
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

32

Effectively and Efficiency Consideration for Spatial

Database

Mohammed Otair, Ph.D
Amman Arab University, Amman, Jordan

ABSTRACT
Metric spaces are very useful in spatial database, and other

applications that deal with it. Especially when want to found

object that are similar to other object. This condition does not

handle the relative position that found in some tree, such that, R-

Tree, R+-Tree, and R*-Tree. Instead of handling distances

between objects, using Euclidean Distance to compute the

similarity between them, and retrieve the sets of object from

database based on Euclidean distance that make this situation is

happen and occurs. This paper proposed methods for similarity

search that make the general assumption in the similarity can be

done, by focusing on the effectively and efficiency in metric

space for spatial database. This paper introduces how to improve

the effectively and efficiency of the spatial database. It provided

to extract some knowledge from spatial database has been

presented. The main goal is to know how the search occurs, by

using some assumption and ensures that there is similarity

between a given queries Q and a set of object that found in the

database.

Key words
Similarity Search, Euclidean Distance, Compression, Nearest

Neighbor Query, Range Query, and Ranking.

1. INTRODUCTION
Traditional Database methods are designed to handle the

relatively position between query object Q and dataset object that

found in universe (U) [1]. The main problem of this

implementation tasks is not straightforward (with vector and

dataset method) right now, these are the lack of spatial data rules

to retrieve the similarity measure. With metric space, the most

common query were designed to handle exact match, partial

match, range query, rank query, and join applied to some or all

objects that found in database. Then retrieve the set of objects

from database which similar to query object, as result it contains

answer set [1, 3]. Hence, there is a need to define assessment

measures for Spatial Database (SDB). Two commonly used

measures are effectively and efficiency.

Effectively measures the accuracy of the result set in terms of

three measures: Range, Nearest Neighbor Search, and Ranking

[1, 3, and 4]. Range is defined as given a query object and radius

R, return the set of objects that neighbor search to the given

objects that satisfy some condition with radius (R > 0). While

Nearest neighbor search is defined as given a query object and

integer k, return the k objects is S according the shortest distance

from Q. Ranking retrieve the set of objects with the shortest

distance from given object based on some criteria.

Each type of query is difficult to handle using Quad Tree, R-

Tree, and others. But queries can be handled by using metric

space by using some assumption to make that happen. Efficiency

measure how much fast a result is obtained and can send it from

a server to a client especially in ranking measures. This can be

computed by using standard algorithmic such the time

complexity (e.g., the “Big Oh” notation which describe the worst

case), or calculate that by using statistics methods as response

time, disk I/O, etc.

Most research in SDB focus on effectively measures to retrieve

the similarity with query and objects in DB. Since, it is well

accepted that current systems exhibit similarity with the given

object and other objects. Therefore, many papers in SDB focus

only on effectively and ignoring efficiency which leads to poor

effectively, efficiency is a secondary concern. For example, a

recent compendium of seminal research papers [5, 6] did not

include a single paper whose primary focus was efficiency. A

system that takes too long to send result to clients will simply not

be used.

There are many ways to improve the effectively and efficiency

measures. Effectively can be improved by responding to the

queries (in term of similarity retrieval) [5]. They can be

summarized as follows:

 Retrieve object that fall within given range or

distance from given object (Range queries).

 Retrieve objects whose value similar of given query

(nearest neighbor queries) or in some time call

(approximate nearest neighbor).

 Retrieve and rank the set of object base on some

condition (ranking object based on stop condition).

In order to compute the distances in high dimensional space, then

Euclidean Distance can be applied [3]. In the case of exact

match, partial match and range queries, the time became very

consuming. For instance, to calculate the distance between two

points in a Z-dimensional space using Euclidean distance, it will

need Z*Z-1.

When distance function is the only information in hand, then

there are two choices: The first one which based on the distance

of the object by deriving the features value [6]. For instance,

given a query Q which is searching about object G, and the main

objective is to select a value for k and searching about the set of

M congruous points. Thus, the distance between objects of the

query and relevant or similar N objects in the database will be

computed using a good distance function. It will return all the

objects that are very or mostly closed to the original distance

function F for M objects. The second is computing the distance

function that can be used to index the data with respect to

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

33

distance from few selected objects. That called distance based

indexing to describe such methods [6].

The goal of distance based indexing, is to compute the distance

by building an index, then finds similarity queries, and compares

it with the entire dataset. Through scanning only the candidate

object and ignore (pruning) the other objects that not conclude

the answer set.

 To improve the efficiency, the compression techniques can be

used to compress the result at the server side then sending the

result to the client side to decompress it there [8]. Especially in

case of ranking objects with or without any stop condition, to

retrieve large number of object that are similar to give an objects

based on order of distance. The main goal from compression is to

reduce the response time and ensure that it doesn't loss any data

during sending and receiving. To achieve that the Huffman

Coding can be used to compress and decompress files and prove

that by algorithms that reduce the response time and the size of

data from server to client, during compression and

decompression stage.

The rest of this paper is organized as follows: section 2, include

the problem definition. Section 3, effectively performance will be

presented. Section 4, efficiency performance were described.

Finally, the paper finished with concluding remarks.

2. PROBLEM DEFINITION
A metric space can be defined as follow: P = (O, L); P is the

distance and O is the object domain based on the following

conditions:

L(x, y) = L(y, x) (Symmetry)

L(x, y) ≥ 0, L(x, y) =0, iff x = y (Non-negativity)

L(x, z) ≤ L(x, y) + D (y, z) (Triangle inequality)

Where x, y, and z are objects in O. the similarity between objects

can be measure based on the distance function L. Range query,

nearest neighbor, and rank are three basic types can use in

similarity measure.

3. EFFECTIVELY PERFORMANCE

3.1 Indexing Metric Space Structure
In the proposed improvement the Distance based indexing

Method (Euclidean Distance) can be used, and show how to

perform the similarity search. Metric trees are indexing structures

for exemplary distance. They are binary trees that perform

repeatedly in partitioning a data set at each node into two subsets.

Two standard partitioning modes are identified Uhlmann in [5]:

line partitioning and ball partitioning.

In line partitioning two object are taken from the points' set, A

and B objects are selected and the data set is classified using the

two selected objects. The nearest objects to each one of them will

be returned, where all the objects in group A are nearer to the

object A than to object B, and vice versa regard to group B as in

figure 1-a. Whereas, in ball partitioning, a vantage point concept

is used, where is the set of data is classified using the distances

from one object [4], and the data points will be classified into

two groups: the group of objects outside and inside the ball as in

figure 1-b.

(a) (b)
Fig. 1 (a) Line partition (b) Ball partition

The pivot can be used to point to any class of specified objects

that need to split an object during them. It also can be utilized

through the process of clipping and searching other objects.

Every pivot P should match the following conditions:

 P € S: is an object which contains the information

concerning all or some objects in S.

 d (p, o): is an exact value of the distance d for all

objects in S.

 That the value of d(p, o) falls inside some range of

other values.

 Or, that the object o is nearer or the nearest to p.

The pivot can be choosing with the ball partition as following

criteria:

1. Determine the threshold to partition dataset according

the value given.

2. Determine the minimum value of points that fall in

given threshold

3. Choose the maximum distance among points and

threshold to perform the ball partition.

In this technique all or some of distance between object in

database are pre-computed. Then, when implementing the

queries by calculating the actual distance between the query

object and some objects as initial answer set. Based on the some

other initial computed distances, the remaining distances of the

other objects may be evaluated.

3.2 Search Structure
The search structure can be described as in the following

example as in [4, 5]: There are K objects in a database D, if the

object of the search process is to find an object(s) that are mostly

relevant to the object of the query q. In other words, a metric

space (D, M) can draw D and q, where D is a corpus (group) of

objects and M is the metric distance which defines resemblance,

when the distances are very small mean they are more

resemblance.

The search can be categorized with three elements type (T), type

3 indicates to bounding rectangle, type 2 indicates to node, and

type 1 indicates to object. The main assumption is the Childs

elements are disjoint, that each element with one parent and each

element is associated distance D (Q, T). The distance from parent

P to child can be used to indicate which nodes are use to search

and which are pruning to avoid multiple paths during searching.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

34

The concept can be illustrated as in the following example in

Figure (2).

The nodes x (root of tree) and x1- x4 (internal node) represents

the element 3, node y1-y10 represent element 2, and object z1-

z10 represent element 1 that indicate to leaf node which have

minimum bounding rectangle.

(a)

(b)

Fig. 2 Representation collections of two dimensional spatial

objects (a) space hierarchy representation (b) sample range

query representation.

The range query overlaps with X, X4, X3, Y10, Y9 and z9. This

is the alternative which involves the answer set. Using the

category type considered above the tree consists of three types of

elements: type 1 to indicate to object z9, type 2 to indicate to

bounding rectangle Y9, and Y10, and type 3 to indicate node X,

X4, and X3.

The Euclidean distance techniques can be used to compute the

distance from query q to the region of the query. It is used to

compute three type of element, the range search can use another

technique called visited and pruning. That visit only the node

that intersect to query and pruning the node do not intersect to

query (z1 to z8 and z10 are ignore) which are not needed to

compute the distance from z1 to z8 and z10 (pruning side).

3.3 Queries and Search Algorithms

3.3.1. Range Query
In the range query, the query object denoted by q, the radius

denoted by E, and the search hierarchy is T [4, 6]. During

traversal visiting the set of the list is initialized to be empty. The

technique of algorithm works as follow:

 The search hierarchy starting from the root, and to be sure

that the root is not an object. There will be an assumption

that at least two objects should available at the dataset U.

 Visit the children elements in the search hierarchy in order

objects, which are within distance range (radius) and

pruning the other object that are too far from the query q.

 The answer of the query obtained from an intersect

between the root (X), the leaf region node (Xi) with type 2,

the boundary rectangle (Yi) with type 1, and the object (zi)

with type 0.

 By using the Euclidian distance metric, distances from

query object q and all the three elements type can be

measured as seen in figure 3.

 The search must compute the distance from q of elements

that are immediately below the boundary, and if there

distance much larger they are prune. So to be sure the

answer set is the right one.

 The propose algorithm work in recursively way.

Fig. 3 range query of two dimensional spatial objects.

3.3.2. Nearest Neighbor Query
This type of queries is used to discover the number of K closest

objects in space S to the object of the query [1, 4]. There are

several ways to search in the nearest neighbor queries; they are

depending on the method of the hierarchy of search is navigated.

This paper will introduce two algorithms using two different

traversal orders: Depth-first traversal, and Best-first traversal.

3.3.2.1. Depth-First Algorithm
Depth-first algorithm is an extending algorithm from range

search algorithm, thus if the distance Dk of the kth nearest

neighbor is know in advance, then it can be found the answer

with similar range query, in order to bound the search [4,7].

The technique of the algorithms works as follows:

 Determined the value of k.

 NearestList (o, k): this function is initially set distance to

infinity (∞) until the k is get the NearestList return the

candidate object.

 ActiveBranchList(E: child element): determined all child

element of the root. So that the n is firstly visited (root),

after that compute the active branch list for n which lead

to ni.

 Sort ActiveBranchList: which sort the ActiveBranchList

in ascending order.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

35

 "Branch and bound": which indicate ActiveBranchList is

computed for each element of internal node (ni.) depends

on distance of all elements related to each n inside ni

 The algorithm is repeated recursively.

 Determine the answer set depends on k and return the

shortest distance from final active branch list.

3.3.2.2. Best-First Algorithm
This algorithm is another version of range query that used to

limits the number of branch that visited, and to speed up the

answer set [4]. The algorithm works as follows:

 The PriorityQueue: the tree root will insert into the queue

 The NearestList designated to all child of k that inserted in it.

 The previous steps will be repeated with all elements until

reach the answer set.

 The algorithm will be iterated recursively.

3.3.3. Ranking Query
The goal of ranking query is to retrieve the objects in the dataset

U, in order of distance from q according to some halting

condition. If the number of objects are already predefined in the

result of the inquired object, that are indicated by condition of

halting, then the result may be given by implementing a nearest

neighbor technique to the inquired object.

The stopping condition for ranking query based on some criteria

as: maximum distance or maximum cardinalities of the result.

The ranking query can rank all object in the U, but the stopping

condition causes only a fraction of object in U to be ranked.

Ranking query works as same as the best-first nearest neighbor

algorithm, with some addition that, the distance in the nearest

neighbor may have value not smaller than the value in the

priority queue. So, to obtain an incremental ranking by putting

object in nearest neighbor list is no larger than minimum distance

in priority queue. This also leads to an unbounded size of results

in setting up the position when an object becomes at the

beginning of the queue, where it gets output resemblance to the

subsequent object in the order of the position.

The worst case in ranking, if all objects are with the same

distance, and to avoid the priority queue becomes too large. This

can be accomplished by throwing away the elements (which have

the largest distance) by placing the upper bound on the range to

the outmost object that can be made by ranking.

4. EFFICIENCY PERFORMANCE
In the case of ranking, the objects are sorted in descending order

according similarity to query object. The data that retrieved from

server to client contains many objects according stop condition

or not which leads to a huge data while ranking the set of object.

The main goal of efficiency is to retrieve the object that are

similar to given query and to achieve that the size of data can be

reduced in order to reduce the number of I\O over head, response

time, and size of data during sending. This can be done by using

an algorithm that can compress the candidate object and

decompressed the result. Which improve the efficiency because

the effectively are not introduce in this scenario (sending and

receiving).

There are many algorithms that found to compress the data

during sending. The paper reviews some of them and develops a

new algorithm that can be used to reduce the above criteria (I\O

overhead, response time, and size of data). These algorithms are

as following.

4.1 Fixed and Variable Length Compression
As mention before, the set of objects in U that need ranking

according the similarity of given object are stored in descending

order by using array.

The fixed and variable length compression can used to

compression the size of data, after convert the data to binary

digits and store only the minimum number of bits using

compression in the server side. The client decompresses that to

get the original data and ensure that the data is preserved and

there is not any loss during compression.

The fixed and variable length compression used in information

retrieval is to compress the posing list. But it cannot use that

while ranking object. The next section presents a new algorithms

that can be use to compress the ranking data object, using

Huffman coding.

4.2 Huffman Coding Index Compression
This paper proposed a new method used to compress and

Decompress a file, these method convert every 8 bit block in the

original file into two sub block, each sub block has 4 bits, special

character can be used to represent these bits, by using Huffman

tree to retrieve each sub block to show how many repeated and

write the result in text file. By the way to decompress the file,

Huffman table or tree can be used to retrieve the original file.

Our improvement saves 35% as an average of the size of the

original file.

4.2.1 Methodology
This method assumes that every 8-bit block of input file as one

block, and divide it into two sub block, with each 4 bit per sub

block, in order to distinguish the stream of bits star(*) can be

used between each 8-bit. Then, these bits can be replaced by its

substitute characters as in the following table.

Table 1. Representative bits with specified character

Table (1) shows all possible cases for 4 characters (A, B, C, D).

For example: if the first bit is 0100 then replace it with BA. This

algorithm can be used for binary files that also including a text

files.

See appendix for more details about our algorithms that used for

compression and decompression the file which contain N-Bits.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

36

4.2.2 for Examples that Display this Method

(Compression and Decompression)

Fig. 4 The compression and decompression for the text file

that contain 8 bit.

5. CONCLUSION
This paper described that variety of approaches can be improved

effectively and efficiency in Spatial Database Indexing. Without

efficiency, users will simply not take advantage to find the sets of

objects that similar to query object. The proposed algorithms

save more than 35% of original size, fast response time, and

reduce I/O overhead. Firstly, the effectively in Spatial Database

indexing is described, and present how can improve the

effectively of query that are presented above. After that some

technique were introduced which can be used to compression

the data and reduce the size of it by using Hoffman Coding and

present algorithm with detail in the appendix. Finally the

compression file use speed the response time of ranking object.

6. REFERENCES
[1] Eamonn Keogh, Selina Chu, and Michael Pazzani (2001): A

New Approach to Indexing Large Databases

[2] Slobodan Rasetic, Jörg Sander, James Elding Mario A.

Nascimento (2005), A Trajectory Splitting Model for

Efficient Spatio-Temporal Indexing

[3] Ralf Hartmut GQting (2004),An Introduction to Spatial

Database Systems. Received July 25, 1994; accepted August

18, 1994.

[4] TOLGA BOZKAYA, and MERAL OZSOYOGLU (2000).

Indexing Large Metric Spaces for Similarity Search Queries

[5] ESSAM A. EL-KWAE , and MANSUR R. KABUKA

(2000). Efficient Content-Based Indexing of Large Image

Databases.

[6] GISLI R. HJALTASON and HANAN SAMET (2003).

Index-Driven Similarity Search in Metric Spaces . ACM

Transactions on Database Systems, Vol. 28, No. 4,

December 2003, Pages 517–580.

[7] Alock Aggarwal and Jeffery scott Vitter. The input/output

complexity of sorting and related problem. Communication

of ACM,1988.

[8] Ravidra K. Ahuja, Thomas L. Ma and James B. Orlin.

Network Flows: Theory, Algorithms, and Applications.

Prentice Hall, 1993.

[9] http://en.wikipedia.org/wiki/Euclidean_distance,Elena Deza

& Michel Marie Deza (2009) Encyclopedia of Distances,

page 94, Springer

-Appendix A-

That includes the detail of the Algorithms that used to compress the

file and decompressed it, and the Euclidian Distance Equations.

Algorithm Compression File (input original File, A [], K [2, 16],

T[2,17])

 1. Read the Original File

 I=0

 While (there are more block in the file) do

 {

 For each 8 bit do the following

 {Divide the block with 2 sub block each sub block contain 4-Bit

 A [I+1] = sub block [1, 2, .., Ithblock]

 // each sub block contain 4 bit

 }

 // divide the block with 2-sub block each sub block contain 4

bits separately

// each element in the temp array contain 4 bit and separate

between 8 bit with

Stars that it used when decompressed the file.

 A [I+1] = '*'

// used comma to separate between each 8 bit (Separate between

blocks) in the temp array

}

2. Procedure Convert_Block_To_Chars (A [], K [2, 16])

// the input to this procedure is temp array A [] and 2-

dimensioan array K[2,16] that contain all possible of the

character

The output is replace each bit in the temp array (A []) with the

special characters that occur in the 2 dim. Array (I.E call by

reference). Separated between each eight bit in the array A []

with Star

3. Procedure Find_Frequency (A [], T [2, 17])

// this procedure calculate the frequency for each character by

declare 2 dimensional

Array with 2 rows and 17 columns first row contain all possible

of the characters and second row represent the counter for each

character, and the 16 columns for possible characters and 1 to the

star.

4. Apply Huffman tree to array A [] and associate code for each

term in the array

5. Create the temp file (text file) that used to write the results

(temporary array A[] by take the associate code from the

Huffman tree for each element in the array. also the Huffman tree

or the Huffman table that use during decompressed the file.

Display the working of the procedure that use in the Algorithms

Procedure Convert_Block_To_Chars (A [], K [2, 16])

 {For j=1 to length [A]

 I=0

 Found = true

 While (found) and (I<= 16) then

 { I=I+1

 If (A[j] = K [2, I]) then

 A[j] = K [1, I]

 Found = false

 }

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.18, July 2013

37

 }

Procedure Find Frequency (A [], T [2 , 17])

 {For j=1 to 17

 C=0

 For I=1 to length [A]

 If T [1, j] =A[I] then

 T [2, j] = C+1

 }

Algorithm Decompression File (input Compressed File, Huffman

table)

Create empty temporary file that will used to write the

decompression file Use the loop statement that to replace each

associate code in the compressed file with the characters from the

Huffman table or tree.

Use another loop statement to replace each characters in the temp

file with the associate code that show in the figure 1 to retrieve

the original file if appear the star in the temp file then separate

each block to another block until to retrieve the original file.

Euclidean distance

The Euclidean distance between two points

 and , in Euclidean n-

space, is defined as:

One-dimensional distance

For two 1D points, and , the distance is

computed as:

Two-dimensional distance

For two 2D points, and , the

distance is computed as:

Alternatively, expressed in circular coordinates (also known as

polar coordinates), using and ,

the distance can be computed as:

Mohammed A. Otair is an Associate Professor in Computer

Information Systems, at Amman Arab University-Jordan. He

received his B.Sc. in Computer Science from IU-Jordan and his

M.Sc. and Ph.D. in 2000, 2004, respectively, from the

Department of Computer Information Systems-Arab Academy.

His major interests are Mobile Computing, Data Mining and

Databases Neural Network Learning Paradigms, Web-computing,

E-Learning. He has more than 30 publications.

IJCATM : www.ijcaonline.org

