
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

14

Novel Approximation Algorithm for Calculating

Maximum Flow in a Graph

Madhu Lakshmi
Dept. of CSE

G. B. Pant Engineering College,

Pauri

Uttarakhand, INDIA

Pradeep Kumar Kaushik
Dept. of CSE

Uttarakhand Technical

University, Dehradun

Uttarakhand, INDIA

Nitin Arora
Dept. of CSE

Women Institute of Technology,

Dehradun

Uttarakhand, INDIA

ABSTRACT

In this paper a new approximation algorithm for

calculating the min-cut tree of an undirected edge-

weighted graph has been proposed. This algorithm runs

in
2 2(.log .)O V V V d , where V is the number of

vertices in the given graph and d is the degree of the

graph. It is a significant improvement over time

complexities of existing solutions. However, because of

an assumption it does not produce correct result for all

sort of graphs but for the dense graphs success rate is

more than 90%. Moreover in the unsuccessful cases, the

deviation from actual result is very less and for most of

the pairs we obtain correct values of max-flow or min-

cut. This algorithm is implemented in JAVA language

and checked for many input cases.

Keywords:

Maximum Flow, approximation Algorithm, complexity,

min-cut tree

1. INTRODUCTION

Graph connectivity is one of the classical subjects in

graph theory and has many applications like Reliability

of communication networks, cluster analysis,

transportation planning, chip and circuit design. Finding

the minimum cut of an undirected edge-weighted graph

is the fundamental algorithmic problem. Precisely it

consists in finding a non-trivial partition of graph vertex

set V into two parts such that the cut weight, the sum of

weights of the edges connecting the two parts is the

minimum. Given a graph G = (V, E) with vertex set V,

edge set E and weight function w: E  R, it can be

shown that there are at most n-1 distinct min-cuts among

the total n(n-1)/2 pairs of nodes. We represent these n-1

min-cuts by a (not necessarily unique) tree, called Min-

Cut Tree, which always exists and has the following

properties [4][5][6]:

The nodes of the tree are the same as the nodes of the

initial graph, (i.e. V). Each edge is assigned a value.

For every pair s, t, we can find the min-cut value by

following the (unique) path between s and t in the min-

cut tree. Suppose that e is the edge with minimum value

on that path. Then value (e) is also the min-cut value

between s and t in the initial graph G.

To actually find the cut between s and t, we simply cut

off the edge e of minimum value on the s-t path. The two

connected subsets of nodes in the tree, also define the

min-cut between s and t in the initial graph G.

2. WORK BACKGROUND

In the maximum flow problem we are given a flow

network G = (V, E) which is a graph in which each edge

(u, v)  E has a non-negative capacity (,) 0c u v  . If

(u, v)  E then it is assumed that (,) 0c u v  [1][2].

We distinguish two vertices in a flow network: a source s

and a sink t. In this problem we wish to compute the

greatest rate at which material can be shipped from the

source s to the sink t without violating any capacity

constraints.

2.1 The Max-Flow-Min-Cut theorem by

Ford and Fulkerson
The Max-Flow-Min-Cut theorem by Ford and

Fulkerson [8] shows the duality of the maximum flow

and minimum s-t cut. This theorem states that the value

of maximum flow in a flow network G with source s and

sink t is equal to the value of minimum s-t cut of G.

2.2 Gomory and Hu Algorithm
Gomory and Hu [7] showed that in a graph having n

nodes, there can be only n-1 numerically different

flows/cuts. They proposed a method to compute

minimum-cut tree by computing only n-1 minimum s-t

cuts.

2.3 M. Stoer and F. Wagner’s Algorithm

M. Stoer and F. Wagner [3] presented an algorithm for

finding the minimum cut of an undirected edge-weighted

graph without using any flow techniques. This algorithm

is one of a small number of papers treating questions of

graph connectivity by non-flow-based methods. Time

complexity of this algorithm is much better than those of

flow based algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

15

3. NOVEL EFFICIENT ALGORITHM

This presents a new approximation algorithm for

constructing the minimum cut tree. We calculate an

upper-bound value for each node in the graph. We define

the upperbound value of each node as the value of cut

which separates this node from rest of the graph. We

used the following Lemma:

Lemma: The value of minimum cut of a graph G

separating Ni and Nj is less than or equal to minimum of

the upperbound values of two nodes Ni and Nj

We proceed by finding an edge uv such that upon

merging the two nodes Nu and Nv we are able to reduce

the upperbound value of the new node, i.e.

() () 2* (,)u vupperbound N upperbound N w u v 

max((), ())u vupperbound N upperbound N

We start from the node having the minimum upperbound

value and check for all of the edges leaving it. If we are

able to reduce the upperbound value by merging it with

any of the nodes, we merge the nodes and repeat the

same procedure.

If we are not able to reduce the node’s upperbound value,

we check for rest of the nodes in the increasing order of

upperbound value.

If at any stage it is not possible to merge any node, then

we merge that pair of nodes which results in minimum

increment of the upperbound value.

After all the nodes in the graph are merged and it has

only one node left, we proceed to construct the min-cut

tree by using the information from intermediate stages.

We move from last to first stage and at each stage we see

the two nodes that were merged during last stage and

separate the node with smaller of the two upperbound

values from the other by an arc bearing the value equal to

the smaller of the two upperbound values.

Since we are considering the nodes in the increasing

order of upperbound values, checking for Ni itself

implies that Nj has already been checked and it was not

possible to reduce its upperbound value at all. So in this

case ()jupperbound N cannot be reduced.

Our algorithm is based on the assumption that if we are

merging two nodes Ni and Nj and if

() ()i jupperbound N upperbound N , then it

is not possible to merge Nj with any other node which

will result in a node having upperbound value which is

less than ()iupperbound N .

After running the procedure with more than 20000

randomly generated graphs we have figured out that for

graphs having density0.4, success rate of algorithm is

more than 90%. Moreover in the unsuccessful cases, the

deviation from actual result is very less (usually for less

than 5% pairs) and for most of the pairs we obtain

correct values of max-flow or min-cut.

Procedure: Min-Cut Tree(G)
Input: Undirected edge-weighted graph G

Output: Min-Cut Tree

Calculate the upperbound values for each node.

while(number of vertices in the current graph > 1)

 loop(Consider the vertices in the increasing order of

upperbound value)

 if(upperbound value can be reduced by

merging a node with any adjacent node)

 then merge those two adjacent nodes

 break;

 End if

 End loop
 if (it is not possible to merge any pair of nodes)

 then merge the pair of nodes which results in minimum

increment of the upperbound value.

 End if

End While
Construct Min-Cut Tree T by using the information from

intermediate stages as described:

Move from last to first stage.

At each stage check the two nodes that were merged

during last stage.

Separate the node with lower upperbound value from the

other by an arc bearing the value equal to the lower

upperbound value.

return T

Time Complexity of our algorithms is
2 2(.log .)O V V V d , where V is the number of

vertices in the given graph and d is the degree of the

graph. This is an improvement over the best existing
4()O V solution for minimum cut tree problem.

In the following figures we have shown the steps used in

our efficient algorithm by taking some Undirected edge-

weighted graph G

We start from the node having the minimum upperbound

value and check for all of the edges leaving it. If we are

able to reduce the upperbound value by merging it with

any of the nodes, we merge the nodes and repeat the

same procedure.

If we are not able to reduce the node’s upperbound value,

we check for rest of the nodes in the increasing order of

upperbound value.

If at any stage it is not possible to merge any node, then

we merge that pair of nodes which results in minimum

increment of the upperbound value.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

16

Fig. 1: Input Undirected edge-weighted graph G

Fig. 2: Undirected edge-weighted graph G after the

first phase.

Fig. 3: Undirected edge-weighted graph G after the

second phase.

Fig. 4: Undirected edge-weighted graph G after the

third phase.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

17

Fig. 5: Undirected edge-weighted graph G after the

fourth phase.

Fig. 6: Undirected edge-weighted graph G after the

fifth phase.

Fig. 7: Undirected edge-weighted graph G after the

sixth phase.

Fig. 8: Undirected edge-weighted graph G after the

seventh phase.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

18

Fig. 9: Undirected edge-weighted graph G after the

eight phase.

Fig. 10: Undirected edge-weighted graph G after the

ninth phase.

Fig. 11: Undirected edge-weighted graph G after the

tenth phase.

Fig. 12: Undirected edge-weighted graph G after the

eleventh phase.

After all the nodes in the graph are merged and it has

only one node left, we proceed to construct the min-cut

tree by using the information from intermediate stages.

We move from last to first stage and at each stage we see

the two nodes that were merged during last stage and

separate the node with smaller of the two upperbound

values from the other by an arc bearing the value equal to

the smaller of the two upperbound values.

Since we are considering the nodes in the increasing

order of upperbound values, checking for Ni itself

implies that Nj has already been checked and it was not

possible to reduce its upperbound value at all. So in this

case ()jupperbound N cannot be reduced.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

19

Fig. 13: min-cut tree of an undirected edge-weighted

graph G

Fig. 14: min-cut tree of an undirected edge-weighted

graph G

Fig. 15: min-cut tree of an undirected edge-weighted

graph G

Fig. 16: min-cut tree of an undirected edge-weighted

graph G

Fig. 17: min-cut tree of an undirected edge-weighted

graph G

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

20

Fig. 18: min-cut tree of an undirected edge-weighted

graph G

Fig. 19: min-cut tree of an undirected edge-weighted

graph G

Fig. 20: min-cut tree of an undirected edge-weighted

graph G

Fig. 21: min-cut tree of an undirected edge-weighted

graph G

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

21

Fig. 22: min-cut tree of an undirected edge-weighted

graph G.

4. RESULTS
We generated 7500 random graphs of different densities

but having fixed number of nodes (=50). Edge-weights

were also random and were in between 1-300. Results of

running our algorithm with these graphs are summarised

in following plots:

4.1 Random Graphs with Fixed Number of Nodes

Fig 22: Plot of Success Rate Vs Density (Number of nodes were fixed to 50)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

22

Fig 23: Plot of Deviation Vs Density (For unsuccessful test cases)

It is clear from figure 22 that for desity >= 0.4 success

rate is about 100%. Figure 23 says that for the

unsuccessful test cases deviation from the actual result is

less than 3%. It means that even in the case of failure we

get correct valus of max-flows or min-cuts for most of

the pair of nodes.

4.2 Random Graphs with Random

Number of Nodes
We generated 7500 random graphs of different densities

and number of nodes in them were also random (=5-55).

Edges weights were also random and were in between 1-

300. Results of running our algorithm with these graphs

are summarised in following plots:

Fig 24: Plot of Success Rate Vs Density (Number of nodes were random 5-55)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.3, July 2013

23

Fig 25: Plot of Deviation Vs Density (For unsuccessful test cases)

It is clear from figure 24 that for desity >= 0.4 success rate is more than 92%. Figure 25 says that for the unsuccessful test

cases deviation from the actual result is less than 5%. It means that even in the case of failure we get correct valus of max-

flows or min-cuts for most of the pair of nodes.

5. APPLICATIONS

5.1 Reliability of Communication

Networks:
The problem of finding the minimum cut in a graph plays

an important role in the design of communication

networks. An important measure of the reliability of a

network is the minimum number of links that must fail in

order for the communication between any pair of nodes

to fail.

5.2 Cluster Analysis:
The goal of clustering is to find groups that are both

homogeneous and well separated. The main idea behind

using minimum cut technique for clustering is to find

clusters that have small inter-cluster cuts and large intra-

cluster cuts.

5.3 Transportation Planning:
The goal is to setup a network of sensors for surveillance

over the complex network of roads. We find a minimum

cut for a road network to find a smallest set of road

segments on which sensors must be placed to ensure that

a terrorist travelling across the road network must

encounter at least one sensor. Already implemented in

New York city by homeland security

5.4 Circuit partitioning:
Circuit partitioning is one of the central problems in

VLSI system design.

The primary objective of circuit partitioning is to

minimize the number of interconnections between

different components of the partitioned circuit. So the

circuit partitioning problem is closely related to the

minimum cut problem.

Because of the difference between on-chip and off-chip

signal delays, a good partitioning should limit the

number of signals travelling off-chip to ensure high

system performance.

So min-cut partitioning that minimizes the number of

interconnections between different chips is desired.

6. REFERENCES

[1] Arora N., Kaushik P. K. and Singh S. P., “A Survey

on Methods for finding Min-Cut Tree”.

International Journal of Computer Applications

(IJCA), Volume 66, No. 23, March 2013, pp. 18-22.

[2] Kumar A., Singh S. P. and Arora N., “A New

Technique for Finding Min-Cut Tree”. International

Journal of Computer Applications (IJCA), Volume

69, No. 20, May 2013, pp. 1-7.

[3] Stoer M. and Wagner F. 1997. “A Simple Min-Cut

Algorithm”. Journal of the ACM (JACM), volume

44, issue 4, 585-591.

[4] Brinkmeier M. 2007. “A Simple and Fast Min-Cut

Algorithm”. Theory of Computing Systems, volume

41, issue 2, 369-380.

[5] Hu T. C. 1974. “Optimum Communication

Spanning Trees”. SIAM J. Computing, volume 3,

issue 3.

[6] Flake G. W., Tarjan R. E. and Tsioutsiouliklis K.

Graph Clustering and Minimum Cut Trees. Internet

Mathematics, volume 1, issue 4, 385-408.

[7] Introduction to Algorithms by T. H. Cormen, C. E.

Leiserson, R. L. Rivest and C. Stein.

[8] Gomory R. E. and Hu T. C. December 1961. Multi-

Terminal Network Flows. J. Soc. Indust. Appl.

Math, volume 9, No. 4

IJCATM : www.ijcaonline.org

