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ABSTRACT 

In this paper a new approximation algorithm for 

calculating the min-cut tree of an undirected edge-

weighted graph has been proposed. This algorithm runs 

in 
2 2( .log . )O V V V d , where V is the number of 

vertices in the given graph and d is the degree of the 

graph. It is a significant improvement over time 

complexities of existing solutions. However, because of 

an assumption it does not produce correct result for all 

sort of graphs but for the dense graphs success rate is 

more than 90%. Moreover in the unsuccessful cases, the 

deviation from actual result is very less and for most of 

the pairs we obtain correct values of max-flow or min-

cut. This algorithm is implemented in JAVA language 

and checked for many input cases. 
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1. INTRODUCTION 

 
Graph connectivity is one of the classical subjects in 

graph theory and has many applications like Reliability 

of communication networks, cluster analysis, 

transportation planning, chip and circuit design. Finding 

the minimum cut of an undirected edge-weighted graph 

is the fundamental algorithmic problem. Precisely it 

consists in finding a non-trivial partition of graph vertex 

set V into two parts such that the cut weight, the sum of 

weights of the edges connecting the two parts is the 

minimum. Given a graph    G = (V, E) with vertex set V, 

edge set E and weight function w: E  R, it can be 

shown that there are at most n-1 distinct min-cuts among 

the total n(n-1)/2 pairs of nodes. We represent these n-1 

min-cuts by a (not necessarily unique) tree, called Min-

Cut Tree, which always exists and has the following 

properties [4][5][6]: 

The nodes of the tree are the same as the nodes of the 

initial graph, (i.e. V). Each edge is assigned a value. 

For every pair s, t, we can find the min-cut value by 

following the (unique) path between s and t in the min-

cut tree. Suppose that e is the edge with minimum value 

on that path. Then value (e) is also the min-cut value 

between s and t in the initial graph G. 

To actually find the cut between s and t, we simply cut 

off the edge e of minimum value on the s-t path. The two 

connected subsets of nodes in the tree, also define the 

min-cut between s and t in the initial graph G. 

 

2. WORK BACKGROUND 

 
In the maximum flow problem we are given a flow 

network G = (V, E) which is a graph in which each edge 

(u, v)  E has a non-negative capacity ( , ) 0c u v  . If 

(u, v)  E then it is assumed that ( , ) 0c u v   [1][2]. 

We distinguish two vertices in a flow network: a source s 

and a sink t. In this problem we wish to compute the 

greatest rate at which material can be shipped from the 

source s to the sink t without violating any capacity 

constraints. 

2.1 The Max-Flow-Min-Cut theorem by 

Ford and Fulkerson 
The Max-Flow-Min-Cut theorem by Ford and 

Fulkerson [8] shows the duality of the maximum flow 

and minimum s-t cut. This theorem states that the value 

of maximum flow in a flow network G with source s and 

sink t is equal to the value of minimum s-t cut of G. 

2.2 Gomory and Hu Algorithm 
Gomory and Hu [7] showed that in a graph having n 

nodes, there can be only n-1 numerically different 

flows/cuts. They proposed a method to compute 

minimum-cut tree by computing only n-1 minimum s-t 

cuts. 

2.3 M. Stoer and F. Wagner’s Algorithm 

 
M. Stoer and F. Wagner [3] presented an algorithm for 

finding the minimum cut of an undirected edge-weighted 

graph  without using any flow techniques. This algorithm 

is one of a small number of papers treating questions of 

graph connectivity by non-flow-based methods. Time 

complexity of this algorithm is much better than those of 

flow based algorithms. 
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3. NOVEL EFFICIENT ALGORITHM 

This presents a new approximation algorithm for 

constructing the minimum cut tree. We calculate an 

upper-bound value for each node in the graph. We define 

the upperbound value of each node as the value of cut 

which separates this node from rest of the graph. We 

used the following Lemma: 

Lemma: The value of minimum cut of a graph G 

separating Ni and Nj is less than or equal to minimum of 

the upperbound values of two nodes Ni and Nj 

We proceed by finding an edge uv such that upon 

merging the two nodes Nu and Nv we are able to reduce 

the upperbound value of the new node, i.e. 

( ) ( ) 2* ( , )u vupperbound N upperbound N w u v 

max( ( ), ( ))u vupperbound N upperbound N

 

We start from the node having the minimum upperbound 

value and check for all of the edges leaving it. If we are 

able to reduce the upperbound value by merging it with 

any of the nodes, we merge the nodes and repeat the 

same procedure.  

If we are not able to reduce the node’s upperbound value, 

we check for rest of the nodes in the increasing order of 

upperbound value. 

If at any stage it is not possible to merge any node, then 

we merge that pair of nodes which results in minimum 

increment of the upperbound value. 

After all the nodes in the graph are merged and it has 

only one node left, we proceed to construct the min-cut 

tree by using the information from intermediate stages.  

We move from last to first stage and at each stage we see 

the two nodes that were merged during last stage and 

separate the node with smaller of the two upperbound 

values from the other by an arc bearing the value equal to 

the smaller of the two upperbound values. 

Since we are considering the nodes in the increasing 

order of upperbound values, checking for Ni itself 

implies that Nj has already been checked and it was not 

possible to reduce its upperbound value at all. So in this 

case ( )jupperbound N  cannot be reduced. 

Our algorithm is based on the assumption that if we are 

merging two nodes Ni and Nj and if 

( ) ( )i jupperbound N upperbound N , then it 

is not possible to merge Nj with any other node which 

will result in a node having upperbound value which is 

less than ( )iupperbound N . 

After running the procedure with more than 20000 

randomly generated graphs we have figured out that for 

graphs having density0.4, success rate of algorithm is 

more than 90%. Moreover in the unsuccessful cases, the 

deviation from actual result is very less (usually for less 

than 5% pairs) and for most of the pairs we obtain 

correct values of max-flow or min-cut. 

Procedure: Min-Cut Tree(G) 
Input: Undirected edge-weighted graph G 

Output: Min-Cut Tree 

Calculate the upperbound values for each node. 

while(number of vertices in the current graph > 1) 

       loop(Consider the vertices in the increasing order of 

upperbound value) 

             if(upperbound value can be reduced by 

merging a node with any adjacent node) 

             then merge those two adjacent nodes  

                    break; 

            End if 

       End loop 
 if (it is not possible to merge any pair of nodes) 

 then merge the pair of nodes which results in minimum 

increment of the upperbound        value. 

 End if 

End While 
Construct Min-Cut Tree T by using the information from 

intermediate stages as described: 

Move from last to first stage. 

At each stage check the two nodes that were merged 

during last stage. 

Separate the node with lower upperbound value from the 

other by an arc bearing the value equal to the lower 

upperbound value. 

return T 

 

Time Complexity of our algorithms is 
2 2( .log . )O V V V d , where V is the number of 

vertices in the given graph and d is the degree of the 

graph. This is an improvement over the best existing 
4( )O V  solution for minimum cut tree problem. 

In the following figures we have shown the steps used in 

our efficient algorithm by taking some Undirected edge-

weighted graph G 

 

We start from the node having the minimum upperbound 

value and check for all of the edges leaving it. If we are 

able to reduce the upperbound value by merging it with 

any of the nodes, we merge the nodes and repeat the 

same procedure.  

If we are not able to reduce the node’s upperbound value, 

we check for rest of the nodes in the increasing order of 

upperbound value. 

If at any stage it is not possible to merge any node, then 

we merge that pair of nodes which results in minimum 

increment of the upperbound value. 
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Fig. 1: Input Undirected edge-weighted graph G 

 

Fig. 2: Undirected edge-weighted graph G after the 

first phase. 

 

 

Fig. 3: Undirected edge-weighted graph G after the 

second phase. 

 

 

Fig. 4: Undirected edge-weighted graph G after the 

third phase. 
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Fig. 5: Undirected edge-weighted graph G after the 

fourth phase. 

 

Fig. 6: Undirected edge-weighted graph G after the 

fifth phase. 

 

 

Fig. 7: Undirected edge-weighted graph G after the 

sixth phase. 

 

Fig. 8: Undirected edge-weighted graph G after the 

seventh phase. 
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Fig. 9: Undirected edge-weighted graph G after the 

eight phase. 

 

Fig. 10: Undirected edge-weighted graph G after the 

ninth phase. 

 

 

Fig. 11: Undirected edge-weighted graph G after the 

tenth phase. 

 

Fig. 12: Undirected edge-weighted graph G after the 

eleventh phase. 

 
After all the nodes in the graph are merged and it has 

only one node left, we proceed to construct the min-cut 

tree by using the information from intermediate stages.  

We move from last to first stage and at each stage we see 

the two nodes that were merged during last stage and 

separate the node with smaller of the two upperbound 

values from the other by an arc bearing the value equal to 

the smaller of the two upperbound values. 

Since we are considering the nodes in the increasing 

order of upperbound values, checking for Ni itself 

implies that Nj has already been checked and it was not 

possible to reduce its upperbound value at all. So in this 

case ( )jupperbound N  cannot be reduced. 
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Fig. 13: min-cut tree of an undirected edge-weighted 

graph G 

 

Fig. 14: min-cut tree of an undirected edge-weighted 

graph G 

 

Fig. 15: min-cut tree of an undirected edge-weighted 

graph G 

 

 

Fig. 16: min-cut tree of an undirected edge-weighted 

graph G 

 

Fig. 17: min-cut tree of an undirected edge-weighted 

graph G 
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Fig. 18: min-cut tree of an undirected edge-weighted 

graph G 

 

Fig. 19: min-cut tree of an undirected edge-weighted 

graph G 

 

 

Fig. 20: min-cut tree of an undirected edge-weighted 

graph G 

 

Fig. 21: min-cut tree of an undirected edge-weighted 

graph G 
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Fig. 22: min-cut tree of an undirected edge-weighted 

graph G.

4. RESULTS 
We generated 7500 random graphs of different densities 

but having fixed number of nodes (=50). Edge-weights 

were also random and were in between 1-300.  Results of 

running our algorithm with these graphs are summarised 

in following plots:

4.1 Random Graphs with Fixed Number of Nodes 

 

Fig 22: Plot of Success Rate Vs Density (Number of nodes were fixed to 50) 
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Fig 23: Plot of Deviation Vs Density (For unsuccessful test cases) 

It is clear from figure 22 that for desity >= 0.4 success 

rate is about 100%. Figure 23 says that for the 

unsuccessful test cases deviation from the actual result is 

less than 3%. It means that even in the case of failure we 

get correct valus of max-flows or min-cuts for most of 

the pair of nodes. 

 

4.2 Random Graphs with Random 

Number of Nodes 
We generated 7500 random graphs of different densities 

and number of nodes in them were also random (=5-55). 

Edges weights were also random and were in between 1-

300.  Results of running our algorithm with these graphs 

are summarised in following plots:

 

 

Fig 24: Plot of Success Rate Vs Density (Number of nodes were random 5-55) 
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Fig 25: Plot of Deviation Vs Density (For unsuccessful test cases) 

It is clear from figure 24 that for desity >= 0.4 success rate is more than 92%. Figure 25 says that for the unsuccessful test 

cases deviation from the actual result is less than 5%. It means that even in the case of failure we get correct valus of max-

flows or min-cuts for most of the pair of nodes. 

5. APPLICATIONS 

5.1 Reliability of Communication 

Networks:    
The problem of finding the minimum cut in a graph plays 

an important role in the design of communication 

networks. An important measure of the reliability of a 

network is the minimum number of links that must fail in 

order for the communication between any pair of nodes 

to fail. 

5.2 Cluster Analysis: 
The goal of clustering is to find groups that are both 

homogeneous and well separated. The main idea behind 

using minimum cut technique for clustering is to find 

clusters that have small inter-cluster cuts and large intra-

cluster cuts.  

5.3 Transportation Planning:  
The goal is to setup a network of sensors for surveillance 

over the complex network of roads. We find a minimum 

cut for a road network to find a smallest set of road 

segments on which sensors must be placed to ensure that 

a terrorist travelling across the road network must 

encounter at least one sensor. Already implemented in 

New York city by homeland security 

5.4 Circuit partitioning:  
Circuit partitioning is one of the central problems in 

VLSI system design.  

The primary objective of circuit partitioning is to 

minimize the number of interconnections between 

different components of the partitioned circuit. So the 

circuit partitioning problem is closely related to the 

minimum cut problem. 

Because of the difference between on-chip and off-chip 

signal delays, a good partitioning should limit the 

number of signals travelling off-chip to ensure high 

system performance.  

So min-cut partitioning that minimizes the number of 

interconnections between different chips is desired. 
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