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ABSTRACT 
Metric spaces are very useful in spatial database, and other 

applications that deal with it. Especially when want to found 

object that are similar to other object. This condition does not 

handle the relative position that found in some tree, such that, R-

Tree, R+-Tree, and R*-Tree. Instead of handling distances 

between objects, using Euclidean Distance to compute the 

similarity between them, and retrieve the sets of object from 

database based on Euclidean distance that make this situation is 

happen and occurs.  This paper proposed methods for similarity 

search that make the general assumption in the similarity can be 

done, by focusing on the effectively and efficiency in metric 

space for spatial database. This paper introduces how to improve 

the effectively and efficiency of the spatial database. It provided 

to extract some knowledge from spatial database has been 

presented. The main goal is to know how the search occurs, by 

using some assumption and ensures that there is similarity 

between a given queries Q and a set of object that found in the 

database. 

Key words 
Similarity Search, Euclidean Distance, Compression, Nearest 

Neighbor Query, Range Query, and Ranking. 

1. INTRODUCTION 
Traditional Database methods are designed to handle the 

relatively position between query object Q and dataset object that 

found in universe (U) [1].  The main problem of this 

implementation tasks is not straightforward (with vector and 

dataset method) right now, these are the lack of spatial data rules 

to retrieve the similarity measure. With metric space, the most 

common query were designed to handle exact match, partial 

match, range query, rank query, and join applied to some or all 

objects that found in database. Then retrieve the set of objects 

from database which similar to query object, as result it contains 

answer set [1, 3]. Hence, there is a need to define assessment 

measures for Spatial Database (SDB). Two commonly used 

measures are effectively and efficiency.  

Effectively measures the accuracy of the result set in terms of 

three measures: Range, Nearest Neighbor Search, and Ranking 

[1, 3, and 4]. Range is defined as given a query object and radius 

R, return the set of objects that neighbor search to the given 

objects that satisfy some condition with radius (R > 0). While 

Nearest neighbor search is defined as given a query object and 

integer k, return the k objects is S according the shortest distance 

from Q. Ranking retrieve the set of objects with the shortest 

distance from given object based on some criteria. 

Each type of query is difficult to handle using Quad Tree, R-

Tree, and others. But queries can be handled by using metric 

space by using some assumption to make that happen. Efficiency 

measure how much fast a result is obtained and can send it from 

a server to a client especially in ranking measures. This can be 

computed by using standard algorithmic such the time 

complexity (e.g., the “Big Oh” notation which describe the worst 

case), or calculate that by using statistics methods as response 

time, disk I/O, etc. 

Most research in SDB focus on effectively measures to retrieve 

the similarity with query and objects in DB. Since, it is well 

accepted that current systems exhibit similarity with the given 

object and other objects. Therefore, many papers in SDB focus 

only on effectively and ignoring efficiency which leads to poor 

effectively, efficiency is a secondary concern. For example, a 

recent compendium of seminal research papers [5, 6] did not 

include a single paper whose primary focus was efficiency. A 

system that takes too long to send result to clients will simply not 

be used.  

There are many ways to improve the effectively and efficiency 

measures. Effectively can be improved by responding to the 

queries (in term of similarity retrieval) [5]. They can be 

summarized as follows: 

 Retrieve object that fall within given range or 

distance from given object (Range queries). 

 Retrieve objects whose value similar of given query 

(nearest neighbor queries) or in some time call 

(approximate nearest neighbor). 

 Retrieve and rank the set of object base on some 

condition (ranking object based on stop condition). 

In order to compute the distances in high dimensional space, then 

Euclidean Distance can be applied [3]. In the case of exact 

match, partial match and range queries, the time became very 

consuming. For instance, to calculate the distance between two 

points in a Z-dimensional space using Euclidean distance, it will 

need Z*Z-1.  

When distance function is the only information in hand, then 

there are two choices: The first one which based on the distance 

of the object by deriving the features value [6]. For instance, 

given a query Q which is searching about object G, and the main 

objective is to select a value for k and searching about the set of 

M congruous points. Thus, the distance between objects of the 

query and relevant or similar N objects in the database will be 

computed using a good distance function. It will return all the 

objects that are very or mostly closed to the original distance 

function F for M objects. The second is computing the distance 

function that can be used to index the data with respect to 
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distance from few selected objects. That called distance based 

indexing to describe such methods [6].  

The goal of distance based indexing, is to compute the distance 

by building an index, then finds similarity queries, and compares 

it with the entire dataset. Through scanning only the candidate 

object and ignore (pruning) the other objects that not conclude 

the answer set.    

 To improve the efficiency, the compression techniques can be 

used to compress the result at the server side then sending the 

result to the client side to decompress it there [8]. Especially in 

case of ranking objects with or without any stop condition, to 

retrieve large number of object that are similar to give an objects 

based on order of distance. The main goal from compression is to 

reduce the response time and ensure that it doesn't loss any data 

during sending and receiving. To achieve that the Huffman 

Coding can be used to compress and decompress files and prove 

that by algorithms that reduce the response time and the size of 

data from server to client, during compression and 

decompression stage. 

The rest of this paper is organized as follows: section 2, include 

the problem definition. Section 3, effectively performance will be 

presented. Section 4, efficiency performance were described. 

Finally, the paper finished with concluding remarks. 

2. PROBLEM DEFINITION 
A metric space can be defined as follow: P = (O, L); P is the 

distance and O is the object domain based on the following 

conditions: 

L(x, y) = L(y, x)                                   (Symmetry) 

L(x, y) ≥ 0, L(x, y) =0, iff x = y            (Non-negativity) 

L(x, z) ≤ L(x, y) + D (y, z)                   (Triangle inequality) 

Where x, y, and z are objects in O. the similarity between objects 

can be measure based on the distance function L. Range query, 

nearest neighbor, and rank are three basic types can use in 

similarity measure. 

3. EFFECTIVELY PERFORMANCE 

3.1 Indexing Metric Space Structure 
In the proposed improvement the Distance based indexing 

Method (Euclidean Distance) can be used, and show how to 

perform the similarity search. Metric trees are indexing structures 

for exemplary distance. They are binary trees that perform 

repeatedly in partitioning a data set at each node into two subsets. 

Two standard partitioning modes are identified Uhlmann in [5]: 

line partitioning and ball partitioning.  

In line partitioning two object are taken from the points' set, A 

and B objects are selected and the data set is classified using the 

two selected objects. The nearest objects to each one of them will 

be returned, where all the objects in group A are nearer to the 

object A than to object B, and vice versa regard to group B as in 

figure 1-a. Whereas, in ball partitioning, a vantage point concept 

is used, where is the set of data is classified using the distances 

from one object [4], and the data points will be classified into 

two groups: the group of objects outside and inside the ball as in 

figure 1-b. 

                   

(a)                                           (b) 
Fig. 1 (a) Line partition (b) Ball partition 

The pivot can be used to point to any class of specified objects 

that need to split an object during them. It also can be utilized 

through the process of clipping and searching other objects. 

Every pivot P should match the following conditions: 

 P € S: is an object which contains the information 

concerning all or some objects in S. 

 d (p, o): is an exact value of the distance d for all 

objects in S. 

 That the value of d(p, o) falls inside some range of 

other values. 

 Or, that the object o is nearer or the nearest to p. 

 

The pivot can be choosing with the ball partition as following 

criteria: 

1. Determine the threshold to partition dataset according 

the value given. 

2. Determine the minimum value of points that fall in 

given threshold 

3. Choose the maximum distance among points and 

threshold to perform the ball partition.  
 

In this technique all or some of distance between object in 

database are pre-computed. Then, when implementing the 

queries by calculating the actual distance between the query 

object and some objects as initial answer set. Based on the some 

other initial computed distances, the remaining distances of the 

other objects may be evaluated. 

3.2 Search Structure 
The search structure can be described as in the following 

example as in [4, 5]: There are K objects in a database D, if the 

object of the search process is to find an object(s) that are mostly 

relevant to the object of the query q. In other words, a metric 

space (D, M) can draw D and q, where D is a corpus (group) of 

objects and M is the metric distance which defines resemblance, 

when the distances are very small mean they are more 

resemblance. 

The search can be categorized with three elements type (T), type 

3 indicates to bounding rectangle, type 2 indicates to node, and 

type 1 indicates to object. The main assumption is the Childs 

elements are disjoint, that each element with one parent and each 

element is associated distance D (Q, T). The distance from parent 

P to child can be used to indicate which nodes are use to search 

and which are pruning to avoid multiple paths during searching. 
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The concept can be illustrated as in the following example in 

Figure (2). 

The nodes x (root of tree) and x1- x4 (internal node) represents 

the element 3, node y1-y10 represent element 2, and object z1-

z10 represent element 1 that indicate to leaf node which have 

minimum bounding rectangle.    

 
(a) 

 

 
(b) 

Fig. 2 Representation collections of two dimensional spatial 

objects (a) space hierarchy representation (b) sample range 

query representation. 

The range query overlaps with X, X4, X3, Y10, Y9 and z9. This 

is the alternative which involves the answer set. Using the 

category type considered above the tree consists of three types of 

elements: type 1 to indicate to object z9, type 2 to indicate to 

bounding rectangle Y9, and Y10, and type 3 to indicate node X, 

X4, and X3.  

The Euclidean distance techniques can be used to compute the 

distance from query q to the region of the query. It is used to 

compute three type of element, the range search can use another 

technique called visited and pruning. That visit only the node 

that intersect to query and pruning the node do not intersect to 

query (z1 to z8 and z10 are ignore) which are not needed to 

compute the distance from z1 to z8 and z10 (pruning side). 

3.3 Queries and Search Algorithms 

3.3.1. Range Query 
In the range query, the query object denoted by q, the radius 

denoted by E, and the search hierarchy is T [4, 6]. During 

traversal visiting the set of the list is initialized to be empty. The 

technique of algorithm works as follow:  

 The search hierarchy starting from the root, and to be sure 

that the root is not an object. There will be an assumption 

that at least two objects should available at the dataset U.  

 Visit the children elements in the search hierarchy in order 

objects, which are within distance range (radius) and 

pruning the other object that are too far from the query q. 

 The answer of the query obtained from an intersect 

between the root (X), the leaf region node (Xi) with type 2, 

the boundary rectangle (Yi) with type 1, and the object (zi) 

with type 0. 

 By using the Euclidian distance metric, distances from 

query object q and all the three elements type can be 

measured as seen in figure 3. 

 The search must compute the distance from q of elements 

that are immediately below the boundary, and if there 

distance much larger they are prune. So to be sure the 

answer set is the right one. 

 The propose algorithm work in recursively way.  

 
Fig. 3 range query of two dimensional spatial objects. 

 

3.3.2. Nearest Neighbor Query 
This type of queries is used to discover the number of K closest 

objects in space S to the object of the query [1, 4]. There are 

several ways to search in the nearest neighbor queries; they are 

depending on the method of the hierarchy of search is navigated. 

This paper will introduce two algorithms using two different 

traversal orders: Depth-first traversal, and Best-first traversal. 

3.3.2.1. Depth-First Algorithm 
Depth-first algorithm is an extending algorithm from range 

search algorithm, thus if the distance Dk of the kth nearest 

neighbor is know in advance, then it can be found the answer 

with similar range query, in order to bound the search [4,7]. 

The technique of the algorithms works as follows: 

 Determined the value of k.  

 NearestList (o, k): this function is initially set distance to 

infinity (∞) until the k is get the NearestList return the 

candidate object. 

 ActiveBranchList(E: child element): determined all child 

element of the root. So that the n is firstly visited (root), 

after that compute the active branch list for n which lead 

to ni. 

 Sort ActiveBranchList: which sort the ActiveBranchList 

in ascending order. 
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 "Branch and bound": which indicate ActiveBranchList is 

computed for each element of internal node (ni.) depends 

on distance of all elements related to each n inside ni  

 The algorithm is repeated recursively. 

 Determine the answer set depends on k and return the 

shortest distance from final active branch list. 

 

3.3.2.2. Best-First Algorithm 
This algorithm is another version of range query that used to 

limits the number of branch that visited, and to speed up the 

answer set [4]. The algorithm works as follows: 

 The PriorityQueue: the tree root will insert into the queue 

 The NearestList designated to all child of k that inserted in it. 

 The previous steps will be repeated with all elements until 

reach the answer set.  

 The algorithm will be iterated recursively. 

 

3.3.3.   Ranking Query 
The goal of ranking query is to retrieve the objects in the dataset 

U, in order of distance from q according to some halting 

condition. If the number of objects are already predefined in the 

result of the inquired object, that are indicated by condition of 

halting, then the result may be given by implementing a nearest 

neighbor technique to the inquired object. 

The stopping condition for ranking query based on some criteria 

as: maximum distance or maximum cardinalities of the result. 

The ranking query can rank all object in the U, but the stopping 

condition causes only a fraction of object in U to be ranked. 

Ranking query works as same as the best-first nearest neighbor 

algorithm, with some addition that, the distance in the nearest 

neighbor may have value not smaller than the value in the 

priority queue. So, to obtain an incremental ranking by putting 

object in nearest neighbor list is no larger than minimum distance 

in priority queue. This also leads to an unbounded size of results 

in setting up the position when an object becomes at the 

beginning of the queue, where it gets output resemblance to the 

subsequent object in the order of the position.  

The worst case in ranking, if all objects are with the same 

distance, and to avoid the priority queue becomes too large. This 

can be accomplished by throwing away the elements (which have 

the largest distance) by placing the upper bound on the range to 

the outmost object that can be made by ranking. 

4. EFFICIENCY PERFORMANCE 
In the case of ranking, the objects are sorted in descending order 

according similarity to query object. The data that retrieved from 

server to client contains many objects according stop condition 

or not which leads to a huge data while ranking the set of object.  

The  main goal of efficiency is to retrieve the object that are 

similar to given query and to achieve that the size of data can be 

reduced in order to reduce the number of I\O over head, response 

time, and size of data during sending. This can be done by using 

an algorithm that can compress the candidate object and 

decompressed the result. Which improve the efficiency because 

the effectively are not introduce in this scenario (sending and 

receiving).   

There are many algorithms that found to compress the data 

during sending. The paper reviews some of them and develops a 

new algorithm that can be used to reduce the above criteria (I\O 

overhead, response time, and size of data). These algorithms are 

as following.  

4.1 Fixed and Variable Length Compression  
As mention before, the set of objects in U that need ranking 

according the similarity of given object are stored in descending 

order by using array.  

The fixed and variable length compression can used to 

compression the size of data, after convert the data to binary 

digits and store only the minimum number of bits using 

compression in the server side. The client decompresses that to 

get the original data and ensure that the data is preserved and 

there is not any loss during compression. 

The fixed and variable length compression used in information 

retrieval is to compress the posing list. But it cannot use that 

while ranking object. The next section presents a new algorithms 

that can be use to compress the ranking data object, using 

Huffman coding. 

4.2 Huffman Coding Index Compression 
This paper proposed a new method used to compress and 

Decompress a file, these method convert every 8 bit block in the 

original file into two sub block, each sub block has 4 bits, special 

character can be used to represent these bits, by using Huffman 

tree to retrieve each sub block to show how many repeated and 

write the result in text file. By the way to decompress the file, 

Huffman table or tree can be used to retrieve the original file. 

Our improvement saves 35% as an average of the size of the 

original file. 

4.2.1 Methodology 
This method assumes that every 8-bit block of  input file as one 

block, and divide it  into two sub block, with each 4 bit per sub 

block, in order to distinguish the stream of bits star(*) can be 

used between each 8-bit. Then, these bits can be replaced by its 

substitute characters as in the following table. 

Table 1. Representative bits with specified character 

 

Table (1) shows all possible cases for 4 characters (A, B, C, D). 

For example: if the first bit is 0100 then replace it with BA. This 

algorithm can be used for binary files that also including a text 

files. 

See appendix for more details about our algorithms that used for 

compression and decompression the file which contain N-Bits. 
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4.2.2 for Examples that Display this Method 

(Compression and Decompression) 

 
Fig. 4 The compression and decompression for the text file 

that contain 8 bit.  

5. CONCLUSION 
This paper described that variety of approaches can be improved 

effectively and efficiency in Spatial Database Indexing. Without 

efficiency, users will simply not take advantage to find the sets of 

objects that similar to query object. The proposed algorithms 

save more than 35% of original size, fast response time, and 

reduce I/O overhead. Firstly, the effectively in Spatial Database 

indexing is described, and present how can improve the 

effectively of query that are presented above. After that some 

technique were  introduced which can be used to compression 

the data and reduce the size of it by using Hoffman Coding and 

present algorithm with detail in the appendix. Finally the 

compression file use speed the response time of ranking object. 
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-Appendix A-  

That includes the detail of the Algorithms that used to compress the 

file and decompressed it, and the Euclidian Distance Equations. 

 

Algorithm Compression File (input original File, A [ ], K [2, 16],  

T[2,17]) 

 1.  Read the Original File 

  I=0 

 While (there are more block in the file) do 

 {    

  For each 8 bit do the following  

 {Divide the block with 2 sub block each sub block contain 4-Bit 

  A [I+1] = sub block [1, 2, .., Ithblock]   

                                    // each sub block contain 4 bit       

  }   

 // divide the block with 2-sub block each sub block contain 4 

bits separately     

// each element in the temp array contain 4 bit and separate 

between 8 bit with       

Stars that it used when decompressed the file. 

      A [I+1] = '*'  

// used comma to separate between each 8 bit (Separate between 

blocks)  in the temp array 

} 

 

2. Procedure Convert_Block_To_Chars (A [ ], K [2, 16]) 

// the input to this procedure is temp array A [ ] and 2-

dimensioan array K[2,16] that contain all possible of the 

character   

The output is replace each bit in the temp array (A [ ]) with the 

special characters that occur in the 2 dim. Array (I.E call by 

reference). Separated between each eight bit in the array A [ ] 

with Star 

 

3. Procedure Find_Frequency (A [ ], T [2, 17]) 

// this procedure calculate the frequency for each character by 

declare 2   dimensional   

Array with 2 rows and 17 columns first row contain all possible 

of the characters and second row represent the counter for each 

character, and the 16 columns for possible characters and 1 to the 

star. 

4. Apply Huffman tree to array A [ ] and associate code for each 

term in the array 

5. Create the temp file (text file) that used to write the results 

(temporary array A[ ] by take the associate code from the 

Huffman tree for each element in the array. also the Huffman tree 

or the Huffman table that use during decompressed the file. 

 

Display the working of the procedure that use in the Algorithms 

 

Procedure Convert_Block_To_Chars (A [ ], K [2, 16]) 

  {For j=1 to length [A] 

   I=0 

     Found = true    

    While (found) and (I<= 16) then 

      {      I=I+1 

               If ( A[j] = K [2, I])   then  

                   A[j] = K [1, I] 

                   Found = false 

        }   
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   } 

Procedure Find Frequency (A [ ], T [2 , 17]) 

  {For j=1 to 17 

     C=0  

     For I=1 to length [A]  

        If T [1, j] =A[I] then 

               T [2, j] = C+1 

   } 

Algorithm Decompression File (input Compressed File, Huffman 

table) 

 

Create empty temporary file that will used to write the 

decompression file Use the loop statement that to replace each 

associate code in the compressed file with the characters from the 

Huffman table or tree. 

 

Use another loop statement to replace each characters in the temp 

file with the associate code that show in the figure 1 to retrieve 

the original file if appear the star in the temp file then separate 

each block to another block until to retrieve the original file. 

 

Euclidean distance  

The Euclidean distance between two points 

 and  , in Euclidean n-

space, is defined as: 

One-dimensional distance 

For two 1D points, and , the distance is 

computed as: 

 
Two-dimensional distance 

For two 2D points,  and  , the 

distance is computed as: 

 
Alternatively, expressed in circular coordinates (also known as 

polar coordinates), using  and  , 

the distance can be computed as: 
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