
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.2, July 2013

1

Analysis of CK Metrics to predict Software Fault-Proneness
using Bayesian Inference

Heena Kapila
Asstt. Professor

Department of Information Technology
Chandigarh Engg. College, Landran -140307

ABSTRACT

 The fault prediction model grants assistance during the software

development by providing recourse to the present faults with the

Bayesian Interference. All faults prediction techniques get a help in

this study with the designing of Logistic regression model and

Bayesian inference altogether. It is also told as fact that Bayesian

inference graph can be represented for probabilistic approach for the

faults both presented and identified for the upcoming release. For

Probabilistic reliability analysis, Bayesian inference is intended to be

evaluated for risk related data. These findings suggest that there is a

relationship between faulty classes and object-oriented metrics. This

study demonstrates as the performance evaluation technique for any

piece of software. We examine the open source Eclipse system,

which has a strong industrial usage. The focus of the study is to

design Bayesian Inference graph and predict faults for next piece of
software.

Keywords
Bayesian Inference, Fault Prediction, Software reliability, CK metrics

1. INTRODUCTION

Object oriented metrics were proposed to evaluate the quality of

software such as the fault-proneness, reliability and maintainability of

software. In the world of object-oriented languages, software metrics

has been used for many years to provide developers with additional

information about their software quality. Software metrics can

monitor the quality of software whereas Software testers can use

metrics to improve the productivity of software testing [15]. Software

metrics have been the subject of research over the last three decades,

as they play a crucial role in making managerial decisions during the

software lifecycle [3]. Such information can give developers

indications about where bad smell may affect the software and these

metrics are very useful in simplifying the testing process by focusing

the programmer’s attention on effective parts of the program. This

Information helps to reduce the programmer’s effort, and may

provide great overall benefit.

Software has become an integral part of most of the application

domains including medical applications, power plants and air traffic

control. The development of these software applications is

challenging because system engineers have to deal with a large

number of quality requirements and testing phases. The introduction

of software testing processes to identify software faults within time

period is important since corrective maintenance costs increases

exponentially if faults are detected later in the software development

life cycle [18]. The Software industry is paying more attention to

peremptory Error in any software system is very common and
complex problem.

Satwinder singh
Asstt. Professor,

Dept. Computer science & Info Tech.,
B.B.S.B. Engg. College, Fatehgarh Sahib-140407

Software fault prediction is topic of main concern. Preventing a

software system from errors is such a difficult task. There are always

some changes that occur in Object oriented software system design in

continuous form. For cost reduction and improving the effectiveness

of software, it is very important to identify the faulty module’s

software. In this study main focus is to obtain relation between

software metric and faulty module. A software engineer should

always plan the changes for software design. Although it is very

difficult to choose the best method for design but in our studies

experimental results show that the proposed model can establish the

relation between software metrics and modules fault-proneness. A

software fault prediction is a proven technique in achieving high

software reliability. Software reliability can also be defined as the

probability of failure-free software operation for a specified period of

time in a specified environment. Prediction of fault-prone modules

provides one way to support software quality. Quality of software is

increasingly important for software. For improving quality we should

provide more focus on testing for those portions of code which have

largest number of faults. This study is an attempt to predict fault in

software by applying different techniques. However, this process

requires familiarity with some statistical models or machine learning

methods [15].

2. RELATED LITERATURE

Many researchers have carried out significant work in the area of

fault prediction. The literature survey is carried out from the

designing of CK metrics to explore different techniques used for the

modeling of fault prediction. CK metric suit is most widely used

metrics for the object- oriented (OO) software. Chidamber et al. [7]

developed and implemented a new set of software metrics for Object

Oriented designs. They noticed that noted that Object Oriented may

hold some of the solutions to the software crisis. These metrics were

based on measurement theory and also reflect the viewpoints of

experienced OO software developers. In evaluating these metrics

against a set of standard criteria, they suggest some ways in which the

OO approach may differ in terms of desirable or necessary design

features from more traditional approaches. These metrics can help in

selecting one that is most appropriate to the goals of the organization,

such as reducing the cost of development, testing and maintenance

over the life of the application. The study is aimed at examining the

relationships between these metrics and cost, quality, and

productivity. The results show that high values of CBO and LCOM

are associated with lower productivity, greater rework and greater

design effort. The main idea is to use measurement to improve the

process of software development. Basili et al. [8] investigated the

suite of object-oriented (OO) design metrics introduced by

Chidamber. They define hypotheses for each metric that represented

the expected connection between the metrics and the fault-proneness

of the code. They tested these hypotheses and found that some of the

metrics were very good predictors, while others were not. Basili has

reported on the results of using the CK metrics suite to predict the

quality (fault proneness) of student C++ programs. They collected

data about faults from object oriented classes. Based on these data,

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.2, July 2013

2

they verified how much fault-proneness is influenced by internal

(e.g., size, cohesion) and external (e.g., coupling) design

characteristics of OO classes. From their results, five out of the six

CK OO metrics appear to be useful to predict class fault-proneness

during the high- and low-level design phases of the life-cycle. They

represented that testing of large systems is an example of a resource

and time-consuming activity. Therefore, one needs to be able to

identify fault-prone modules so that testing / verification effort can be

concentrated on these modules They used the same Chidamber and

Kemerer metrics suite and analyzed the distribution of the metrics

and also the correlations between them. They used logistic

regression, a standard technique to analyze the relationships between

metrics and the fault proneness of classes.

R.Bender [14] Proposed a method for quantitative risk assessment

and investigated about threshold value. By defining acceptable levels

for the absolute risk and the risk gradient the corresponding

benchmark values of the risk factor can be designed. These values

can be designed by means of nonlinear functions of the logistic

regression coefficients. The proposed method is implemented on

medical patients data to find out value of an acceptable risk level

(VARL) and value of an acceptable risk gradient (VARG).These
values are used to predict about the probabilities risk level.

R.Subramanyam [6] validated the WMC, CBO, and DIT metrics as

predictors of the error counts in a class. Their results indicated that

the CK metrics could predict error counts. Subramanyam and

Krishnan chose a large e-commerce application developed in C++

and Java. They examined the effect of the size along with the WMC,

CBO, and DIT values on the faults by using multivariate regression

analysis. Besides validating the usefulness of metrics, they compared

the applicability of the metrics in different languages; thus, they

validated their hypotheses for C++ and Java classes separately. They

concluded that the size was a good predictor in both languages, but

WMC and CBO could be validated only for C++. Alshayeb and Li

[12] conducted a study on the relationship between some OO metrics

and the changes in the source code in two client–server systems and

three Java Development Kit (JDK) releases. Three of the CK metrics

(WMC, DIT, and LCOM) and three of the Li metrics (NLM, CTA,

and CTM)[6] were validated. They found that the OO metrics were

effective to predict design effort and source lines of code added,

changed, and deleted in short-cycled agile process (client–server

systems); however, the metrics were ineffective predictors of those

variables in long-cycled framework evolution process (JDK).

TiborGyimoet. Al [16] illustrated fault-proneness detection of the

source code of the open source Web. For fault proneness detection

they used regression and machine learning methods to validate the

usefulness of these metrics for fault-proneness prediction. They

checked the values obtained against the number of bugs found in its

bug database called Bugzilla. They found CBO and LOC metric

seems to be the best in predicting the fault-proneness of classes but

DIT metric is untrustworthy and NOC cannot be used at all for fault-

proneness prediction. The LOC metric performed fairly well and

because it can be easily calculated, it seems to be suitable for quick

fault prediction.

C.catalet .al [4] proposed a fully automated technique which does not

require an expert during the prediction process. They used X-means

clustering with software metric threshold. Experiments revealed that

unsupervised software fault prediction can be fully automated and

effective results can be produced. Raed Shatnawi [15] introduced

methodology to produced threshold values with better classification

accuracy. Threshold values provide a meaningful interpretation for

metrics and provide a surrogate to identify classes at risk. The classes

that exceed a threshold value can be selected for more testing to

improve their internal quality, which increases the testing efficiency.

Hence, we have assessed the effectiveness of a statistical

methodology to identify threshold values for the OO metrics. This

methodology can be used to identify threshold values based upon the

logistic regression model. Raed Shatnawi et. al [1] design threshold

values of software metrics using receiver operating characteristic

curves. They classified each error into one of seven severity

categories. They used area under curve to find out threshold values

for each metrics. The metrics we investigated were the following:

3. DATA COLLECTION

We define six metric that we investigated. All of these were first

presented by Chidamber and Kemerer [7] but Basili et al. [8]

modified these metrics to reflect the special features of the Object

Oriented language. In this study the metrics CBO(Coupling Between

Object classes),WMC (Weighted Methods per Class), RFC

(Response For a Class), NOC (Number Of Children), LCOM (Lack

of Cohesion on Methods), DIT (Depth of Inheritance Tree) were

investigated. Tool which is used to collect database for implementing

this study is Analyst4j tool, which help us to collect all CK metrics

value and find out the bad smells presented in software code of

Eclipse 3.4. After collecting and preparing the database (shown in Fig

1.), evaluation was done with Matlab. Analyst4j measures these

metrics, which forms the source for analysis. Calculated values for

CK metrics, is divided into two categories depend upon one binary

variable. Binary variable marked as 1 if there was at least one bad

smell present in the code that classes or 0(no bad smell found). Bad

smells are considered a violation against software engineering

principles. The binary categorization used to classifies classes into

either error or non error category. The bad smells checked for

include: blob classes, Spaghetti code, High risk function, complex

classes, complex and undocumented code, Swiss knife classes.

Figure 1. Model Assessment Framework

4. LOGISTIC REGRESSION

In logistic regression, the unknown variable, called the binary

variable, can take only two different values. Therefore, we divided

the classes into two groups according to whether a class contained at

least one smell or not. Regression analysis was used to analyze the

results of collected data. The logistic regression model is used to

study the association between bad smell and prediction for software

Processing data

(Software)

Software Metrics

value

Software Quality

(Faulty Content,

Reliability)

Bayesian Inference
with Logistic

Regression

Binary variable

(Faulty/Non Faulty

Classes)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.2, July 2013

3

failure. Univariate binary logistic regression (UBR) is very useful for

analyzing the data which includes binary variable.

The UBR model is as follows

π.x=
eg x

1+ eg x

Where g(x) = α + β * x is logit function and π represents probability

of a class being faulty, whereas x is object oriented metric. Logistic

regression provides models were applied with a threshold value of

0.5, which means that, if 0.5 < π, the class is classified as faulty,

otherwise, as not faulty.

5. BAYESIAN INFERENCE

In this study Bayesian inference model is design to relate Object-

Oriented software metrics to software fault content and fault

proneness. Bayesian Inference represents a joint probability

distribution over a set of variables, which are either discrete or

continuous. Bayesian inference model is a framework for

constructing posterior data by combining prior knowledge with

evidence. Bayesian inference model is designed on the basis of Bayes

theorem. According to Bayes theorem, Probability theory is affected

by evidence. Bayesian approach offers more intuitive and meaningful

inferences to the data. Bayes Theorem is as follows:

P X Y =
P(Y | X)P(X)

P Y

Whereas P(Y | X) represents Likelihood, P(X) represents Prior

distribution and P(Y) is known as marginal likelihood or Prior

predictive distribution. Generic formulation is implemented to

univariate problems with binomial distributions. Bayesian inference

tends to become computationally intensive when the analysis

involves multiple parameters and correspondingly high-dimensional

integration

6. RESULT

In the proposed model, in order to analyze the impact of software

faults, the values of the metrics from Eclipse are considered. Table 1.

represents Bayesian Inference graph result with Prior and Posterior

values. This table includes all statistical information about Bayesian

Inference graph for CBO and NOC; we found a large difference in

both graphs. In this research paper out of six metrics only two are

presented. In result X axis represented the probability of fault

occurrence. Whereas 0 represented as fault free classes and as graph

move towards 1 probability of fault occurrence will increase.

The shape of the likelihood function represents the amount

of information contained in the data. If the information it contains is

small, the likelihood function will be largely distributed, whereas if

the information it contains is large, the likelihood function will be

closely focused around some particular value of the parameter. The

representation of the likelihood is flat in Bayesian graph relative to

the prior; it has little effect on the level of knowledge. In case the

prior and likelihood have similar shapes so the posterior distribution

is not greatly influenced by the prior knowledge. In Bayesian

Inference graph if Posterior and Likelihood having higher peak than

prior, data is greatly influenced by prior data. The posterior is a

compromise between the information (likelihood) and prior. The

posterior is more precise since we are combining two sources of

information.

 As shown in Figure 2. We observed for CBO metric high posterior

density covering 90% of posterior Inference. It has posterior

probability value 0.383. For prior probability value is same as 0.38,

but that value observed only for 62 % classes. As represented in

figure 2. Likelihood is very tightly across and high peak. It

represented that graph contain large information. The shape of

Posterior have high peak rather than Prior and likelihood, it

represented that future release of tested software would be more fault

free. As shown in Figure 3. for NOC metric high posterior density

covering 94% of posterior Inference. It has posterior probability value

0.34 and prior probability value is 0.40 as shown in Table 2. For

NOC, Likelihood largely distributed in graph which represent that

information is in small amount.

7. CONCLUSION

Our objective in this research is to find empirical evidence of the

association between the bad smells and class error probability. From

this study we design Bayesian inference for individual metrics which

provide posterior probability for fault occurrence. Bayesian graph

design for the early prediction of software fault is presented in this

paper. The model is based on software metrics and posterior

probability. Total six metrics have calculated and using Bayesian

inference system, predict probability of faults for next piece of

software. In this paper Bayesian Inference graph for CBO and NOC

are presented. The Bayesian Inference model is to identify posterior

probability; further this study can help to identify threshold values of

software metrics using receiver operating characteristic curves. We

plan to conduct more studies on open-source systems to find out

threshold values in identifying the faulty classes. For software

developer, the model provides a methodology for assigning the

resources for developing reliable and cost-effective software.

Figure 2: Bayesian Inference for representing Likelihood, Prior

and posterior for CBO metric of Eclipse

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.2, July 2013

4

Figure 3: Bayesian Inference for representing Likelihood, Prior

and posterior for NOC metric of Eclipse

Table 1: Bayesian Inference graph result CK metrics with Prior

and Posterior values

Metric Poster

ior

value

Percentile

coverage

for

Posterior

 Prior

value

Percentile

coverage

for Prior

Posterior

Range

Prior

range

CBO 0.383 90% 0.3838 62% 0.25-0.52 0.17-

0.55

NOC 0.34 94% 0.40 33% 0.22-0.47 0.08-
0.70

7. REFERENCES

[1] Raed Shatnawi1, Wei Li, James Swain,” Finding software metrics

threshold values using ROC curves” , JOURNAL OF

SOFTWARE MAINTENANCE AND EVOLUTION:

RESEARCH AND PRACTICE, Evol.: Res. Pract. 2010; 22:1–

16

 [2] Ganesh J. Pai, Member, IEEE, and Joanne Bechta Dugan ,”

Empirical Analysis of Software Fault Content and Fault

Proneness Using Bayesian Methods”,IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 33, NO. 10,

OCTOBER 2007

[3] Satwinder Singh and K.S. Kahlon ,” Effectiveness of

Encapsulation and Object-oriented Metrics to Refactor Code and

Identify Error Prone Classes using Bad Smells”, ACM

SIGSOFT Software Engineering Notes Volume 36, Number

5,September 2011

[4] C. Catal, U. Sevim, and B. Diri, Member, IAENG”Software Fault

Prediction of Unlabeled Program Modules” Proceedings of the

World Congress on Engineering 2009 Vol I WCE 2009, July 1 -

3, 2009,London, U.K

[5] Norman Fenton , Martin Neil , William Marsh , Peter Hearty ,

David Marquez , Paul Krause , Rajat Mishra,”Predicting

software defects in varying development lifecycles using

Bayesian nets”, Information and Software Technology 49 (2007)

32–43

[6] Ramanath Subramanyam and M.S. Krishnan,“Empirical Analysis

of CK Metrics for Object-Oriented Design Complexity:

Implications for Software Defects” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 29, NO. 4, APRIL 2003

[7] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for

Object Oriented Design,” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994.

[8] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of

Object- Oriented Design Metrics as Quality Indicators,” IEEE

Trans.Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

[9]. T.R. Gopalakrishnan Nair, R. Selvarani,” Defect proneness

estimation and feedback approach for software design quality

improvement”, Information and Software Technology 54 (2012)

274–285

[10] Shyam R. Chidamber, David P. Darcy, and Chris F. Kemerer,

“Managerial Use of Metrics for Object-Oriented Software: An

Exploratory Analysis,” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST

1998

[11] Hector M. Olague, Letha H. Etzkorn, Senior Member, IEEE,

Sampson Gholston, and cxStephen Quattlebaum, “ Empirical

Validation of Three Software Metrics Suites to Predict Fault-

Proneness of Object-Oriented Classes Developed Using Highly

Iterative or Agile Software Development Processes”

[12] Mohammad Alshayeb, Member and Wei Li,”An Empirical

Validation of Object-Oriented Metrics in Two Different Iterative

Software Processes” , IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 29, NO. 11, NOVEMBER

2003

[13] Jiang, Y., Cukic, B., Ma, Y., 2008. Techniques for evaluating

fault prediction models.Empirical Software Engineering 13 (5),

561–595.

[14] R. Bender, “Quantitative Risk Assessment in Epidemiological

Studies Investigating Threshold Effects,” Biometrical J., vol.

41,no. 3, pp. 305-319, 1999.

[15] Raed Shatnawi,” A Quantitative Investigation of the Acceptable

Risk Levels of Object-Oriented Metrics in Open-Source

Systems” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

[16] Tibor Gyimo´ thy, Rudolf Ferenc, and Istva´n Siket,” Empirical

Validation of Object-Oriented Metricson Open Source Software

for Fault Prediction”, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER

2005

[17] Analyst4j,” http://www.codeswat.com”

[18] Karel Dejaeger,Thomas Verbraken,Bart Baesens ,”Toward

Comprehensible Software Fault Prediction Models Using

Bayesian Network Classifiers” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY

2013

[19] Dr. Linda H. Rosenberg,” Applying and Interpreting Object

Oriented Metrics”

[20] Bayesian Inference Concepts, ”http://www.epixanalytics.com”

IJCATM : www.ijcaonline.org

http://www.codeswat.com/

