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ABSTRACT 
 

A steady MHD free and forced convective viscous 

incompressible electrically conducting flow in a rotating 

channel under constant pressure gradient has been studied. An 

exact solution of the governing equations has been obtained in 

closed form. The numerical results for the velocity components, 

the induced magnetic field components and the temperature 

distribution are being presented graphically. The shear stresses 

and critical Grashof numbers at the lower and upper plates have 

been calculated. The heat transfer characteristics have also been 

studied on taking viscous and Joule dissipations into account. 

The rate of heat transfer at the lower plate increases whereas the 

rate of heat transfer at the upper plate decreases with an 

increase in either magnetic parameter or Eckert number or 

Grashof number. 

Keywords 
 MHD flow, free and forced convection, induced magnetic 

field, rotation, Grashof number, heat transfer and Eckert 
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1. INTRODUCTION 
The study of hydromagnetic viscous conducting rotating flows 

has drawn attention due to occurrence of various natural 

phenomena and for its application in various technological 

situations which are directly governed by the action of Coriolis 

force, magnetic force and viscous force. The subject of 

geophysical fluid dynamics nowadays has become an important 

branch of fluid dynamics due to the increasing interest to study 

environment. In geophysics, it is applied to measure and study 

the positions and velocities with respect to a fixed frame of 

reference on the surface of earth which rotate with respect to an 

inertial frame in the presence of its magnetic field. In 

astrophysics, it is applied to study the stellar and solar structure, 

inter planetary and inter stellar matter, solar storms and flares 

etc. The effect of the magnetic field on free convection flows is 

important in liquid metals, electrolytes and ionized gases. The 

effects of buoyancy forces on MHD forced convective flow 

have not received much attention. Ostrach [1] has studied the 

combined effects of a steady free and forced convective laminar 

flow and heat transfer between two vertical walls. The heat 

transfer aspect of MHD channel flows has been studied by Yen 

[2], Soundalgekar [3] and Jagadeesan [4]. Gupta [5] has studied 

the effects of buoyancy forces on a forced convective flow 

through a horizontal channel with nonconducting walls. Nanda 

and Mohanty [6] considered the hydromagnetic flow in a 

rotating channel formed by two infinite horizontal plates under 

the action of a constant pressure gradient. Assuminng the flow 

to be steady, fully devolved they have shown that when the 

applied magnetic field and rotation are weak, the effect of the 

magnetic field on the flow in the direction normal to the 

pressure gradient is unaffected by rotation. Also for a strong 

magnetic field they observed modified Ekman layers near the 

boundaries whose thickness is inversely proportional to the 

magnetic field and the shear stresses at the plates always 

decrease with increase in the magnetic parameter. Jana et al. [7] 

and Seth and Maiti [8] have presented detailed analysis of the 

flow of a viscous incompressible fluid through the rotating 

channel. Mohan [9] has studied the free convection effects for a 

similar configuration. It is found that when the Grashoff 

number is large, the fluid in the vicinity of the two plates move 

in the opposite directions and the flow separation take place 

only at the lower plate. Hall effects on unsteady MHD free and 

forced convection flow in a porous rotating channel have been 

investigated by Sivaprasad et al. [10]. The forced convective 

heat transfer in a MHD channel with Hall and Ion-slip currents 

has been presented by Mittal and Bhat [11]. Rao et al. [12] have 

studied the combined effects of free and forced convection on 

MHD flow in a rotating porous channel. The 

magnetohydrodynamic combined convective flow through a 

horizontal channel is studied by Mori [13], Yu [14], Datta and 

Jana [15], Ghosh and Bhattacharyya [16] and Pop et al. [17]. 

Guria et al. [18] have studied the Hall effects on the 

hydromagnetic convective flow through a rotating channel 

under general wall conditions. The effects of wall conductance 

on MHD fully developed flow with asymmetric heating of the 

wall have been investigated by Guria et al [19]. Seth et al. [20] 

have studied the combined free and forced convection MHD 

flow in a rotating channel with perfectly conducting walls. 

Analytical solution to the problem of MHD free convective 

flow of an electrically conducting fluid between two heated 

parallel plates in the presence of an induced magnetic field has 

been presented by Singha[21]. The combined free and forced 

convection flow of a viscous incompressible electrically 

conducting fluid in a rotating channel have been investigated by 

Seth et al [22]. Ahmed [23] has analyzed the mixed convection 

hydromagnetic oscillatory flow and periodic heat transfer of a 

viscous incompressible and electrically conducting fluid past an 

infinite vertical porous plate. The exact solution of MHD mixed 

convection periodic flow in a rotating vertical channel with heat 

radiation has been presented by Singh [24]. Seth et al. [25] have 

studied the combined free and forced convection Couette-

Hartmann flow in a rotating system with Hall effects. 

        In the present paper, we have studied the MHD free and 

forced convective flow of a viscous incompressible electrically 

conducting fluid in a rotating channel in the presence of a 

uniform transverse magnetic field on taking induced magnetic 

field into account. The governing equations are solved 

analytically. The upper plate is moving with a uniform velocity 

U  and the lower plate is kept fixed. The results obtained are 

discussed graphically. It is found that both the primary velocity 

1u  and the absolute value of the secondary velocity 
1v  decrease 

with an increase in either magnetic parameter 2M  or Grashof 

number Gr . The induced magnetic field component 
xh  and the 

absolute value of the induced magnetic field component yh  

decrease with an increase in either magnetic parameter 2M  or 

Grashof number Gr . On the other hand, the induced magnetic 

field component 
xh  decreases and the absolute value of the 
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induced magnetic field component 
yh  increases with an 

increase in rotation parameter 2K . It is also observed that the 

shear stress 
1

x  due to the primary flow increases and the shear 

stress 
1

y  due to the secondary flow at the upper plate ( =1)  

decreases with an increase in magnetic parameter 2M . Further, 

the rate of heat transfer at the lower plate increases whereas the 

rate of heat transfer at the upper plate decreases with an 

increase in either magnetic parameter 2M  or Eckert number 

Ec  or Grashof number Gr . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS   
Consider the fully-developed combined free and forced 

convective flow of an electrically conducting fluid bounded by 

a perfectly conducting plate at = 0z  and a non-conducting 

plate at =z d  in a rotating system. Choose a Cartesian co-

ordinates system such as x -axis is along the lower stationary 

plate in the direction of the flow, the z -axis perpendicular to 

the plates and the y -axis normal to xz -plane (see Fig.1). The 

upper plate is moving with a uniform velocity U  while the 

lower plate is held at rest. The plates and the fluid rotate in 

unison with a uniform angular velocity   about z -axis. A 

uniform magnetic field 
0H  is applied perpendicular to the 

plates. The forced flow in the rotating channel is generated due 

to a constant pressure gradient. Since the plates are infinitely 

long, all physical variables, except pressure, depend on z  only. 

The equation of continuity = 0q


 with no-slip condition at 

the plates gives = 0w  everywhere in the flow where 

( , , )q u v w


. The solenoidal relation = 0H


 gives 

0constantzH H   everywhere in the flow where 

0( , , )x yH H H H


. 

  

  
 

          Figure1: Geometry of the Problem  
 

     The momentum equations for the fully developed steady 

flow in a rotating frame of reference are  
2

02
2 = ,x

e

p d u dH
v H

x dz dz
  


    


                   (1) 

2

02
2 = ,

y

e

dHd v
u H

dz dz
                                     (2) 

221
0 = ,

2

yx
e

d Hp d H
g

z dz dz
 

 
       

                    (3) 

where  , 
e ,   and p  are coefficient of viscosity, magnetic 

permeability, fluid density and modified fluid pressure 

including centrifugal force respectively. 

     The x - and y - components of the magnetic induction 

equations are  
2

02
= 0,x

m

d H du
H

dz dz
                                               (4) 

2

02
= 0,

y

m

d H dv
H

dz dz
                                               (5) 

 where 
1

m

e


 

  and   is the electrical conductivity of the 

fluid. 

      The boundary conditions for the velocity and the induced 

magnetic fields are  

0, 0, 0 at 0,
yx

dHdH
u v z

dz dz
      

, 0, 0, 0 at .x yu U v H H z d                     (6) 

    Assuming uniform axial temperature variation along the 

plates, the temperature of the fluid can be written as  

0 ( ),T T N x z                                                   (7) 

where N  is the uniform temperature gradient along x -

direction, ( )z  an arbitrary function of z , T  the fluid 

temperature and 
0T  the temperature in the reference state. 

      The equation of state under the Boussinesq approximation is 

assumed to be  

0 01 ( ) ,T T                                                 (8) 

 where    is the coefficient of thermal expansion and 
0  the 

fluid density in the reference state. 

      On the use of (8), the equation (3) becomes  

    

22

0 0

1
0 1 ( )

2

yx
e

d Hp d H
g T T

z dz dz
  

 
             

      (9) 

      Integrating the equation (9) with respect to z , we get  

      2 2

0 0

1
1 ( ) ( ),

2
e x yp g T T dz H H F x            (10) 

where ( )F x  is an unknown function. 

      On the use of (7) and (10), equations (1) and (2) become  

        
2

0

2

0

1
2 ,e xF d u H dH

v g N z
x dz dz


 

 


      


        (11) 

        
2

0

2
2 .

ye
dHd v H

u
dz dz





                                               (12) 

       Introducing the non-dimensional variables  

1 1

0

( , )( , )
, ( , ) , ( , ) ,

x y

x y

x e x

H Hz u v
u v h h

d U P Ud H P



        (13) 

 equations (11), (12), (4) and (5) become  
2

2 21
1 2

2 1 ,xd u dh
K v Gr M

d d


 
                          (14) 

2
2 21

1 2
2 ,

ydhd v
K u M

d d 
                                         (15) 

2

1

2
0 ,xd h du

d d 
                                                       (16) 

2

1

2
0 ,

yd h dv

d d 
                                                       (17) 

where 
2 2 2

2 0

0

e H d
M

 

 
  is the magnetic parameter which is 

square of Hartmann number, 
2

2 d
K




  the rotation parameter 
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which is reciprocal of Ekman number, 
3

x

g Nd
Gr

U P







  the 

Grashof number and 
2

0

x

d F
P

U x 


 


 the non-dimensional 

fluid pressure gradient. 

     Equation (7) shows that positive or negative value of N  

corresponds to heating or cooling of the channel plates along 

x -direction. Then from the expression of Gr  it is followed 

that >Gr  or < 0  according as the channel plates are heated or 

cooled in the axial direction. 

     Combining equations (14) and (15) and equations (16) and 

(17), we get  
2

2 2

2
2 1 ,

d f dh
M iK f Gr

d d


 
                          (18) 

2

2
0,

d h df

d d 
                                                         (19) 

 where  

1 1, a 1.x yf u iv h h ih nd i                     (20) 

     The corresponding boundary conditions for ( )f   and ( )h   

are  

0 at 0 and 1 at 1,f f      

0 at 0 and 0 at 1.
dh

h
d

 

                    (21) 

     Solutions of the equations (18) and (19) subject to the 

boundary conditions (21) are  

       
2

1 sinh sinh (1 )
( ) 1

sinh sinh
f

  


  

 
   

 
 

            
2

sinh sinh
,

sinh sinh

Gr  


  

 
   

 
                         (22) 

      
cosh cosh

( )
sinh

h
 


 


  

2

1 cosh cosh 1 cosh (1 )
1

sinh sinh

   


    

   
    

 
 

2

2

cosh cosh 1
(1 ) .

sinh 2

Gr  


  

 
   

 
                  (23) 

 where  

  

1
1 2

4 4 22
1

and , 4 .
2

i M K M    
 

      
 

        (24) 

On separating into a real and imaginary parts one can easily 

obtain the velocity components 
1u  and 

1v  from the equation 

(22) and the induced magnetic field components 
xh  and yh  

from the equation (23). In the absence of Hall currents ( = 0m ), 

equations (22) and (23) are not exactly identical with equations 

(22) and (23) of Seth et al.[25] due to the different boundary 

conditions. 

 

3. RESULTS AND DISCUSSION 
We have presented the non-dimensional primary velocity 

1u  

and secondary velocity 
1v  against   for several values of 

magnetic parameter 2M , rotation parameter 2K  and Grashof 

number Gr  in Figs.2-4. Figs.2 and 3 show that the primary 

velocity 
1u  and the absolute value of the secondary velocity 

1v  

decrease with an increase in either magnetic parameter 2M  or 

Grashof number Gr . It is seen from Fig.4 that the primary 

velocity 
1u  decreases whereas the absolute value of the 

secondary velocity 
1v  decreases in the vicinity of the lower 

plate and increases near the upper plate with an increase in 

rotation parameter 2K . The rotation parameter 
2

2 =
d

K



 

defines the relative magnitude of the Coriolis force and the 

viscous force, therefore it is clear that high magnitude Coriolis 

forces are counter-productive for the primary flow. Also, we 

have presented the non-dimensional primary induced magnetic 

field component 
xh  and the secondary induced magnetic field 

component 
yh  against   for several values of magnetic 

parameter 2M , rotation parameter 2K  and Grashof number 

Gr  in Figs.5-7. It is revealed from Figs.5 and 6 that both the 

induced magnetic field component 
xh  and the absolute value of 

the secondary induced magnetic field component 
yh  decrease 

with an increase in either magnetic parameter 2M  or Grashof 

number Gr . It means that both the magnetic field and 

buoyancy force have a tendency to reduce the primary and the 

secondary induced magnetic field components. Fig.7 shows that 

an increase in rotation parameter 2K  leads to reduce the 

primary induced magnetic field component 
xh  and accelerates 

the absolute value of the secondary induced magnetic field 

component 
yh .  

  

           
Figure 2: Primary and secondary velocities for different 

2M  when = 5Gr  and 2 = 5K  

 

 
Figure 3: Primary and secondary velocities for different Gr  

when 2 =10M  and 2 = 5K  
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Figure 4: Primary and secondary velocities for different 2K  

when 2 =10M  and = 5Gr  

 
Figure 5: The induced magnetic field components for 

different 2M  when = 5Gr  and 2 = 5K  

  

  
Figure 6: The induced magnetic field components for 

different Gr  when 2 =10M  and 2 = 5K  

   

  
Figure 7: The induced magnetic field components for 

different 2K  when 2 =10M  and = 5Gr  

 

      The non-dimensional shear stress components due to the 

primary and secondary flows at the lower plate = 0  are 

respectively  

 

2
1 32 2 2 20

2
,

( )(cosh 2 cos2 )
x

a Gr
a a

     

 
    

   
   (25) 

2
1 32 2 2 20

2
.

( )(cosh 2 cos2 )
y

b Gr
b b

     

 
   

   
      (26) 

      Similarly, the non-dimensional shear stress components due 

to the primary and secondary flows at the upper plate 1   are 

respectively  

2
1 32 2 2 21

2
,

( )(cosh 2 cos2 )
x

a Gr
a a

     


 

   
   

     (27) 

2
1 32 2 2 21

2
,

( )(cosh2 cos2 )
y

b Gr
b b

     


 

    
   

    (28) 

 where  

1

1
sinh cos cosh sin ( sinh 2 sin 2 ),

2
a               

1

1
cosh sin sinh cos ( sin 2 sinh 2 ),

2
b               

2 2

2 ( )( sinh cos cosh sin )a            

   2 21
( )(cosh 2 cos2 ),

2
       

2 2

2 ( )( cosh sin sinh cos )b            

     (cosh2 cos2 ),     
2 2

3 ( )( sinh cos cosh sin ),a            

2 2

3 ( )( sinh cos cosh sin ),b            

2 2

2

1
( )( sinh 2 sin 2 )

2
a           

    2 2( )(cosh 2 cos2 ) ,                                     (29) 

2 2

2

1
( )( sin 2 sinh 2 )

2
b           

   2 (cosh 2 cos2 ) ,      

2 2

3

1
( )( sinh 2 sin 2 ),

2
a           

2 2

3

1
( )( sinh 2 sin 2 ).

2
b           

        It is interesting to note that the shear stress components 

due to the primary and secondary flows do not vanish at the 

plates 0   and 1   and they depend on both magnetic 

parameter 2M  and rotation parameter 2K  when = 0Gr . Thus, 

we deduce an interesting conclusion that for conducting plates 

there are no flow reversal in the absence of buoyancy force 

= 0Gr . 

        Numerical results of the shear stresses at the plates = 0  

and =1  are depicted in Figs.8-11 against magnetic parameter 
2M  for several values of Grashof number Gr  and rotation 

parameter 2K . Fig.8 shows that both the shear stress 
0

x  due to 

the primary flow and the absolute value of the shear stress 
0

y  

due to the secondary flow at the lower plate = 0  decrease 

with an increase in Grashof number Gr . This implies that the 

buoyancy force has a tendency to reduce the shear stresses at 
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the lower plate. It is seen from Fig.9 that the shear stress 
0

x  

decreases and the absolute value of the shear stress 
0

y  

increases with an increase in rotation parameter 2K . This 

means that rotation has tendency to reduce the primary shear 

stress and to enhance the secondary shear stress at the lower 

plate ( = 0) . Further, it is illustrated from Fig.10 that the shear 

stress 
1

x  due to the primary flow increases while the shear 

stress 
1

y  due to the secondary flow at the upper plate ( =1)  

decreases with an increase in Grashof number Gr  . It implies 

that the buoyancy force has a tendency to enhance the primary 

shear stress and to reduce the secondary shear stress at the 

upper plate. It is seen from Fig.11 that the shear stress 
1

x  and 

the shear stress 
1

y  increase with an increase in rotation 

parameter 2K . Thus, the rotation has a tendency to enhance the 

shear stresses at the upper plate. Further, it is found from Fig.8 

that the the shear stress 
0

x  increases whereas the shear stress 

0
y  decreases with an increase in magnetic parameter 2M  for 

fixed value of Gr . Fig.9 reveals that both the shear stresses 
0

x  

and 
0

y  decrease with an increase in magnetic parameter 2M  

for fixed value of 2K . Figs.10 and 11 show that the shear stress 

1
x  increases and the shear stress 

1
y  decreases with an 

increase in magnetic parameter 2M  for fixed values of Gr  and 
2K . Thus, magnetic field has a tendency to enhance the 

primary and to reduce the secondary shear stress at the upper 

plate.  

 
Figure 8: Shear stresses 

0
x  and 

0
y  for different Gr  when 

2 = 5K  

   
Figure 9: Shear stresses 

0
x  and 

0
y  for different 2K  when 

= 5Gr  

   

   
Figure 10: Shear stresses 

1
x  and 

1
y  for different Gr  when 

2 = 5K  

   

  
Figure 11: Shear stresses 

1
x  and 

1
y  for different 2K  when 

= 5Gr  

 

      The shear stresses at the plate = 0  due to the primary and 

secondary flows respectively will vanish if the critical Grashof 

numbers are as  

2 21 3

0
2

( ),x

a a
Gr

a
 


                                       (30) 

2 21 3

0
2

( ),y

b b
Gr

b
 


                                         (31) 

where   and   are given by (24), 
1 2 3 1 2, , , ,a a a b b  and 

3b  are 

given by (29). 

       Similarly, the primary and secondary shear stresses will 

vanish at the upper plate =1  if the critical Grashof numbers 

are as  

2 21 3

1
2

( ),x

a a
Gr

a
 






                                       (32) 

2 21 3

1
2

( ),y

b b
Gr

b
 






                                        (33) 

where   and   are given by (24), 1 2 3 1 2, , , ,a a a b b    and 3b  are 

given by (29). We have computed the critical Grashof numbers 

for which the primary and secondary flows reversal occur at the 

lower and upper plate for several values of magnetic parameter 
2M  and rotation parameter 2K  and are presented in Tables 1 

and 2. It is seen from Table 1 that the critical Grashof number at 

the lower plate for the primary flow as well as for the secondary 

flow reversal decreases with an increase in rotation parameter 
2K  for fixed value of magnetic parameter 2M . Further, the 
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critical Grashof number at the lower plate for the primary flow 

reversal increases whereas for the secondary flow reversal 

decreases with an increase in magnetic parameter 2M  for fixed 

value of rotation parameter 2K . It is observed from Table 2 

that the absolute value of critical Grashof number for the 

primary flow as well as critical Grashof number for the 

secondary flow at the upper plate increase with an increase in 

either rotation parameter 2K  or magnetic parameter 2M . 

 

Table 1. Critical Grashof numbers at the lower plate 

  

   
0

xGr   
0

yGr   

 2 2\M K    6   8   10 12   6   8   10 12  

 10  

15  

20  

25  

6.28842  

6.60528  

6.77021  

6.91035  

5.29808 

6.07865 

6.48801 

6.77003 

4.25558  

5.56441  

6.23118  

6.65852  

3.30211  

5.15921  

6.06387  

6.61841  

8.31294  

7.68155  

7.16846  

6.73376  

7.73973  

7.23320 

6.82050 

6.46536 

7.06652 

6.70448 

6.40910 

6.14712 

6.34383  

6.13039 

5.95907 

5.79709 

  

Table 2. Critical Grashof numbers at the upper plate 

  

  2

1
10 xGr    

2

1
10 yGr

  

2 2\M K    6   8   10 12   6   8   10 12  

 10  

15  

20  

25  

0.17779  

0.22445  

0.27369  

0.32427  

0.20.714 

0.24.872 

0.29415 

0.34186 

0.23997  

0.27691  

0.31856  

0.36321  

0.27489  

0.30790  

0.34604  

0.38768  

0.30659  

0.35330  

0.40334  

0.45523  

0.33437  

0.37705 

0.42387 

0.47318 

0.36684 

0.40539 

0.44874 

0.49518 

0.40262  

0.43726 

0.47717 

0.52065 

  

  

4.  HEAT TRANSFER 
      The energy equation for the fully developed flow including 

the viscous and Joule dissipations is  
22 2 22

2

1
0,

yx
dHd T du dv dH

k
dz dz dz dz dz




         
             

            

  (34) 

 where k  is the thermal conductivity and   the dynamic 

viscosity. 

Using (7) and (14), the equation (34) can be written in a non-

dimensional form as  

 

22 2 22
21 1

2
0,

yx
dhdhd du dv

Pr Ec M
d d d d d



    

         
            
           

(35) 

where 
pC

Pr
k


  is the Prandtl number, 

2

1 0( )p

U
Ec

C T T



 the 

Eckert number, 
( )

( )
z

NLP


   , pC  the specific heat at constant 

pressure and 
1T  denote the uniform temperature of the plate at 

=z d . 

       For the temperature boundary conditions, we assume the 

reference temperature 
0T  in such a way that the temperature at 

the lower plate ( = 0)  is 
0T Nx  and then by virtue of the 

equation (7), we have ( 1) = 0  . Hence using (7) the boundary 

conditions for ( )   are given by  

(1)
(0) 0 and (1) (say),A

NL


                    (36) 

 where A  is taken as the plate temperature parameter. 

Substituting the values of 
1u , 

1v , 
xh  and yh  from equations 

(22) and (23) into (35) and solving the resulting differential 

equation subject to the boundary condition (36), one can obtain 

temperature distribution ( )  . We avoid the expression of fluid 

temperature ( )   as it is lengthy. 

 

 

Effects of magnetic parameter 2M , rotation parameter 2K , 

Grashof number Gr  and Eckert number Ec  on the fluid 

temperature distribution have been shown in Figs.12-15 when 

= 3Pr  and = 1A . It is seen from Fig.12 that the fluid 

temperature ( )   decreases with an increase in rotation 

parameter 2K . This implies that rotation tends to reduce fluid 

temperature. Figs.13-15 show that the fluid temperature ( )   

increases with an increase in either magnetic parameter 2M  or 

Grashof number Gr  or Eckert number Ec . This implies that 

magnetic field and Grashof number tend to enhance fluid 

temperature. An increase in Eckert number lead to increase the 

fluid temperature. This is due to the heat energy stored in the 

fluid because of the frictional heating.  

  

        
Figure 12: Temperature   for different 2M  when = 5Gr , 

2 =10K  and = 0.1Ec   
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Figure 13: Temperature   for different 2K  when = 5Gr , 

2 =10M  and = 0.1Ec  

  

  
Figure 14: Temperature   for different Gr  when 2 =10M , 

2 =10K  and = 0.1Ec   

   

         
Figure 15: Temperature   for different Ec  when 2 =10M , 

2 =10K  and = 5Gr   

         The numerical values of the rate of heat transfer 
=0

d

d






 
 
 

 

at the lower plate and 
=1

d

d






 
 
 

 at the upper plate are entered in 

Tables 3-5 for several values of magnetic parameter 2M , 

rotation parameter 2K , Eckert number Ec  and Grashof 

number Gr  when = 0.03Pr  and = 1A . It is seen from Tables 

3 and 5 that the rate of heat transfer at the lower plate increases 

whereas it decreases at the upper plate with an increase in either 

magnetic parameter 2M  or Eckert number Ec  for fixed value 

of Grashof number Gr . It is observed from Table 4 that the rate 

of heat transfer at the lower plate ( = 0)  decreases while it 

increases at the upper plate ( =1)  with an increase in rotation 

parameter 2K  for fixed value of Grashof number Gr . Further, 

it is seen from Tables 3-5 that the rate of heat transfer at the 

lower plate increases whereas it decreases at the upper plate 

with an increase in Grashof number Gr . 

 

Table 3. Rate of heat transfers 

=0

d

d






 
 
 

 and 

=1

d

d






 
 
 

 when 2 10K   and 0.1Ec   

  

  
  

=0

d

d






 
 
 

   
=1

d

d






 
 
 

  

 
2\Gr M   

 5   10   15 20   5   10   15 20  

 2  

4  

6  

8  

1.00159  

1.00160  

1.00165  

1.00175  

1.00170 

1.00177 

1.00190 

1.00207 

1.00175  

1.00187  

1.00203  

1.00225  

1.00177  

1.00191  

1.00209  

1.00232  

0.99027  

0.98977  

0.98917  

0.98847  

0.98850  

0.98767 

0.98675 

0.98572 

0.98679 

0.98572 

0.98455 

0.98328 

0.98522  

0.98400 

0.98268 

0.98127 

  

  

Table 4. Rate of heat transfers 

=0

d

d






 
 
 

 and 

=1

d

d






 
 
 

 when 2 =10M  and = 0.1Ec  

  

  

  

  

 

 

 

 

 

 
 

=0

d

d






 
 
 

   
=1

d

d






 
 
 

   

2\Gr K    1   2   3 4   1   2   3 4  

 2  

4  

6  

8  

1.00220  

1.00258  

1.00306  

1.00363  

1.00215  

1.00249  

1.00292  

1.00345 

1.00207 

1.00236 

1.00274 

1.00321 

1.00199  

1.00223  

1.00255  

1.00296  

0.98883  

0.98628  

0.98355 

0.98064  

0.98897  

0.98662  

0.98409  

0.98140  

0.98912 

0.98703 

0.98478 

0.98235 

0.98922 

0.98740 

0.98542 

0.98328 
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Table 5. Rate of heat transfers 

=0

d

d






 
 
 

 and 

=1

d

d






 
 
 

when 2 =10K  and 2 =10M  

  

  

  

 

 

 

 

 

 

 

5.  CONCLUSION 
The forced flow in the rotating channel is generated deu to a 

constant pressure gradient and the interaction of the magnetic 

field with the effects of free convection on this forced field has 

been investigated. It is found that the magnetic field and the 

thermal buoyancy force have a retarding influence on the 

velocity as well as induced magnetic field components. The 

thermal buoyancy force tends to reduce the primary as well as 

secondary induced magnetic field components. It has less effect 

on the secondary induced magnetic field. The velocity and 

induced magnetic fields have been significantly affected by 

rotation. The rotation has same effect on the induced magnetic 

field components as thermal buoyancy force. The shear stresses 

at the plates depend on both the magnetic field as well as 

rotation even in the absence of buoyancy force. The fluid 

temperature increases with an increase in either magnetic 

parameter or Eckert number or Grashof number while it 

decreases on increasing of rotation parameter. Further, the rate 

of heat transfer at the lower plate increases whereas it decreases 

at the upper plate with an increase in Grashof number. 
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