [6]. 

 F-measure considers both precision and recall equally 

important by taking their harmonic mean. It is calculated as 

follows: 

 

 

   

 

The F-measure has been widely used as a measure in the field 

of Information Retrieval and Data Mining. It integrates Recall 

and Precision in a single indicator. Parameter β indicates the 

weight assigned to Recall and it assumes any non-negative 

value. Higher β value means higher weight. If β is equal to 1, 

Recall and Precision are given the equal weight. Here in our 

experiments, we treat Recall and Precision equally, so we set 

β to 1.The higher the quality of the predictor, the higher the F-

measure.   

4. EXPERIMENT DESIGN  
We employ six machine learning algorithms to construct 

predictors. They are J48 (a C4.5 decision tree), Naïve Bayes 

(NB), Support Vector Machine (SVM), Random forest (RF), 

K-NN and Decision Table (DT). These 6 learners have been 

widely used in the context of fault prediction [6][7][19]. 

The J48 is the java version of C4.5 decision tree learner. 

C4.5 is an extension of the ID3 algorithm. It builds the tree 

structure from the training data by using the concept of 

information entropy. Leaves in the tree structure represent 

classifications and branches represent judgment rules. More 

details about the C4.5 Decision Tree learner can be found in 

Quinlan [18].The Naive Bayes learner is based on probability 

theory and assumes that features of the data set are 

independent of each other. Although the independence 

assumption is often violated in reality, the Naive Bayes 

learner has been proved to be effective for fault prediction [6]. 

Support vector machines (SVM) are kernel based learning 

algorithm introduced by Vapnik[20]  using  the Structural 

Risk Minimization (SRM) principle which minimizes the 

generalization error, i.e., true error on unseen examples. The 

callecision
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basic SVM classifier deals with two-class pattern recognition 

problems, in which the data are separated by the optimal 

hyperplane defined by a number of support vectors. The 

regularization parameter (C) was set at 1; the kernel function 

used was Gaussian (RBF); Comparative studies conducted by 

Lessmann et al. [7] shows that the SVM learner performs 

equally with the Naïve Bayes learner in the context of fault 

prediction.  Random Forest ensemble introduced by Breiman 

[22] uses a large number of individual, unpruned decision 

trees which are created by randomizing the split at each node 

of the decision tree. Each tree is likely to be less accurate than 

a tree created with the exact splits. But, by combining several 

of these “approximate” trees in an ensemble, can improve the 

accuracy and often it is doing better than a single tree with 

exact splits.  In k-nearest neighbor, a test sample is compared 

with existing ones by using a distance metric and the majority 

class of the closest k neighbors is assigned to the test case.  

The distance between two samples can be computed by 

using any distance metric like Euclidean and Manhattan, we 

have used Euclidean distance.  The Decision Table learner is a 

rule based learner whose result can be easily understood.  

More details of the comparison of fault prediction models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on different learners can be found in Lessmann et al. 

[7]. According to the suggestion of [6], we do not introduce 

any attribute selection techniques when constructing fault 

prediction models in our experiments. Previous studies show 

that cross-project fault prediction remains a challenging issue. 

We need to verify that whether prediction results provided by 

cross-project data are acceptable, in order to  validate the 

above hypotheses we need at least two projects whose target 

domain are different   and  the languages is also  different but 

both are of object oriented programming. Fig 1 shows the 

complete process of cross company fault prediction model 

using CK metric. 

The pseudo code given in fig2, for within company (WC) 

and cross company (CC) analysis for the projects KC1 and 

JEdit. Data came from  one systems  written in “C++” and the 

other  systems was written in JAVA. For cross-company data, 

an industrial practitioner may not have access to detailed 

meta-knowledge (e.g. whether it was developed in “C++” or 

JAVA). They may only be aware that data, from an unknown 

source, are available for download. The projects data come 

from different sources and, hence, have different features. For 

this analysis, we have used only the six CK metric which are 

common in both the projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

Fig 1 Cross project fault prediction model using CK metrics 
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DATA = [KC1, JEdit] // Different data from different 

domain and   

developed using different language all available data 

LEARNER = [J48,Naive Bayes, SVM, RF,KNN,DT]  

//   fault predictor 

C_FEATURES:-Find CK features IN DATA 

FOR EACH data IN DATA 

data = Select C_FEATURES in data // use common    

features 

END 

FOR EACH data in DATA 

CC_TRAIN = DATA - data // cross company training data 

WC_TRAIN = random 90% of data // within company  

training data 

TEST = data - WC_TRAIN // shared test data 

//construct predictor from CC data 

CC_PREDICTOR = Train LEARNER with CC_TRAIN 

// construct predictor from WC data 

WC_PREDICTOR = Train LEARNER with WC_TRAIN 

//Evaluate both predictors on the same test data 

[cc_pd, cc_pf, cc_prec,cc_fmes] = CC_PREDICTOR on  

TEST 

[wc_pd, wc_pf, wc_prec,wc_fmes] = WC_PREDICTOR  

on     TEST 

END 

END 

 

Fig 2 Pseudo code for Cross Company Analysis 

Firstly we performed the prediction experiment by using 

training data within the company by using M*N-way cross 

validation where both M and N are selected as 10 [44]. We 

create 10 stratified bins: 9 of these 10 bins are used as training 

sets and the last one is used as the test set. We randomize the 

dataset M = 10 times and create N = 10 sets in each iteration. 

Next we did cross company and inter language prediction 

experiments. The table 2 to table 7 shows the result of within 

company and cross company prediction. In case of cross 

company there are two scenarios first we collected the 

training data of KC1 and extracted CK metrics and related 

bug data and the test data set is JEdit with the Ck metric. In 

second scenario we have used JEdit CK metric data set for 

training and KC1for testing. These projects are developed in 

different object oriented language and are of different domain. 

For J48 we construct a decision tree on the train-test-result 

instances generated. If the decision tree can identify those 

successful cross-project fault predictions precisely, it means 

that distributional characteristics of data set are related to 

prediction results in the cross-project context. 

 

Table II: Prediction performance measures using pd             
Cross company 

      Training 

Project  

Test 

Project         j48 NB SVM RF 

K-

NN DT 

KC1 KC1 0.633     0.583      0 0.583      0.55       0.633      

JEdit JEdit 0.746    0.53       0.015      0.672      0.619      0.642      

KC1  JEdit 0.47       0.575      0 0.328      0.552 0.343      

JEdit  KC1   0.7        0.367      0 0.667      0.467      0.583      

 

 

Considering cross-project predictions when JEdit is used 

for training and test set of KC1the prediction are successful 

(see Table 2), we think the performance of this decision tree is 

fairly high. The high performance of the decision tree 

indicates that the distributional characteristics of training set 

and test set are related to results of cross-project fault 

predictions. In case of RF the probability of fault detection is 

even better than the result when training is done with within 

the project data set. When learner is J48, the pd is 70% in case 

of cross project and 63.3% for within company for KC1 test 

data. Form the result it is evident that open source project 

JEdit when used for training and KC1 for testing which was 

developed in a process oriented approach by a cost driven 

government entity, the cross project fault  prediction is better 

for J48 and RF.   

 

Table III Prediction performance measures using   pf 
Cross company 

      Training 

Project  

Test 

Project         j48 NB SVM RF 

K-

NN DT 

KC1 KC1 0.353       0.259       0   0.247       0.282       0.376       

JEdit JEdit 0.25        0.15        0  0.286       0.271       0.307       

KC1  JEdit 0.157       0.193       0 0.057       0.307   0.05        

JEdit  KC1 0.271       0.129       0 0.353       0.224       0.529       

 

This paper provides empirical evidences and interesting 

results for both software quality assurance and computational 

intelligence communities. Learner J48, NB and K-NN 

produced the less pf when JEdit is used for training and KC1 

is used for test. In case of J48, DT and RF, when training is 

done by KC1 and testing is done on open source data JEdit, 

the pf is very less compared to within project. However, in 

case of SVM, there are no changes in the performance in pf.  

 

Table IV: Prediction performance measures using   

Precision 
Cross company 

      Training 

Project  

Test 

Project         j48 NB SVM RF 

K-

NN DT 

KC1 KC1 0.559      0.614      0 0.625      0.579      0.543      

JEdit JEdit 0.741      0.772      1 0.692      0.686      0.667      

KC1  JEdit 

    

0.741     0.74       0 0.846      

    

0.632      0.868      

JEdit  KC1 0.646      0.667      0 0.571      0.596      0.438      

 

Average predictors based on learning methods NB and J48 

can provide the best prediction results with (Precision) equal 

to 0.7035 and 0.639 respectively in case of cross company 

whereas the average within company performance in terms of 

precision is 0.693 and 0.65 respectively. From the results it is 

evident that the results using the CK metrics for fault 

prediction in case of cross company is better than the within  

company   in case of NB learner and is competitive in case of 

J48. 
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Table V Prediction performance measures using   F-

measure 
Cross company 

      Training 
Project  

Test 
Project         j48 NB SVM RF 

K-
NN DT 

KC1 KC1 0.594 0.598 0 0.603 0.564 0.585 

JEdit JEdit 0.743 0.628 0.029 0.682 0.651 0.654 

KC1  JEdit 0.575 0.647 0 0.473 0.59 0.492 

JEdit  KC1 0.672 0.473 0 0.615 0.523 0.5 

 

From Table 5, it can be observed that for F-measure, J48, 

NB, and RF achieves higher F-measure than  within company 

data . NB achieved f-measure (64.7%), in case of training   by 

KC1 and test set is JEdit but this is not higher than the 

performance of learner J48, when training   by JEdit   and test 

set is KC1. 

5. THREATS TO VALIDITY   
Due to the many factors that affect software development: the 

type of application domain; the programming capability of the 

individual programmers involved in system development; 

development practices; the variation in measurement 

practices; and the quality of the measurements and 

instruments used to collect the data, and consequently, 

software quality, controlled experiments for evaluating the 

usefulness of empirical models are not practical. We adopted 

a case study approach in the empirical investigations and 

presented in this paper. Software engineering community 

demands that the subject of an empirical software study have 

the following characteristics [23]: 

. Developed by a group, and not by an individual. 

. Be as large as industry-size projects, and not a toy    

problem. 

. Developed by professionals, and not by students. 

. Developed in an industry/government organization setting,    

   and not in a laboratory. 

We note that our case studies fulfill all of the above criteria. 

The software systems investigated in our study were 

developed by software professionals and government software 

development organizations. In addition, each software was 

developed to address a real-world problem. Another point is 

that descriptions of software modules only in terms CK metric 

can overlook some important aspects of software including: 

the type of application domain and other important static code 

attributes. Several threats to the external validity of our study 

may restrict the generalization of our results. Some of the 

limitations are: The degree to which the results of our study 

can be generalized to other research settings is questionable. 

The reason is that the system severity of faults is not taken 

into account for this study. There may be different types and 
different number of faults which can leave the system in 

various states e.g. a failure that is caused by a fault may lead 

to a system crash or a failure to process a file. The  project 

studied lie between 43 KSLOC and 169 KSLOC. These 

programs are small as compared to large industry systems. 

The prediction capabilities of the studied CK object oriented 

design metrics may results very different in larger programs. 

The conceptual complexity of these systems was rather 

limited. Again, many different problems may arise in more 

complex systems. Though these results provide guidance for 

future research on the use of machine learning methods to find 

the impact of OO metrics on fault proneness for cross 

company, further validations are necessary with different 

systems to draw further stronger conclusions. 

6. CONCLUSION   
Cross-project fault prediction is important for projects 

without previous fault data. It extends the application field of 

fault prediction models, e.g., predicting faults in the first 

release of a new project. However, empirical evidences show 

that cross-project fault predictions only work in a few cases. 

In this study, we reported results from experiments of cross-

project fault prediction with regard to object oriented CK 

metrics. The experiments were conducted on two data sets 

collected from two different  source projects developed in two 

different object oriented programming language for fault 

prediction . NASA project which we have used   for cross-

company follow stringent ISO-9001 industrial practices 

imposed by NASA and the other project is open source 

software .Our study reveals that when training is done by the 

NASA project for open source software then the  false alarm 

rate (pf)  decreases and for probability of detecting (pd) 

increases when training is done by open source software for 

NASA project. The result shows that in the case of different 

domain and different size, it is possible to reuse the prediction 

model between languages and projects of different companies. 

Finally it is evident from the result that CK based object 

oriented metric value is effective for cross project fault 

prediction. In overall performance evaluation J48 has 

performed better that the other classifiers in pd, recall and F-

measure. It is also evident that the results in terms of precision 

using CK metrics for fault prediction of cross company is 

better than the within company in case of NB learner and is 

competitive in case of J48.Our analysis of cross company data 

and the proposed methodology allows the construction of fault 

predictors even for companies where no local fault data is 

available. Our final goal is to construct general fault 

prediction model for successful cross project fault prediction.   
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