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ABESTRACT 

The paper deals with image denoising with a new 

approach towards obtaining high quality denoised image 

patches using only a single image. A learning technique 

is proposed to obtain highly correlated image patches 

through sparse representation, which are then subjected 

to matrix completion to obtain high quality image 

patches. this paper show a framework for denoising by 

learning an appropriate basis function to describe image 

patches after applying transform domain method on 

noisy image patches. Such basis functions are used to 

describe geometric structure. The algorithm maps have 

been applies on LR patch space to generate the HR one, 

generating HR patch. Using this strategy, more patch 

patterns can be represented using a smaller training 

database. In super resolution (SR), the goal is not sparse 

representation, but sparse recovery.  

Furthermore try to make some modify on local window 

before perform PCA transform on it this modify include, 

change number of iteration according to the amount of 

noise on image additionally using the benefited of 

steering kernel regression (SKR) to prepare the noisy 

image before apply LPG-PCA. While kernel regression 

(KR) is a well studied method in statistics and signal 

processing, KR is identified as a nonparametric approach 

that requires minimal assumptions, and hence the 

framework is one of the appropriate approaches to the 

regression problem. 

Keywords 
 Super-Resolution (SR), Sparse Coding, Sparse 

Representation, principal component analysis (PCA), 

local pixel grouping (LPG), Learning-based, Sparse 

Dictionary, steering kernel regression (SKR). 

 

1. INTRODUCTION 

Since image noise is generally caused by image sensors, 

amplifiers, or maybe even due to quantization, it is very 

important that the noise should be handled by an image 

denoising algorithm. Image denoising problem in general 

can be modeled as one of a clean image being 

contaminated by additive white Gaussian noise 

(AWGN). In the process of recording a digital image, 

super-resolution (SR) is a realistic soft method for 

solving the limitation of device and effect of 

environment. During the last two decades, many 

researchers proposed various SR algorithms for image 

reconstruction. Among these algorithms is learning  

 

 

 

approach to single-image SR image from a degraded 

input image, using a learning algorithm called principal 

component analysis (PCA) with local pixel grouping 

(LPG) to produce high resolution (HR) image from low 

resolution (LR) one.  

With the introduction of sparse representation, many 

image processing and computer vision problems have 

been looked at in a new way. There are some 

applications of sparse representation deals with image 

SR through learning algorithm. This application deals 

with image enhancement, restoration and classification. 

Redundant representations of randomly sampled 

dictionaries have provided good performance in sparse 

representation based reconstruction algorithms [1]. 

Additionally to these the sparse solution space for 

representation and recovery methods is analyzed and 

zone of operation for a substitution between sparsity and 

reconstruction fidelity is provided.  

The single-image SR problem tasks: given a LR image, 

recover a HR image 𝑥 of the same scene. Two 

constraints are modeled in this work to solve this ill-

posed problem: 1) reconstruction constraint, which 

requires that the recovered 𝑥 should be consistent with 

the input 𝑦 with respect to the image observation model 

and 2) sparsity prior, which assumes that the HR patches 

can be sparsely represented in an appropriately chosen 

over complete dictionary, and that their sparse 

representations can be recovered from the LR 

observation [2]. A very simple over-complete dictionary 

is one whose base-atoms are the element-type itself 

selected from random sampling (raw-image patches) of 

some training data [3].  

The PCA is the most famous exploratory method. It 

modeled a pixel and its nearest neighbors as a vector 

variable, and the Enhancement of the pixel was 

converted into the estimation of the variable from its 

noisy observations, to preserve the local image structures 

when Enhancement. Whose training samples are selected 

from the local window by using block matching based 

LPG. Such an LPG procedure guarantees that only the 

sample blocks with similar contents are used in the local 

statistics calculation for PCA transform estimation. So 

the image local features can be well preserved after 

coefficient shrinkage in the PCA domain to remove the 

noise. The PCA technique was used for such estimation 

and the PCA transformation matrix was adaptively 

trained from the local window of the image. However, in 

a local window a very different could be found from the 
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underlying one; therefore, a training sample collection 

procedure is necessary [4]. So the LPG-PCA denoising 

procedure is iterated one more time to further improve 

the denoising performance, and the noise level is 

adaptively adjusted in the second stage [5]. 

 

2. RELATED WORK  
With the fast growth of modern digital imaging devices 

and their increasingly wide applications in our daily life, 

there are increasing requirements of new denoising 

algorithms for higher image quality. Wavelet transform 

(WT) has proved to be effective in noise removal .It 

decomposes the input signal into multiple scales, which 

represent different time-frequency components of the 

original signal. At each scale, some operations, such as 

thresholding and statistical modeling, can be performed 

to suppress noise. Denoising is accomplished by 

transforming back the processed wavelet coefficients into 

spatial domain. Late growth of WT denoising includes 

ridgelet and curvelet methods for line structure 

preservation. Although WT has demonstrated its 

efficiency in denoising, it uses a fixed wavelet basis to 

represent the image. For natural images, however, there 

is a rich amount of different local structural patterns, 

which cannot be well represented by using only one 

fixed wavelet basis. Therefore, WT-based methods can 

introduce many visual artifacts in the denoising output. 

To overcome the problem of WT, Muresan and Parks 

proposed a spatially adaptive PCA based denoising 

scheme, which computes the locally fitted basis to 

transform the image [5]. Elad and Aharon [6, 7] 

proposed sparse redundant representation and K-SVD 

based denoising algorithm by training a highly over-

complete dictionary. Foi et al. [8] applied a shape-

adaptive discrete cosine transform (DCT) to the 

neighborhood, which can achieve very sparse 

representation of the image and hence lead to effective 

denoising. All these methods show better denoising 

performance than the conventional WT-based denoising 

algorithms. 

Each pixel is estimated as the weighted average of all the 

pixels in the image, and the weights are determined by 

the similarity between the pixels. Dabov et al [5]. 

proposed a collaborative image denoising scheme by 

patch matching and sparse 3D transform. They searched 

for similar blocks in the image by using block matching 

and grouped those blocks into a 3D cube. A sparse 3D 

transform was then applied to the cube and noise was 

suppressed by applying Wiener filtering in the 

transformed domain. The so-called BM3D algorithm 

achieves notable denoising results yet its implementation 

is a little complex [5].  

Another category of SR methods that can overcome this 

difficulty is learning based approaches, which use a 

learned contributed prior to predict the correspondence 

between LR and HR image patches. However, the above 

methods typically need enormous databases of millions 

of HR and LR patch pairs to make the databases 

expressive enough. In recent years, combined with sparse 

learning techniques became extremely popular in 

computer vision. While their usefulness is undeniable, 

the improvement they provide in specific tasks of 

computer vision is still poorly understood. 

In example-based SR, this absent HR information is 

assumed to be available in the HR database patches or 

exemplars of dictionaries, and learned from the 

lowers/higher pairs of examples in the dictionaries [1]. 

So a method for adaptively choosing the most relevant 

reconstruction neighbors based upon sparse coding, 

avoiding over- or under-fitting of and producing superior 

results is proposed on this paper. However, sparse coding 

over a large sampled image patch database directly is too 

time-consuming. While the previously mentioned 

approaches were proposed for generic image SR, specific 

image priors can be incorporated when tailored to SR 

applications for specific domains such as human faces 

[9]. Compared to the aforementioned learning-based 

methods requires a much smaller database [10].  

3. SPARSITY BASED PATCH 

REDUNDANCY 

This section focuses on the problem of recovering the SR 

version of a given LR image. Similar to the 

aforementioned learning-based methods, instead of 

processing each pixel individually, it has been shown to 

be preferable to denoise the image block-wise (or patch-

wise). Taking advantage of the redundancy of small sub-

images inside the image of interest, new robust methods 

have emerged that can properly handle constant, 

geometric and textured areas. At first introduced for 

texture synthesis and image inpainting, patch-based 

methods have proved to be highly efficient for image 

denoising [11]. We will rely on patches from the input 

image. However, instead of working directly with the 

image patch pairs sampled from high- and low-resolution 

images, we learn a compact representation for these 

patch pairs to capture the co occurrence prior, 

significantly improving the speed of the algorithm.  

Here the approach is motivated by recent results in 

sparse signal representation, which suggest that the linear 

relationships among HR signals can be accurately 

recovered from their low-dimensional projections [12, 

13]. Although the SR problem is very ill-posed, making 

precise recovery impossible, the image patch sparse 

representation demonstrates both effectiveness and 

robustness in regularizing the inverse problem which 

represents an expansion of the signal in terms of a few 

coefficients of a basis function.  

Now sparsity implies that when a signal has a sparse 

expansion, one can discard the smaller coefficients 

without losing out any perceptually meaningful 

information. Since the basis is orthonormal. This 

principle has been very effective since there would not 

be any perceptual loss of information and also the gain 

attained in terms of efficiency is high. In general sparsity 

is an efficient modeling tool which permits effective 

signal processing as in the case of statistical estimation 

and classification, efficient data compression and so on. 

Sparsity has significant carriage on the acquisition 

process itself and it determines efficient acquisition of 

signals no adaptively [1]. 

We would not be able to use data from multiple images 

to obtain a better HR version of the input image. SR from 

a single image has received much attention. There also 

have been other methods which have been successfully 

able to achieve good results for different super-resolving 

factors [14]. In other words, Instead of solving the 

recovery problem for an entire image, the problem can be 

split into number of small parts which we call the patch 
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which is used to recover original patch [10] with an 

additional constraint. Recently sparse representation has  

 

 

 

 

 

 

 

 

 

been successfully applied to many other related inverse 

problems in image processing, such as denoising [7] and 

restoration, often improving on the output result.  

The present work are concerned with the problem of 

denoising, the data consist of a vector 𝑦 assumed to be a 

version of an unobserved deterministic vector 𝑥 (true 

image) corrupted by an AWGN 𝑣. Let we have 𝑖 (finite) 

indexing set of the pixels (M). We enumerate the pixels 

(for instance, by stacking the columns) from 1 to M. 

Thus the model has the following formulation: 

𝑦𝑖 = 𝑥𝑖 + 𝑣𝑖   𝑓𝑜𝑟  𝑖
= 1, ……… . 𝑀                                       1  

where 𝑦 is the noisy image, 𝑥 is the underlying true 

image and 𝑣 is a zero-mean Gaussian noise with known 

variance 𝜎2. We denote by 𝑌𝑖 , 𝑋𝑖  𝑎𝑛𝑑 𝑽𝑖   the patches 

whose upper left corner corresponds to the 𝑖𝑡𝑕  pixel, 

extracted respectively from the noisy image, the true 

image and the noise component. Then, the patch model 

can be rewritten as 

𝑌𝑖 = 𝑋𝑖 +  𝑽𝑖  𝑓𝑜𝑟 𝑖
= 1, ……………… . . 𝑀                        (2) 

Let Ω  be the 𝑚x𝑚 covariance matrix, assuming that the 

noise is uniformly spread out over all the directions, 

while the image lives in a low dimensional subspace, 

patch denoising can be achieved by projecting it onto the 

first 𝑚 < 𝑚 axes. In that case, PCA ensures that such a 

“keep or kill” reconstruction maximizes the variance of 

the training data among all subspaces of dimension 𝑚 . 
The performance of a simple patch-based denoising 

algorithm consists of the following two steps: 

(a) Learn an orthogonal basis from the noisy image by 

performing a PCA and decompose the noisy patch in this 

basis, 

(b) Obtain the denoised patch by zeroing all the small 

coefficients in the representation of the noisy patch in the 

learned basis [11]. 

4. TRANSFORM DOMAIN METHOD 

The main motivation of denoising in some transform 

domain is that in the transformed domain it may be 

possible to separate image and noise components. The 

basic principle behind most transform-domain denoising 

methods is shrinkage truncation (hard thresholding) or 

scaling (soft thresholding) of the transform coefficients 

to suppress the effects of noise, as shown in Figure (1). 

For such thresholding, the challenge is to develop a 

suitable coefficient mapping operation that does not 

sacrifice the details in the image. The final denoised 

image is obtained by performing an inverse transform on 

the shrunk coefficients. This is done by first identifying 

photo metrically similar patches in the spatial domain. 

This group is then used to perform adaptive thresholding  

 

 

 

 

 

 

 

 

 

in the shrinkage step. This allows them to process the 

entire group of patches simultaneously [16].  

The codebook generation algorithm involves two 

important steps. The first step is the sparse coding step 

which involves finding the coefficients which can 

approximately represent the input features through a 

dictionary. The second step is dictionary updating which 

involves updating the base atoms of the dictionary 

through coordinate descent method with warm restarts.  

5. PCA CONCEPT FOR IMAGE 

DENOISING 

PCA is a classical decorrelation technique in statistical 

signal processing, it is fully de-correlates the original 

data set where converts a set of observations of possibly 

correlated variables into a set of values of uncorrelated 

variables called principal components.  The number of 

principal components is less than or equal to the number 

of original variables. This transformation is defined in 

such a way that the first principal component has as high 

a variance as possible and each succeeding component in 

turn has the highest variance among the remaining 

components. The dimensionality of the data can then be 

reduced by selecting only the first few principal 

components [15]. So that the energy of the signal will 

concentrate on the small subset of PCA transformed 

dataset. The energy of random noise evenly spreads over 

the whole data set, so it easily to distinguish signal from 

random noise over PCA domain [4]. 

PCA is the way of identifying patterns in data, and 

expressing the data in such a way as to highlight their 

similarities and differences. The other main advantage of 

PCA is that once you have found these patterns in the 

data and you compress the data by reducing the number 

of dimensions without much loss of information. This 

technique used in image compression [4].  Generally 

speaking, the signal and noise can be better distinguished 

in the PCA domain. So the noise and trivial information 

can be removed.  

Denote by 𝑧 =  𝑧1    𝑧2 ⋯ 𝑧𝑚  𝑇an m-component vector 

variable and denote by 

𝑧

=
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Figure (1): Principal operations in shrinkage-based 

denoising methods. 

Denoised 

Image 

Transform 

 Ƭ 

Threshold 

 

Inverse 

Transform 

 Ƭ−𝟏 
 

Noisy 

Image 



International Journal of Computer Applications (0975 – 8887)  

Volume 74– No. 20, July 2013 

13 

The sample matrix of 𝑧 𝑤𝑕𝑒𝑟𝑒 𝑧𝑖
𝑗
, 𝑗 = 1,2, ⋯ , 𝑛., are the 

discrete samples of variable 𝑧𝑖 , 𝑖 = 1,2, ⋯𝑚.. The ith 

row of sample matrix, denoted by 

𝑍𝑖

=  𝑧𝑖
1 𝑧𝑖

2 ⋯ 𝑧𝑖
𝑛                                                           (4) 

Is called the sample vector of 𝑧𝑖  . The mean value of  𝑍𝑖  

is calculated as 

𝜇𝑖

=
1

𝑛
 𝑧𝑖(𝑗)

𝑛

𝑗 =1

                                                                      (5)  

And then the sample vector 𝑍𝑖   is centralized as 

𝑍 
𝑖 = 𝑍𝑖 − 𝜇𝑖

=  𝑧 𝑖
1 𝑧 𝑖

2 ⋯ 𝑧 𝑖
𝑛                                     (6) 

where 𝑧 𝑖
𝑗

= 𝑧𝑖
𝑗
− 𝜇𝑖  . Accordingly, the centralized matrix 

of 𝑍  is 

𝑍 

=  𝑍 
1
𝑇 𝑍 

2
𝑇 ⋯ 𝑧 𝑚

𝑇  𝑇                                                    (7)  

Finally, the co-variance matrix of the centralized dataset 

is calculated as 

Ω

=
1

𝑛
𝑍𝑍    𝑇                                                                                 (8) 

The goal of PCA is to find an orthonormal 

transformation matrix 𝑃 to decorrelate 𝑍  ,𝑌 = 𝑃𝑍  so that 

the co-variance matrix of 𝑌  is diagonal. Since the 

covariance matrix Ω  is symmetrical, it can be written as: 

Ω

= 𝜙Λ𝜙𝑇                                                                               (9) 

Where Φ =  𝜙1 𝜙2 ⋯ 𝜙𝑚   is the 𝑚𝑥𝑚 

orthonormal eigenvector matrix and 

Λ = 𝑑𝑖𝑎𝑔{𝜆1 , 𝜆2, ⋯ , 𝜆𝑚 }   is the diagonal eigenvalue 

matrix with 𝜆1 > 𝜆2 > ⋯ ≥ 𝜆𝑚 . The terms 

𝜙1 𝜙2 ⋯ 𝜙𝑚 and 𝜆1, 𝜆2 , ⋯ , 𝜆𝑚  are the eigenvectors 

and eigenvalues of Ω. By setting  

𝑃

= Φ𝑇                                                                                    (10) 

  𝑍    can be decorrelated,  𝑌 = 𝑃𝑍  𝑎𝑛𝑑 Λ =  1
n  𝑌𝑌    𝑇   .  

From the point of view of image modeling, the PCA 

basis has the interesting property that, among all basis 

expansions, it minimizes the reconstruction error when 

the expansion is truncated to a smaller number of basis 

vectors. Thus, a class of high-dimensional images can be 

described by a low-dimensional model containing only a 

few principal components. Computationally, it can be 

advantageous to solve the eigenvalue problem by 

iterative methods which do not need to compute and 

store Ω   directly. This is particularly useful when the 

size of Ω  is large such that the memory complexity 

becomes prohibitive. PCA image models have been used, 

for instance, for image coding and texture segmentation. 

6. LPG-PCA (THE MAIN 

LEARNING METHOD) 

This paper propose to perform several PCAs on subsets 

of patches presenting less variability, for instance inside 

small image regions patches. The advantage of this 

approach is that the resulting basis is not only adapted to 

the image but also to the region of the image containing 

the patch of interest. 

PCA-based scheme was proposed for image denoising by 

using a moving window to calculate the local statistics, 

from which the local PCA transformation matrix was 

estimated. However, this scheme applies PCA directly to 

the noisy image without data selection and many noise 

residual and visual artifacts will appear in the denoised 

outputs. LPG-PCA models a pixel and its nearest 

neighbors as a vector variable. The training samples of 

this variable are selected by grouping the pixels with 

similar local spatial structures to the underlying one in 

the local window, whose training samples are selected 

from the local window by using block matching based 

LPG. The LPG algorithm guarantees that only the 

sample blocks with similar contents are used in the local 

statistics calculation for PCA transform estimation, so 

that the image local features can be well preserved after 

coefficient shrinkage in the PCA domain to remove the 

random noise [4]. With such an LPG procedure, the local 

statistics of the variables can be accurately computed so 

that the image edge structures can be well preserved after 

shrinkage in the PCA domain for noise removal. So that 

the Local Model from Sparse Representation: Similar to 

the patch-based methods mentioned tries to infer the HR 

image patch for each LR image patch from the input, 

from this local model [9].  

The LPG-PCA enhancement procedure is iterated one 

more time to further improve the enhancement 

performance, and the noise level is adaptively adjusted in 

the next stage, the proposed LPG-PCA algorithm has two 

stages. The first stage yields an initial estimation of the 

image by removing most of the noise then the random 

noise is significantly reduced in the first stage; then the 

second stage will further refine the output of the first 

stage to more improve LPG-PCA is iterate more than 

two stages. The all stages have the same procedures 

except for the parameter of noise level. Since the noise is 

significantly reduced in the first stage, the LPG accuracy 

will be much improved in the next stage so that the final 

denoising result is visually much better. Hence the final 

enhancement result is also visually much better. The 

LPG-PCA enhance procedure is used to improve the 

image quality from first stage to second stage with edge 

preservation. 

Compared with WT that uses a fixed basis function to 

decompose the image, the proposed LPG-PCA method is 

a spatially adaptive image representation so that it can 

better characterize the image local structures [5].  

 

6.1. Modeling of Spatially 

As in previous, here assume that the noise 𝑣 corrupted in 

the original image 𝑥 is white additive with zero mean and 

standard deviation 𝜎, 𝑦 = 𝑥 + 𝑣, where 𝑦 is the observed 

noisy image. The image 𝑥 and noise 𝑣 are assumed to be 

uncorrelated. The goal of denoising is to obtain 

estimation, denoted by 𝑥  .of 𝑥 from the observation 𝑦. 

The denoised image 𝑥   is expected to be as close to 𝑥  as 

possible. An image pixel is described by two quantities, 

the spatial location and its intensity, while the image 

local structure is represented as a set of neighboring 

pixels at different intensity levels. Since most of the 

semantic information of an image is conveyed by its 
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edge structures, edge preservation is highly desired in 

image denoising. To this end, then model a pixel and its 

nearest neighbors as a vector variable and perform noise 

reduction on the vector instead of the single pixel. 

 

 

 

 

 

 

 

 

 

 

 

Referring to Figure (2), for an underlying pixel to be 

denoised, we set a 𝑘𝑥𝑘 window centered on it and denote 

by 𝑧 =  𝑧1    𝑧2 ⋯ 𝑧𝑚  𝑇 , 𝑚 = 𝑘2 the vector containing 

all the components within the window. Since the 

observed image is noise corrupted, we denote by 

   𝑍𝑉 =
𝑍    + 𝑣                                                                 (  4.11)                            

The noisy vector of 𝑧, where 𝑧𝑣 =  𝑧1
𝑣    ⋯⋯ 𝑧𝑚

𝑣  𝑇 ,𝑣 =
 𝑣1    ⋯⋯ 𝑣𝑚  𝑇 and 𝑧𝑘

𝑣 = 𝑧𝑘 + 𝑣𝑘 , 𝑘 = 1,2, ⋯ , 𝑚  .To 

estimate 𝑧 from 𝑧𝑣   then view them as (noiseless and 

noisy) vector variables so that the statistical methods 

such as PCA can be used.  

In order to remove the noise from 𝑍𝑣 by using PCA, then 

need a set of training samples of 𝑍𝑣 so that the 

covariance matrix of 𝑍𝑣  and hence the PCA 

transformation matrix can be calculated. For this 

purpose, we use a 𝑙𝑥𝑙 ( 𝑙 > k)   training block centered 

on 𝑍𝑣 to find the training samples, as shown in (2). The 

simplest way is to take the pixels in each possible 𝑘𝑥𝑘 

block within the 𝑙𝑥𝑙 training block as the samples of 

noisy variable 𝑍𝑣. In this way, there are totally (𝑙 − 𝑘 +
1)2 training samples for each component 𝑧𝑘

𝑣  𝑜𝑓 𝑍𝑣 

However, there can be very different blocks from the 

given central 𝑘𝑥𝑘 block in the 𝑙𝑥𝑙 training window so 

that taking all the 𝑘𝑥𝑘 blocks as the training samples of 

𝑍𝑣 will lead to inaccurate estimation of the covariance 

matrix of 𝑍𝑣, which subsequently leads to inaccurate 

estimation of the PCA transformation matrix and finally 

results in much noise residual. Therefore, selecting and 

grouping the training samples that similar to the central 

𝑘𝑥𝑘  block is necessary before applying the PCA 

transform for denoising. 

Grouping the training sample similar to the central 𝑘𝑥𝑘  

block in the 𝑙𝑥𝑙 training window is indeed a classification 

problem and thus different grouping methods, such as 

block matching, correlation-based matching , K-means 

clustering, can be employed based on different criteria. 

Among them the block matching method may be the 

simplest yet very efficient one. There are totally (𝑙 − 𝑘 +
1)2  possible training blocks of 𝑍𝑣 in the 𝑙𝑥𝑙  training 

window [17]. 

6.2. Adaptive PCA Denoising 
The algorithm (the PCA transform of LPG output image) 

is composed of the following steps [4]: 

 Get some data. 

 Subtract the mean. 

 Calculate the covariance matrix. 

 Calculate the eigenvectors and eigenvalues of the 

covariance matrix. 

 Choosing components and forming a feature vector. 

 Deriving the new data set. 

 Apply the soft thresholding of PCA output image. 

 Take inverse PCA. 

6.3.  Refinement The Result 

Most of the noise will be removed by using the denoising 

procedures described in the previous Sections. However, 

there is still much visually unpleasant noise residual in 

the denoised image. There are mainly two reasons for the 

noise residual. First, because of the strong noise in the 

original dataset 𝑍𝑣 , the covariance matrix is much noise 

corrupted, which leads to estimation bias of the PCA 

transformation matrix and hence deteriorates the 

denoising performance; second, the strong noise in the 

original dataset will also lead to LPG errors, which 

consequently results in estimation bias of the covariance 

matrix. Therefore, it is necessary to further process the 

denoising output for a better noise reduction. Since the 

noise has been much removed in the first round of LPG-

PCA denoising, the LPG accuracy and the estimation of 

covariance matrix can be much improved with the 

denoised image. Thus we can implement the LPG-PCA 

denoising procedure for the next rounds to enhance the 

denoising results [5]. 

7.  EXPERIMENTAL RESULTS 

Experimental results on test images demonstrate that the 

LPG-PCA method achieves very competitive denoising 

performance, especially in image fine structure 

preservation. The LPG-PCA denoising algorithm uses 

PCA to adaptively compute the local image 

decomposition transform so that it can better represent 

the image local structure. In addition, the LPG operation 

is employed to ensure that only the right samples are 

involved in PCA training. This method performed 

various experiments on simulated and real data to be 

validated. 

In the implementation of LPG-PCA denoising, actually 

the complete 𝑘𝑥𝑘 block centered on the given pixel will 

be denoised. Therefore, the finally restored value at a 

pixel can be set as the average of all the estimates 

obtained by all windows containing the pixel. Some 

images (Parrot and Lena image) are trained, and then 

zero mean white Gaussian noise of different standard 

deviations (σ) artificially added to the original image to 

produce noisy images. Here the different methods 

evaluate and compare by using two measures: PSNR and 

MSE. 

To verify from the improvement of the noise removal in 

the second stage of the PLG-PCA method. Table (1) lists 

the PSNR and MSE measures of the first stage and 

second stage denoising outputs on the test Parrot image 

set. From the table can noted that the second stage can 

improve 0.1–1.5dB the PSNR values for different images 

under different noise level (σ is from5 to 70). 

The LXL 

training 

block 

The pixel 

to be 

denoised  

The KXK 

variable block  

Figure (2): Illustration of the modeling of LPG-PCA 

based denoising. 
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Table (1): the MSE and PSNR values for Parrot image 

from LPG-PCA method (first stage and second stage) for 

different cases of standard deviation (σ). 

IMAGE                      PARROT IMAGE  

σ MSE for 

noisy 

MSE for 

LPG 1st 

MSE for 

LPG 

2nd 

PSNR 

for 

noisy 

PSNR 

for 

LPG 

1st 

PSNR 

for 

LPG 

2nd 

5 24.872 64.209 84.578 34.174 30.055 28.858 

10 97.730 65.789 83.066 28.231 29.949 28.937 

15 214.904 70.406 81.622 24.808 29.655 29.013 

20 373.576 89.426 88.036 22.407 28.616 28.684 

25 571.212 145.832 130.139 20.563 26.492 26.987 

30 806.609 256.921 231.164 19.064 24.033 24.492 

35 1077.212 429.49 393.112 17.808 21.801 22.186 

40 1380.783 657.353 610.397 16.729 19.953 20.275 

50 2066.818 1233.659 1168.344 14.978 17.219 17.455 

60 2832.064 1916.824 1836.480 13.609 15.305 15.491 

70 3639.931 2656.77 2564.344 12.519 13.887 14.041 

 

Table (2) a same as Table (1) lists the PSNR and MSE 

measures of the first stage and second stage denoising 

outputs on the test Lena image set. Also can noted that 

the second stage can improve 0.1–1 dB the PSNR values 

for different images under different noise level (σ is 

from5 to 70). 

 

here a controlled simulated experiment is set up by 

adding white Gaussian noise with standard deviation (σ 

=30) to the Parrot and Lena image (128×128) shown in 

Figure (3(a) )and Figure (4(a)) , while the resulting noisy 

image is shown in Figure. (3(b)) and Figure (4(b)). The 

noisy image is then denoised by the LPG-PCA of the 

first stage, result of which is shown in Figure (3(c)) and 

Figure (4(c)). Then the noisy image is denoised by the 

LPG-PCA of the second stage, result of which is shown 

in Figure (3(d)) and Figure (4(d)).  

  
(a) original (b) noisy (MSE=806.653, 

PSNR=19.0639) 

  
(c) 1st LPG-PCA (MSE= 

256. 92, PSNR=24.03) 

(d) second LPG-PCA (MSE 

=231.16, PSNR=24.49) 

Figure (3): the MSE and PSNR for Parrot image vary 

with first and second stage for LPG-PCA for additive 

white Gaussian noise of standard deviation (σ=30) 

 

For the parrot image shown in Figure (3), the method 

was found to give the best results when the image (with 

σ=30) was denoised by two type of LPG-PCA and noted 

the different on MSE and PSNR as metric. According to 

Figure (3) PSNR increase by 5db more than noisy image 

after applying LPG-PCA first stage and by 5.5db after 

applying LPG-PCA second stage. 

For the Lena image shown in Figure (4), the method was 

found to give the best results when the image (with 

σ=30) was denoised by two type of LPG-PCA and noted 

the different on MSE and PSNR as metric. According to 

Figure (4) PSNR increase by 5db more than noisy image 

after applying LPG-PCA first stage and by 5.5db after 

applying LPG-PCA second stage. 

Then a compare between the different methods on 

denoising is made. Figure (5) and Figure (6); list the 

PSNR and MSE results by different methods (ISKR and 

LPG-PCA) on the Parrot image at different standard 

deviation (σ). A controlled simulated experiment is set 

up by adding white Gaussian noise with standard 

deviation (σ =30, 70) to the Parrot image (128×128) 

shown in Figure (5(a)) and Figure (6(a)), while the 

resulting noisy image is shown in Figure. (5(b)) and 

Figure (6(b)). The noisy image is then denoised by the 

ISKR, result of which is shown in Figure (5(c)) and 

Figure (6(c)). Then the noisy image is denoised by the 

Table (2): the MSE and PSNR values for Lena image from 

LPG-PCA method (first stage and second stage) for 

different cases of standard deviation (σ). 

IMAGE                          LENA IMAGE  

σ MSE 

for 

noisy 

MSE 

for 

LPG 

1st 

MSE 

for 

LPG 

2nd 

PSNR 

for 

noisy 

PSNR 

for 

LPG 

1st 

PS

NR 

for 

LP

G 

2nd 
5 25.155 60.851 79.398 34.125 30.288 29.1

33 

10 100.621 60.662 76.396 28.104 30.302 29.3
00 

15 226.361 62.402 72.205 24.583 30.179 29.5

45 

20 401.213 82.012 77.272 22.097 28.992 29.2
51 

25 621.743 151.099 131.162 20.195 26.338 26.9

53 

30 884.754 288.472 256.140 18.663 23.529 24.0
46 

35 1185.57 494.613 448.847 17.392 21.188 21.6

09 

40 1517.67 756.34 697.876 16.319 19.344 19.6
93 

50 2258.70 1388.49 1310.60 14.592 16.705 16.9

56 

60 3064.29 2106.70 2014.41 13.268 14.895 15.0

89 

70 3897.69 2864.14 2760.31 12.223 13.561 13.7

21 
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LPG-PCA of the second stage, result of which is shown 

in Figure (5(d)) and Figure (6(d)).  

  
(a) original (b) noisy (MSE= 

884.75,PSNR=18.66) 

  
(c) 1st LPG-PCA (MSE=288. 

47, PSNR=23.53) 

(d) second LPG-PCA 

(MSE =256.14, 

PSNR=24.05) 

Figure (4): the MSE and PSNR for Lena image vary with 

first and second stage for LPG-PCA for additive white 

Gaussian noise of standard deviation (σ=30) 

 

For the Parrot image shown in Figure (5), the method 

was found to give the best results when the image (with 

σ=30) was denoised by two type of denoise method and 

noted the different on MSE and PSNR as metric. 

According to Figure (5) PSNR increase by 5.5db more 

than noisy image after applying ISKR and by 4.5db after 

applying LPG-PCA second stage. 

  
(a) original (b) noisy (MSE=806.65, 

PSNR=19.064) 

  
(c) ISKR (MSE=181.6938, 

PSNR=25.5374) 

(d) Second LPG-PCA 

(MSE= 231.164, 

PSNR=24.492) 

Figure (5): the MSE and PSNR for Parrot image vary 

with first and second stage for LPG-PCA for additive 

white Gaussian noise of standard deviation (σ=30) 

 

  
(a) original (b) noisy (PSNR=12.519) 

  
(c) ISKR (PSNR=12.9315) (d) second LPG-PCA 

(PSNR=20.2341) 

Figure (6): the MSE and PSNR for Parrot image vary with first 

and second stage for LPG-PCA for additive white Gaussian 

noise of standard deviation (σ=70) 

 

For the Parrot image shown in Figure (6), the method 

was found to give the best results when the image (with 

σ=70) was denoised by two type of denoise method and 

noted the different on MSE and PSNR as metric. 

According to Figure (6) PSNR increase by .5db more 

than noisy image after applying ISKR and by 7.7db after 

applying LPG-PCA second stage 
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Furthermore try to make some modify on local window 

before perform PCA transform on it this modify include, 

change number of iteration according to the amount of 

noise on image additionally using the benefited of (SKR) 

to prepare the noisy image before apply LPG-PCA. 

While KR is a well studied method in statistics and 

signal processing, KR is identified as a nonparametric 

approach that requires minimal assumptions, and hence 

the framework is one of the appropriate approaches to 

the regression problem. 

We then compare the different methods on denoising. 

Figure (7), list the PSNR results by different methods 

(ISKR, KLLD (K_mean), KLLD (MOG) and ISKR-LPG 

on the Parrot image at standard deviation (σ=70). 

A controlled simulated experiment is set up by adding 

white Gaussian noise with standard deviation (σ = 70) to 

the Parrot image (128×128) shown in Figure (7(a)), 

while the resulting noisy image is shown in Figure. (7(b)) 

and. The noisy image is then denoised by the ISKR, 

result of which is shown in Figure (7(c)). Then the noisy 

image is denoised by the KLLD (K_mean), result of 

which is shown in Figure (7(d)). Then the noisy image is 

denoised by the KLLD (MOG), result of which is shown 

in Figure (7(e)). Then the noisy image is denoised by the 

ISKR-LPG, result of which is shown in Figure (7(f)). 

For the Parrot image shown in Figure (7), the method 

was found to give the best results when the image (with 

σ=70) was denoised by four type of denoise method and 

noted the different on PSNR as metric. According to 

Figure (7) PSNR increase by .5db more than noisy image 

after applying ISKR and by 7db after applying KLLD 

(K_mean) and by 7.5b after applying KLLD (MOG) and 

by 7.8db after applying ISKR-LPG by eight times of 

iteration.     

8. CONCLUSION 

This paper presents a SR method based on sparse 

representation, which builds sparse association between 

image feature patches, and at the same time carry on 

matching and optimization. Compared with other sparse 

coding method, sparse representation is more 

compressible and efficient, and needs fewer examples for 

the same quality. Comparison with other learning-based 

super-resolution method shows that our method superior 

in quality and computation. However, there are some 

possibilities for future improvement. Through the 

proposed method used PCA. To preserve the local image 

structures when denoising, then a pixel and its nearest 

neighbors are modeled as a vector variable, and the 

denoising of the pixel was converted into the estimation 

of the variable from its noisy observations. The PCA 

transformation matrix was adaptively trained from the 

local window of the image. The block matching based 

LPG was used for such a purpose and it guarantees that 

only the similar sample blocks to the given one are used 

in the PCA transform matrix estimation. LPG- PCA 

denoising procedure was iterated one more time to 

improve the denoising performance. Additionally used 

the kernel regression framework as an efficient tool in 

image processing, and found its relation with popular 

existing denoising and interpolation techniques. 

Experimental results demonstrated that LPG-PCA can 

effectively preserve the image fine structures while 
smoothing noise. 

  
(a) original (b) noisy (PSNR=12.52) 

  
(c)ISKR (PSNR=12.93) (d) KLLD (K_mean) 

(PSNR=19.64) 

  
(e) KLLD (MOG) (PSNR=20.04) (f) ISKR-LPG(8) (PSNR=20.23) 

Figure (7): The PSNR vary with various type of denoised methods 

for additive white Gaussian noise of standard deviation (σ=70) 

 

Here the outline is evaluated experimentally and 

compared to some of the state of the art methods for 

learning SR method. It can be seen that the performance 

of the proposed method is viable, qualitatively as well as 

quantitatively. For optimal performance, it is necessary 

to tune a few parameters of our framework like number 
of iteration. 
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