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ABSTRACT 

 The fault prediction model grants assistance during the software 

development by providing recourse to the present faults with the 

Bayesian Interference. All faults prediction techniques get a help in 

this study with the designing of Logistic regression model and 

Bayesian inference altogether. It is also told as fact that Bayesian 

inference graph can be represented for probabilistic approach for the 

faults both presented and identified for the upcoming release. For 

Probabilistic reliability analysis, Bayesian inference is intended to be 

evaluated for risk related data. These findings suggest that there is a 

relationship between faulty classes and object-oriented metrics. This 

study demonstrates as the performance evaluation technique for any 

piece of software. We examine the open source Eclipse system, 

which has a strong industrial usage. The focus of the study is to 

design Bayesian Inference graph and predict faults for next piece of 
software. 
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1. INTRODUCTION 
 

Object oriented metrics were proposed to evaluate the quality of 

software such as the fault-proneness, reliability and maintainability of 

software. In the world of object-oriented languages, software metrics 

has been used for many years to provide developers with additional 

information about their software quality. Software metrics can 

monitor the quality of software whereas Software testers can use 

metrics to improve the productivity of software testing [15]. Software 

metrics have been the subject of research over the last three decades, 

as they play a crucial role in making managerial decisions during the 

software lifecycle [3]. Such information can give developers 

indications about where bad smell may affect the software and these 

metrics are very useful in simplifying the testing process by focusing 

the programmer’s attention on effective parts of the program. This 

Information helps to reduce the programmer’s effort, and may 

provide great overall benefit.   

 

Software has become an integral part of most of the application 

domains including medical applications, power plants and air traffic 

control. The development of these software applications is 

challenging because system engineers have to deal with a large 

number of quality requirements and testing phases. The introduction 

of software testing processes to identify software faults within time 

period is important since corrective maintenance costs increases 

exponentially if faults are detected later in the software development 

life cycle [18]. The Software industry is paying more attention to 

peremptory Error in any software system is very common and 
complex problem.  
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Software fault prediction is topic of main concern. Preventing a 

software system from errors is such a difficult task. There are always 

some changes that occur in Object oriented software system design in 

continuous form. For cost reduction and improving the effectiveness 

of software, it is very important to identify the faulty module’s 

software. In this study main focus is to obtain relation between 

software metric and faulty module. A software engineer should 

always plan the changes for software design. Although it is very 

difficult to choose the best method for design but in our studies 

experimental results show that the proposed model can establish the 

relation between software metrics and modules fault-proneness. A 

software fault prediction is a proven technique in achieving high 

software reliability. Software reliability can also be defined as the 

probability of failure-free software operation for a specified period of 

time in a specified environment.  Prediction of fault-prone modules 

provides one way to support software quality. Quality of software is 

increasingly important for software. For improving quality we should 

provide more focus on testing for those portions of code which have 

largest number of faults.  This study is an attempt to predict fault in 

software by applying different techniques. However, this process 

requires familiarity with some statistical models or machine learning 

methods [15].  

2. RELATED LITERATURE 

Many researchers have carried out significant work in the area of 

fault prediction. The literature survey is carried out from the 

designing of CK metrics to explore different techniques used for the 

modeling of fault prediction. CK metric suit is most widely used 

metrics for the object- oriented (OO) software. Chidamber et al. [7] 

developed and implemented a new set of software metrics for Object 

Oriented designs. They noticed that noted that Object Oriented may 

hold some of the solutions to the software crisis. These metrics were 

based on measurement theory and also reflect the viewpoints of 

experienced OO software developers. In evaluating these metrics 

against a set of standard criteria, they suggest some ways in which the 

OO approach may differ in terms of desirable or necessary design 

features from more traditional approaches. These metrics can help in 

selecting one that is most appropriate to the goals of the organization, 

such as reducing the cost of development, testing and maintenance 

over the life of the application. The study is aimed at examining the 

relationships between these metrics and cost, quality, and 

productivity. The results show that high values of CBO and LCOM 

are associated with lower productivity, greater rework and greater 

design effort. The main idea is to use measurement to improve the 

process of software development. Basili et al. [8] investigated the 

suite of object-oriented (OO) design metrics introduced by 

Chidamber. They define hypotheses for each metric that represented 

the expected connection between the metrics and the fault-proneness 

of the code. They tested these hypotheses and found that some of the 

metrics were very good predictors, while others were not. Basili has 

reported on the results of using the CK metrics suite to predict the 

quality (fault proneness) of student C++ programs. They collected 

data about faults from object oriented classes. Based on these data, 
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they verified how much fault-proneness is influenced by internal 

(e.g., size, cohesion) and external (e.g., coupling) design 

characteristics of OO classes. From their results, five out of the six 

CK OO metrics appear to be useful to predict class fault-proneness 

during the high- and low-level design phases of the life-cycle. They 

represented that testing of large systems is an example of a resource 

and time-consuming activity. Therefore, one needs to be able to 

identify fault-prone modules so that testing / verification effort can be 

concentrated on these modules They used the same Chidamber and 

Kemerer metrics suite and analyzed the distribution of the metrics 

and also the correlations between them. They used   logistic 

regression, a standard technique to analyze the relationships between 

metrics and the fault proneness of classes. 

R.Bender [14] Proposed a method for quantitative risk assessment 

and investigated about threshold value. By defining acceptable levels 

for the absolute risk and the risk gradient the corresponding 

benchmark values of the risk factor can be designed. These values 

can be designed by means of nonlinear functions of the logistic 

regression coefficients. The proposed method is implemented on 

medical patients data to find out value of an acceptable risk level 

(VARL) and value of an acceptable risk gradient (VARG).These 
values are used to predict about the probabilities risk level. 

R.Subramanyam [6] validated the WMC, CBO, and DIT metrics as 

predictors of the error counts in a class. Their results indicated that 

the CK metrics could predict error counts. Subramanyam and 

Krishnan chose a large e-commerce application developed in C++ 

and Java. They examined the effect of the size along with the WMC, 

CBO, and DIT values on the faults by using multivariate regression 

analysis. Besides validating the usefulness of metrics, they compared 

the applicability of the metrics in different languages; thus, they 

validated their hypotheses for C++ and Java classes separately. They 

concluded that the size was a good predictor in both languages, but 

WMC and CBO could be validated only for C++.  Alshayeb and Li 

[12] conducted a study on the relationship between some OO metrics 

and the changes in the source code in two client–server systems and 

three Java Development Kit (JDK) releases. Three of the CK metrics 

(WMC, DIT, and LCOM) and three of the Li metrics (NLM, CTA, 

and CTM)[6] were validated. They found that the OO metrics were 

effective to predict design effort and source lines of code added, 

changed, and deleted in short-cycled agile process (client–server 

systems); however, the metrics were ineffective predictors of those 

variables in long-cycled framework evolution process (JDK). 

TiborGyimoet. Al [16] illustrated fault-proneness detection of the 

source code of the open source Web. For fault proneness detection 

they used regression and machine learning methods to validate the 

usefulness of these metrics for fault-proneness prediction. They 

checked the values obtained against the number of bugs found in its 

bug database called Bugzilla. They found CBO and LOC metric 

seems to be the best in predicting the fault-proneness of classes but 

DIT metric is untrustworthy and NOC cannot be used at all for fault-

proneness prediction. The LOC metric performed fairly well and 

because it can be easily calculated, it seems to be suitable for quick 

fault prediction.  

C.catalet .al [4] proposed a fully automated technique which does not 

require an expert during the prediction process. They used X-means 

clustering with software metric threshold. Experiments revealed that 

unsupervised software fault prediction can be fully automated and 

effective results can be produced. Raed Shatnawi [15] introduced 

methodology to produced threshold values with better classification 

accuracy. Threshold values provide a meaningful interpretation for 

metrics and provide a surrogate to identify classes at risk. The classes 

that exceed a threshold value can be selected for more testing to 

improve their internal quality, which increases the testing efficiency. 

Hence, we have assessed the effectiveness of a statistical 

methodology to identify threshold values for the OO metrics. This 

methodology can be used to identify threshold values based upon the 

logistic regression model. Raed Shatnawi et. al [1] design  threshold 

values of software metrics using receiver operating characteristic 

curves. They classified each error into one of seven severity 

categories. They used area under curve to find out threshold values 

for each metrics. The metrics we investigated were the following: 

3. DATA COLLECTION  

We define six metric that we investigated. All of these were first 

presented by Chidamber and Kemerer [7] but Basili et al. [8] 

modified these metrics to reflect the special features of the Object 

Oriented language. In this study the metrics CBO(Coupling Between 

Object classes),WMC (Weighted Methods per Class), RFC 

(Response For a Class), NOC (Number Of Children), LCOM (Lack 

of Cohesion on Methods), DIT (Depth of Inheritance Tree) were 

investigated. Tool which is used to collect database for implementing 

this study is Analyst4j tool, which help us to collect all CK metrics 

value and find out the bad smells presented in software code of 

Eclipse 3.4. After collecting and preparing the database (shown in Fig 

1.), evaluation was done with Matlab. Analyst4j measures these 

metrics, which forms the source for analysis. Calculated values for 

CK metrics, is divided into two categories depend upon one binary 

variable. Binary variable marked as 1 if there was at least one bad 

smell present in the code that classes or 0(no bad smell found). Bad 

smells are considered a violation against software engineering 

principles. The binary categorization used to classifies classes into 

either error or non error category.   The bad smells checked for 

include: blob classes, Spaghetti code, High risk function, complex 

classes, complex and undocumented code, Swiss knife classes. 

 

Figure 1. Model Assessment Framework 

 

4. LOGISTIC REGRESSION  

In logistic regression, the unknown variable, called the binary 

variable, can take only two different values. Therefore, we divided 

the classes into two groups according to whether a class contained at 

least one smell or not. Regression analysis was used to analyze the 

results of collected data. The logistic regression model is used to 

study the association between bad smell and prediction for software 
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failure. Univariate binary logistic regression (UBR) is very useful for 

analyzing the data which includes binary variable. 

The UBR model is as follows  

π.x=
eg  x 

1+ eg x 
 

Where g(x) = α + β * x is logit function and π represents probability 

of a class being faulty, whereas x is object oriented metric. Logistic 

regression provides models were applied with a threshold value of 

0.5, which means that, if 0.5 < π, the class is classified as faulty, 

otherwise, as not faulty. 

5. BAYESIAN INFERENCE 

In this study Bayesian inference model is design to relate Object-

Oriented software metrics to software fault content and fault 

proneness.  Bayesian Inference represents a joint probability 

distribution over a set of variables, which are either discrete or 

continuous. Bayesian inference model is a framework for 

constructing posterior data by combining prior knowledge with 

evidence. Bayesian inference model is designed on the basis of Bayes 

theorem. According to Bayes theorem, Probability theory is affected 

by evidence. Bayesian approach offers more intuitive and meaningful 

inferences to the data. Bayes Theorem is as follows:  

P  X Y  =
P(Y | X )P(X )

P Y 
 

Whereas P(Y | X ) represents Likelihood, P(X ) represents Prior 

distribution and P(Y) is known as marginal likelihood or Prior 

predictive distribution. Generic formulation is implemented to 

univariate problems with binomial distributions. Bayesian inference 

tends to become computationally intensive when the analysis 

involves multiple parameters and correspondingly high-dimensional 

integration 

6. RESULT  

In the proposed model, in order to analyze the impact of software 

faults, the values of the metrics from Eclipse are considered. Table 1. 

represents Bayesian Inference graph result with Prior and Posterior 

values. This table includes all statistical information about Bayesian 

Inference graph for CBO and NOC; we found a large difference in 

both graphs. In this research paper out of six metrics only two are 

presented. In result X axis represented the probability of fault 

occurrence. Whereas 0 represented as fault free classes and as graph 

move towards 1 probability of fault occurrence will increase.  

The shape of the likelihood function represents the amount 

of information contained in the data. If the information it contains is 

small, the likelihood function will be largely distributed, whereas if 

the information it contains is large, the likelihood function will be 

closely focused around some particular value of the parameter. The 

representation of the likelihood is flat in Bayesian graph relative to 

the prior; it has little effect on the level of knowledge. In case the 

prior and likelihood have similar shapes so the posterior distribution 

is not greatly influenced by the prior knowledge. In Bayesian 

Inference graph if Posterior and Likelihood having higher peak than 

prior, data is greatly influenced by prior data.  The posterior is a 

compromise between the information (likelihood) and prior. The 

posterior is more precise since we are combining two sources of 

information.  

 

 As shown in Figure 2. We observed for CBO metric high posterior 

density covering 90% of posterior Inference. It has posterior 

probability value 0.383.  For prior probability value is same as 0.38, 

but that value observed only for 62 % classes. As represented in 

figure 2. Likelihood is very tightly across and high peak. It 

represented that graph contain large information. The shape of 

Posterior have high peak rather than Prior and likelihood, it 

represented that future release of tested software would be more fault 

free. As shown in Figure 3. for NOC  metric high posterior density 

covering 94% of posterior Inference. It has posterior probability value 

0.34 and prior probability value is 0.40 as shown in Table 2. For 

NOC, Likelihood largely distributed in graph which represent that 

information is in small amount.   

7. CONCLUSION  

Our objective in this research is to find empirical evidence of the 

association between the bad smells and class error probability. From 

this study we design Bayesian inference for individual metrics which 

provide posterior probability for fault occurrence. Bayesian graph 

design for the early prediction of software fault is presented in this 

paper. The model is based on software metrics and posterior 

probability. Total six metrics have calculated and using Bayesian 

inference system, predict probability of faults for next piece of 

software. In this paper Bayesian Inference graph for CBO and NOC 

are presented. The Bayesian Inference model is to identify posterior 

probability; further this study can help to identify threshold values of 

software metrics using receiver operating characteristic curves. We 

plan to conduct more studies on open-source systems to find out 

threshold values in identifying the faulty classes. For software 

developer, the model provides a methodology for assigning the 

resources for developing reliable and cost-effective software. 

 

 

Figure 2: Bayesian Inference for representing Likelihood, Prior 

and posterior for CBO metric of Eclipse  
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Figure 3: Bayesian Inference for representing Likelihood, Prior 

and posterior for NOC metric of Eclipse  

Table 1: Bayesian Inference graph result CK metrics with Prior 

and Posterior values  

Metric Poster

ior 

value  

Percentile 

coverage 

for 

Posterior 

 Prior 

value 

Percentile 

coverage 

for Prior 

Posterior 

Range 

Prior 

range 

CBO 0.383 90% 0.3838 62% 0.25-0.52 0.17-

0.55 

NOC 0.34 94% 0.40 33% 0.22-0.47 0.08- 
0.70 
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