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ABSTRACT
The paper describes a computational framework for time-series
analysis. It allows rapid prototyping of new algorithms, since
all components are re-usable. Generic data structures repre-
sent different types of time series, e. g. event and inter-
event time series, and define reliable interfaces to existing big
data. Standalone applications, highly scalable MapReduce pro-
grams, and User Defined Functions for Hadoop-based anal-
ysis frameworks are the major modes of operation. Effi-
cient implementations of univariate and bivariate analysis al-
gorithms are provided for, e. g., long-term correlation, cross-
correlation and event synchronization analysis on large data sets.
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1. INTRODUCTION
Time series analysis techniques are used in a wide range of appli-
cations including complexity science, physics, climate research,
(neuro-) physiology, medical diagnostics, economics, and sys-
tems operations [1, 2, 3, 4]. As more and more large data sets be-
come publicly available [5, 6], time series analysis is also needed
in social and communication sciences. A robust set of tools on
top of an easy-to-use scalable processing environment can sup-
port interdisciplinary research, since it enables the application of
advanced statistical methods across disciplines.

1.1 The Hadoop Ecosystem and Hadoop.TS
The emergence of the still growing Hadoop [7, 8] ecosystem is
motivated by limitations of existing database servers and analysis
applications. It is driven by the need for scalable robust solutions
for large-scale data analysis.
Large-scale computing, in general, is not new. In grid comput-
ing, large computational units process relatively small data sets,
which are often stored on separated storage clusters. Opposite to
this approach, a Hadoop cluster combines processing resources,
distributed storage, and efficient data and workload distribution
within one single computer cluster. For time series analysis,
such an environment is more efficient than traditional relational
databases, although Hadoop is not a database server system. It
is a large-scale processing platform, which is optimized for filter
and join operations implemented in high level query languages
like Hive and Pig [9, 10] on top of the core Hadoop system.
The Java programming language is used to implement multiple

types of scientific applications, e. g. for machine learning, graph
analysis or – in the case of Hadoop.TS – for Time Series analysis.
One of the important strengths of a Hadoop cluster is its capa-
bility of storing large-scale unstructured or semi-structured data
sets. A schema or a record structure is introduced during the pro-
cessing stage, not while the data are being loaded. Large amounts
of data can be collected and processed without the need of defin-
ing a certain format in the beginning. This implies that there is no
guarantee for the accuracy and reliability of data, since data were
not checked while they were stored. One has to handle missing
data, and the quality of data has to be evaluated as part of the pro-
cessing procedures. Beside this, one has to find an appropriate
data representation which fits well to certain algorithms. In par-
ticular, time series have to be of the same resolution and length
for some algorithms like cross-correlation analysis. In this case,
missing values can be interpolated or replaced by averages of the
whole data row or the whole data set.
The Hadoop.TS framework is a collection of core data types,
data type mappers, and connectors to existing storage frame-
works. Specifically, Hadoop.TS consists of loosely coupled soft-
ware components implemented in Java. The project’s focus is
on an easy implementation of time series analysis applications,
which process large-scale data sets. The major components can
be used within a Hadoop cluster or in standalone applications.
With special components called User Defined Functions (UDF)
Hadoop.TS hooks smoothly into Hive and Pig. This way, the im-
plementations of time-series algorithms can be re-used in exist-
ing script-based applications. The framework was created and
initially used in the complex-systems research project SOCIONI-
CAL [11].
In this paper, the core concepts of Hadoop.TS are outlined to
illustrate the advantages of the approach. Details about impor-
tant related projects are given in Section 2, followed by a de-
scription of the data structures for scalable time-series process-
ing (Section 3) and data flow and processing stages (Section 4).
Section 5 describes the data analysis methodology implemented
in Hadoop.TS. Then the Hadoop.TS packages (Section 6) and
core components (Section 7) are detailed, explaining how they
interact with each other and with the environment. Finally, re-
sults for surrogate data created by integrated data generators are
presented (Section 8), followed by conclusion and outlook (Sec-
tion 9).

1.2 Motivation for Scalable Time Series Analysis
Algorithmic prototyping is often done with Matlab or its open
source equivalent Octave. The programming language Python is
also frequently used to implement and test new algorithms. How-
ever, there is a barrier between such development environments
and scalable platforms, since the application of implemented al-
gorithms to large data sets is usually not in the focus of the men-
tioned systems. As more and more large public data sets become
available [5, 6] and cloud-based computing is widely accepted,
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Fig. 1. The Hadoop.TS library extends the Hadoop ecosystem. It
can even be used as component for standalone applications which
interact with a Hadoop cluster. Data collection is done via Flume
and Sqoop, depending on the origin of the data. Sqoop is used for
bulk import of time-series data from relational data base servers.
On the other hand, FlumeNG provides a reliable data collection

and preprocessing framework for collecting sporadic events. More
advanced data preprocessing is done with Hive (HiveQL) and Pig
(Pig Latin). Complete applications are created as workflows with

multiple stages of MapReduce jobs, which are managed by Oozie. A
very easy user interface is available with HUE. All of these software

components are available with an open source license.

more research projects and scientific applications will benefit
from a collection of efficient and well tested implementations
of established time-series analysis algorithms.
The authors’ previous work on Wikipedia access-rate and edit-
event time series [12] is just one example. Content creation and
information retrieval in Wikipedia has been studied to compare
the dynamical properties of both processes. In particular, the
long-range correlation properties of single time series derived
from the log data of each single Wikipedia page have been in-
vestigated. The computational procedures for Detrended Fluc-
tuation Analysis (DFA) [13, 14, 15, 16], Multifractal Detrended
Fluctuation Analysis (MFDFA) [17, 18, 19], and Return Inter-
val Statistics (RIS) [20, 21, 22, 23] (see also [24] for a review
paper) were implemented as part of the Hadoop.TS package. Al-
gorithms in this group are used for a characterization of single-
element properties. The calculated properties of each time series
form real world objects.
Another group contains algorithms to calculate correlations be-
tween pairs of such elements. For example, in their studies on
information spread within social networks, the authors used the
Hadoop.TS implementation of Cross-Correlation (CC) [1] and
Event Synchronisation (ES) [25] algorithms for pairs of time se-
ries to reconstruct correlation-based functional networks among
groups of Wikipedia pages [26]. The very recent concept of
Time-Delay Stability (TDS) [27] also calculates CC-based prop-
erties for pairs of time series in a physiological context. In [28]
CC analysis has been applied to classify traffic states based on
episodes of time series measured in an traffic control system. In
both cases, one takes into account that the interaction of system
elements determines the system state, not just the average prop-
erties of the elements at a certain time. While RIS, DFA, and
MFDFA are applied to individual data rows as parts of a large
ensemble, pairs of data rows are processed in the case of CC,
TDS, and ES analyses.
These and many other applications in physics, climate research,
and medical research have demonstrated that the algorithms al-
low new insights and even completely new research approaches
based on large data sets, which can now be combined as well.
The applications show why time series analysis is an important
part of complex systems research. The evolution of a system and
emerging phenomena cannot be understood by just looking at
single snapshots of independent measurements. There is the need

for a solid framework that allows a rapid development of new
time-series analysis algorithms while it offers a tight integration
into large-scale processing frameworks. Short iteration cycles
are supported by agile development processes and high-level ab-
stractions for application developers. Therefore, the Hadoop.TS
framework was created, with the goal of providing a set of core
components and a set of best practices to support the develop-
ment of time-series analysis applications for interdisciplinary re-
search.

2. RELATED WORK
Generic use cases for Hadoop include log file analysis or de-
normalization of sometimes very large tables stored in relational
databases. Such join operations on large data sets lead to even
larger portions of data. To work efficiently with these data one
needs a scalable platform. Another typical application is the cre-
ation of an inverted index which has driven the development of
the core Hadoop system during the last decade. It consists of the
Hadoop Distributed Filesystem (HDFS) [8] and the MapReduce
[7] framework. Special purpose applications, e. g. the implemen-
tation of multiple machine learning algorithms like Apache Ma-
hout [29] are available as standalone libraries, but they can be
used in an Hadoop cluster as well. The purpose of Apache Gi-
raph [30] is a different one. Although many graph algorithms can
be implemented based on the MapReduce paradigm, in Apache
Giraph the MapReduce framework is just used within a bootstrap
phase to load a distributed graph representation into the memory
of the cluster nodes. Afterwards, the Bulk Synchronous Process-
ing approach [31] (comparable to the Google Pregel project [32])
is used for faster and more efficient implementations of, e. g.,
calculation of page rank, network diameter, or shortest path be-
tween nodes in really large networks. In many cases the proper-
ties of nodes and edges are measured or collected directly, but for
functional networks such information is calculated based on time
series. Hadoop.TS provides data for such algorithms and works
as an integration layer between multiple existing systems. The
following subsections will report details about related projects
in the Apache ecosystem and discuss their relations to Hadoop
and Hadoop.TS.

2.1 Apache Commons Math
A bunch of mathematical software is collected in the Apache
Commons Math package [33], but not with the focus on parallel
processing. The class AbsractRealMartrix, an implementation of
a distributed large matrix and a parallel computation of covari-
ance, was developed by Pebay et al. [34] and implemented in the
class StorelessCovarianz. Although the focus of the package is
not on parallel computing, many very useful components can be
applied in Hadoop related software.

2.2 Apache Hadoop
The Hadoop ecosystem is an open environment, not bound
strongly to the Java programming language. Nevertheless, a deep
integration can be done best based on the Java API, which
Hadoop provides. The Hadoop core libraries [7] contain a set
of data types, which implement the Writable and the Writable-
Comparable interface. This is relevant for storing data objects
with the serialization mechanism that works preferably with so-
called sequence files. As soon as some data have to be stored
in HDFS or moved to another cluster node they are serialized.
Therefore one needs an efficient mapper code in order to map
the in-memory representation of the data to an external repre-
sentation. Many serialization frameworks with different proper-
ties are available for different use-cases, e. g. the SequenceFile
class, the AVRO framework, or even several compression codecs.
The Hadoop.TS library offers a set of standardized components
like generic data type mappers for an easy adaption to existing
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data type implementations. Internally, it re-uses the Hadoop and
Java core data types as often as possible with focus on interoper-
ability.

2.3 Apache Mahout and Apache Giraph
Some more problem specific data types or data containers are
implemented in the Apache Mahout packages. However, such
classes are not intended to be available in all future versions. One
has to be careful if data, represented in a binary form based on
such types, have to be stored or exported to other systems. The
code to read the data should be maintained and published to-
gether with the data set. Time series can be implemented based
on objects of type Vector or NamedVector, but there is a need
to add more meta data to a time series like a time stamp of its
first value, a time interval or a distance for equidistant time se-
ries or even a complete list of all distances. Apache Mahout as
well as Apache Giraph are software components developed for
the Hadoop platform. Besides this, some algorithms in Mahout
can be used on single computers like desktop PCs or a single
servers. In order to reuse existing implementations of several
Machine Learning (ML) or Graph Processing (GP) algorithms,
Hadoop.TS provides data type converters and procedure connec-
tors for both systems.

2.4 OpenTSDB and Apache HBase
Beside the processing framework and some generic libraries,
Hadoop.TS is related to the data storage layer as well. Fast ran-
dom access to small portions of large data sets is a key issue.
While HDFS does not allow random access to a certain record
within a file and because data cannot be appended to an HDFS
file, time series data are stored in Apache HBase With this ser-
vice one is able to store time series data as a binary encoded
data structure or even as a set of single values together with meta
data describing previous processing steps and applied parame-
ters. To identify a single value or a complete data row, the keys
are defined in an application-specific but efficient way. On top of
HBase, retrieval of single values (random access) or even bulk
processing of all available data can be done very efficiently based
on MapReduce programs. Another storage system for time series
data is OpenTSDB which is also build around HBase. This sys-
tem offers a set of best practices together with quite flexible tools
to collect and manage time series from several IT Systems.

2.5 Apache Hive and Apache Pig
Some simple functions which can be used for time series anal-
ysis are implemented in Hive [9] and Pig [10]. Both are high-
level analysis frameworks on top of Hadoop. Both have their spe-
cific scripting languages (HiveQL and Pig-Lattin) used for data
analysis applications or data analysis work flows. Both systems
require data stored within the underlying cluster, which means
data have to be stored in HDFS, before they can be processed.
Those systems are well accepted and very flexible, as well as
extendable. With such high-level analysis tools the implementa-
tion of scalable distributed procedures like filter, join, and group-
ing operations or re-partitioning of existing data sets are very
intuitive. The creation of time series pairs, which are used for
cross-correlation or event-synchronization calculations, is a typ-
ical case to use a join operation, which creates a cartesian prod-
uct [35]. Operations on a record level, which means each single
time series or each pair of time series is handled as a record here,
are implemented by so-called User Defined Functions (UDF).
Therefore, Hadoop.TS offers a set of UDF which help to reuse
the implementations within Hive and Pig. This approach allows
a quick integration of the Hadoop.TS algorithms within exist-
ing analysis procedures or applications. An official collection of
UDF for Pig is available in the project called PiggyBank [36].
The project SQLWindowing [37] is also focused on analytical

functions with some pre-built functions for windowing (to do
ranking, aggregation, and linear regression) and table functions
(to do time series analysis, market basket analysis, etc.). Analy-
sis algorithms implemented in Hadoop.TS will be re-usable also
within the SQLWindowing framework.

3. SCALABLE TIME SERIES PROCESSING –
THE BUCKET CONCEPT

Efficient data collection and accurate preprocessing of data are
at least as important as the selection of the appropriate algorithm
for a given problem. In research settings these types of questions
cannot be answered in the beginning. Hadoop.TS is focused on
such situations, since it separates data management and algo-
rithm development while it connects both to the storage and pro-
cessing platform. In many applications one has to organize the
data according to the way they are processed later. This step is
called partitioning of data and can be done as soon as data ap-
pears or is collected. If one collects data in a more unstructured
way, a preprocessing step is necessary for many algorithms. Even
some re-partitioning might be needed if one wants to work with
a different set of parameters like time resolution, sampling rate,
time frame etc. Sometimes not the time series but some addi-
tional information is used for grouping data, e. g. properties of
reconstructed functional networks.
Hadoop.TS works with the concept of time series Buckets. Such
a Bucket is a collection of time series which was created for
a specific or even generic application of several time series al-
gorithms. It is comparable to a table in a relational data base
or to a Hive table, and beside this, it contains also the full pre-
processing history. Buckets also contain descriptive statistics to
support traceability across the whole data analysis workflow.
Based on such data, some algorithms can do consistency checks
before data are processed or before data from multiple Buck-
ets are merged. Simple transformations of Buckets are filtering,
sampling and resampling or merging of multiple Buckets. Self-
adapting algorithms will stop automatically with a warning if
data do not fit to predefined compatibility roles. Such consistency
or compatibility roles are useful in large applications with data
from different sources and help to produce valid results, even if
preprocessed data are used.
The storage procedures for Buckets have been optimized for bulk
processing as well as for random access to each single time series
identified by a unique identifier. Data synchronization and con-
sistency checks have been implemented as a part of Hadoop.TS.
While time series analysis is done as part of more complex anal-
ysis workflows, Hadoop.TS tracks processing steps and collects
a set of well defined properties to describe the life cycle of the
data set. All relevant properties of each applied algorithm are col-
lected in a processing history, which describes its state or phase
within a longer life cycle.

4. DATA FLOW AND PROCESSING STAGES
After some important non-functional requirements were de-
scribed in the previous section, the architecture and the core
functionality of Hadoop.TS is explained in the following sec-
tions.
There are many places there the Hadoop.TS library hooks into
the Hadoop ecosystem, e. g. the MapReduce API, UDFs in Hive
and Pig or even the browser-based web user interface, called
HUE, see also Fig. 1. Data collection and data integration is
done with many different systems on multiple levels. Docu-
ments and messages, procedure calls, shared data stores or just
shared access to a database server can be used to implement sev-
eral integration scenarios. A collection of un-structured or semi-
structured data can be created with the FlumeNG framework,
which collects event data or documents and stores such data in
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Fig. 2. Generic architecture of a Hadoop time series analysis
cluster.

HDFS or HBase. An efficient import from relational database
servers is done with Sqoop.
A generic representation of data is a key to efficient analysis pro-
cess integration. While HBase stores all data just as a byte array,
analysis applications have to transform such data to a higher level
representation in a consistent way. Figure 2 shows a Hadoop
cluster and related systems between which data and metadata
flow. Usually data are created or measured in one subsystem (A)
before the data can be stored in the cluster (C), which is shielded
by a firewall. The data collection and aggregation layer (B) is re-
sponsible for data preprocessing. This is the place where a time
series Bucket can be created and stored in HDFS (C.1). If data
should be stored in HBase or OpenTSDB an additional prepro-
cessing step (C.2) is necessary to create such Buckets, which are
used later within a certain analysis task or workflow. An analy-
sis context, which contains the process history of a data set, is
defined within the metadata management tool (D). All process-
relevant information, like parameter settings or even runtime
logs, is managed by this external service, which offers a pro-
cess memory and allows traceability of individual results. Beside
metadata, also the binary libraries used in each procedure can be
managed by this service. This provides a short path to reproduce
a certain step later on, independent of the software version cur-
rently available. Manual interactions with the whole system are
done from a remote workstation (E), a cluster client.
Within a Hadoop cluster, multiple generic data flows can
be identified. A classification for operations, implemented in
Hadoop.TS is given in the following list:

—Collection and aggregation of un- or semi-structured data

—Extraction of event-data from documents or time series

—Creation of time series Buckets

—Change of sampling rate and filtering of Buckets

—(Re-) partitioning and extraction of random samples of time
series from a Bucket

—Time series transformation or single time series processing

—Grouping and processing of time series pairs

5. TIME SERIES ANALYSIS IN COMPLEX
SYSTEMS RESEARCH

This section describes the details of the selected time series al-
gorithms for complexity research, which have already been im-
plemented in Hadoop.TS libraries. There are two major types,
although in both cases many time series are used to calculate
properties characterizing the complex system. Firstly, individual
time series are used to calculate data later used for averages like
the average fluctuation function of an ensemble of time series.
With such results, one can find out if the underlying processes
have long-term memory or feedback loops. Secondly, time se-
ries pairs are used to calculate cross correlations, and then cross-
correlation networks are reconstructed. With such functional net-
works, the evolution of dynamical properties can be studied.

5.1 Long-Term Correlations in Time Series
5.1.1 Auto Correlations. The analysis begins with the subtrac-
tion of the average value ∆xj(t) = xj(t) − x̄j with x̄j =

〈xj(t)〉 = 1
L

∑L

t=1
xj(t). Here, L is the lengths of the consid-

ered jth time series (xj(t)). Then the (auto-) correlation function
is calculated for various time delays s (see, e. g. [24]),

C(s) =
1

〈∆xj(t)2〉(L− s)

L−s∑
t=1

∆xj(t)∆xj(t+ s) (1)

If the ∆xj(t) are uncorrelated, C(s) is fluctuating around zero
for s > 0. For the relevant case of long-term correlations, C(s)
decays as a power law characterized by a correlation exponent γ,

C(s) ∼ s−γ , 0 < γ < 1. (2)

A direct calculation of C(s) is often hindered by unreliable be-
havior of C(s) for large s due to finite-size effects (finite L) and
non-stationarities in the data (i. e. a time-dependent, not well-
defined average 〈xj(t)〉 that changes with the considered length
L).

5.1.2 Detrended Fluctuation Analysis (DFA). The DFA
method was introduced in order to overcome these obstacles
[13]. It has become a widely used technique for the detection
of long-term correlations in noisy, non-stationary time series
with more than 750 publications using the approach up to
now (2013); see [15, 24, 16] for more detailed discussions of
the method and its properties. In general, the DFA procedure
consists of the following four steps:

(1) calculate Yj(i) =
∑i

t=1
[xj(t)−〈xj(t)〉], i = 1, . . . , L, the

so-called ’profile’,
(2) divide Yj(i) into Ls = int(L/s) non-overlapping segments

of equal length s,
(3) calculate the local trend for each segment by a least-square

fit to the data, where linear, quadratic, cubic, or higher order
polynomials [14] are used in the fitting procedure,

(4) determine the variance F 2
s (ν) of the differences between

profile and fit in each time segment ν of s data points,
(5) calculate the average of F 2

s (ν) over all segments ν and take
the square root to obtain the fluctuation function F (s).

Multiple iterations with segments of different s are necessary to
determine the dependency of F (s) on the time scale s. For long
time series this is a time consuming procedure which fits well to
the distributed approach supported by Hadoop.TS. Usually,F (s)
increases with increasing s. If data xj(t) are long-term power-
law correlated according to Eq. (2), F (s) increases, for large
values of s, as a power-law, [13, 15, 24]

F (s) ∼ sα, α = 1− γ/2. (3)

The fluctuation exponent α is calculated by a linear fit applied to
a plot of F (s) as a function of s on double logarithmic scales.
For long-term correlated time series one find α > 0.5, and in the
case of α = 0.5 the data is uncorrelated.

5.1.3 Return Interval Statistics (RIS). Long-term memory ef-
fects in dynamic systems can also be identified based on the
analysis of return intervals between extreme events that exceed
a given threshold. Depending on the properties of the underlying
system the distribution of inter-event times can follow a power-
law distribution, a Poisson distribution, an stretched exponen-
tial distribution or even a bimodal distribution like it was shown
recently by an analysis of telecommunication data [38] of hu-
man interaction events. To describe the recurrence of events ex-
ceeding a certain threshold q, i. e., xj(t) > q, one investigates
the statistics of the return time intervals r = t2 − t1|xj(t1) >
q ∧ xj(t2) > q ∧ xj(t) ≤ q|t1 < t < t2 between such events
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at times t1 and t2. In an uncorrelated time series (’white noise’),
the return intervals are also uncorrelated and distributed accord-
ing to the Poisson distribution,

Pq(r) = (1/Rq) exp(−r/Rq), (4)

where Rq is the mean return interval 〈r〉 for the given threshold
q. For long-term correlated data, on the other hand, a stretched
exponential distribution

Pq(r) =
aγ
Rq

exp[−bγ(r/Rq)
γ ] (5)

has been observed [20, 21, 22, 23, 39] where the exponent γ is
the correlation exponent from Eq. (2), and the parameters aγ and
bγ are independent of q [22, 23]. In order to compare time series
with different average inter-event timesRq the normalized distri-
butions Pq(r)Rq of return intervals r between events exceeding
the different thresholds q have to be used.

5.1.4 Towards the Implementation in Hadoop.TS. RIS and
DFA are applied individually to elements of a set of time series,
organized in a Bucket, to study correlation properties within the
time series. While RIS works with event time series that are usu-
ally not equidistant, equidistant time series with constant sam-
pling rate are required for DFA; thus one might have to pre-
process the data accordingly. It is not a strong requirement to
have time series of the same length L, but in case of different L,
one has to consider weighted averages and also different ranges
for error bars, depending on the number of episodes considered
for each length.
Event time series are given as an ordered list of time stamps,
of times when an event happened. The RIS algorithm operates
directly on such lists. In case of continuous time series, one has
to convert the data to an event time series. A simple approach is
to determine the times then a threshold is crossed, but also more
sophisticated algorithms like described by Chiu et. al. [40] can
be applied.

5.2 Dynamic Correlation Networks
A correlation network is a useful representation of a complex
system. The evolution of the network allows the dynamical
(time-dependent) analysis of structural properties due to interac-
tions or couplings between individual elements of the complex
system.

5.2.1 Cross Correlation (CC). CC analysis works on pairs of
time series, (xj(t)) and (xk(t)), which must have the same sam-
pling rate and the same length L. The calculation of the CC
function is a common technique in order to quantify similarity
of pairs of time series. It is defined as (compare with Eq. (2))

Rj,k(s) =
1

σj,k(L− s)

L−s∑
t=1

∆xj(t)∆xk(t+ s), (6)

with σj,k =
√
〈∆xj(t)2〉〈∆xk(t)2〉. The parameter s de-

termines the time delay between both time series, and again
∆xj(t) = xj(t) − x̄j . A linear correlation between xj(t) and
xk(t) can be analyzed this way if the values are Gaussian dis-
tributed. A time dependent analysis can be realized based on
sliding windows.

5.2.2 Event Synchronization (ES). For pairs of event time se-
ries ES is calculated, especially if the number of events within
a certain time range is low or if no continuous time series are
available. For very dense event time series one can increase the
threshold which defines an event or one calculates the number of
events within a certain time interval. This will lead to time series,
for which the DFA and cross-correlation analysis can be applied
as well.

A pair of event time series (with indexes j and k) consists of or-
dered lists of the times when events occurred: tjl , l = 1, . . . , Lj

and tkm,m = 1, . . . , Lk with lengths Lj and Lk, respectively.
Events at tjl and tkm will be considered as synchronized if they
are closer to each other in time than to any of the other neighbor-
ing events [25]. Therefore one defines reference time lags τ jkln
as

τ jklm =
1

2
min

(
tjl+1 − t

j
l , t

j
l − t

j
l−1, t

k
m+1 − tkm, tkm − tkm−1

)
,

(7)
and considers the two events at tjl and tkm synchronous if∣∣tjl − tkm∣∣ ≤ τ jklm. (8)

In the second step the quantity Jjklm is set to 1 if 0 < tjl − tkm <

τ jklm, and to 1/2 if tjl − tkm = τ jklm, and 0 otherwise. Jjklm > 0 thus
indicates that tjl precedes tkm, while both are synchronized. For
the opposite direction, 0 < tkm − t

j
l ≤ τ jklm, Jkjml is set accord-

ingly. In the third step all values Jjklm are cumulated:

c(j|k) =

Lj∑
l=1

Lk∑
m=1

Jjklm. (9)

Finally Qjk = c(j|k)+c(k|j)√
LjLk

describes the strength of event syn-

chronization, while qjk = c(j|k)−c(k|j)√
LjLk

contains the directional-

ity information;
√
LjLk is used for normalization.

6. PACKAGES IN Hadoop.TS
Several packages of Hadoop.TS provide sample code and refer-
ence implementations for specific tasks:

hadoopts.data.types Efficient implementations of time series al-
gorithms depend on the compact presentation of data and fast
procedures. Therefore meta data is separated from raw data.
Data is loaded from standard data formats. Later it is converted
to specific representations, optimized for several algorithms.
For example, one dimensional arrays can be used for equidis-
tant time series, while two dimensional arrays or even hash
tables are used for event time series. The core functionality is
implemented in a class called TimeSeries and more use-case
specific functionality is added to subclasses.

hadoopts.data.converter Data mappers are implemented in this
package to convert data from multiple external types or repre-
sentations to the internally used formats.

hadoopts.bucket A time series Bucket is a collection of times se-
ries data of equal resolution and equal length. Based on such
Buckets multiple set operations can be performed by Hive,
Pig, or other MapReduce programs. For example time series
pairs can be created, data is filtered based on specific proper-
ties like existence of peaks, or average values are calculated.
These operations can be applied to one Bucket or multiple
Buckets. Also preprocessing of data, like filling in missing val-
ues or removing trends can be done on each single row within
a set of time series stored in a Bucket.

hadoopts.data.stats The stats package provides quality measures
for data sets. Such information is useful for the interpreta-
tion of results or even for finding an appropriate algorithm.
The stats data is be managed as part of the processing history
within the metadata management system.

hadoopts.math Several time series analysis algorithms are im-
plemented in sub-packages within the hadoopts.math pack-
age. Procedures required in several time series algorithms but
not yet implemented in the Apache Commons Math project,
e. g. histograms with dynamic logarithmic binning or a peak
detection algorithm, will also be part of this package.
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hadoopts.export Several input and output formats are provided
here. This allows a smooth data flow across project borders
within the Hadoop ecosystem. Export mappers create data
files that can easily be imported by other analysis software
like Matlab, or even Origin. Beside CSV, also XML and JSON
encoding is available and allows an integration into multiple
existing systems like web services.

hadoopts.udf In order to integrate the Hadoop.TS libraries on
the functional level, the implementation of user defined func-
tions can be used in Hive, Pig, or even Datameer [41], which
is a commercial data analysis platform on top of Hadoop.

7. DESIGN OF CORE COMPONENTS OF
Hadoop.TS

Beside an implementation of generic data containers, data type
mappers, and some I/O formats the two major components of
the Hadoop.TS library are TSBucket and TSProcessor. Based on
those classes a generic procedure for large-scale time series pro-
cessing is implemented.
One way to use the library is the creation of a standalone appli-
cation based on the example code. The complete TSBucket will
be processed by just one single instance of the TSProcessor class
(or any derived classes). This works well for tests while for ef-
ficient large-scale processing the TSProcessor is used within the
mapper or even the reducer class of a Map-Reduce program. The
TSProcessor class is also used to implement user defined func-
tions for the Hive and Pig framework.

Fig. 3. Class diagram for the core TSBucket implementation. An
abstract class implements all necessary functionality to handle time
series data by a standalone application or within the a MapReduce

job. The BucketCreator is used to create an TSBucket, which is
stored in a binary data file. The SequenceFileInputFormat, which is
part of the Hadoop distribution, passes the data record by record (a
record is time series in this context) to the mapper of a MapReduce

program. This procedure is optimized for highly parallel
processing.

7.1 TSBucket
A TSBucket represents a set of preselected time series as inde-
pendent data objects. Selection criteria are usually given by the
analytical task. For example, randomly chosen but representative
data from selected persons or sensors may be chosen.
The data has to be analyzed in different ways. To derive ensem-
ble properties each element has to be processed individually first,
and then averaged values are calculated based on the intermedi-
ate results. On the other hand, pairs of elements of an ensem-
ble have to be processed in the context of correlation analysis,
so that functional networks can be reconstructed. Therefore, the
TSBucket offers a compact format of preprocessed time series
data.

The TSBucket contains a set of time series with the same length
and the same sampling rate, each of them identified with an
unique id, in order to connect results with other known prop-
erties of related objects. The TSBucket data is stored within a
SequenceFile or in Avro format, which allows better interoper-
ability between multiple development environments.
One single TSBucket can be seen as source for an individual
analysis context or just as a part of a larger analysis context,
which consists of multiple TSBuckets. An example for this is a
large network with multiple clusters, where each cluster is used
for an independent characterization of time series properties of
its components. In this case the time series of nodes, which are
part of a cluster are collected within a TSBucket. Multiple pro-
jections of one network can lead to different clusters and in this
way to different TSBuckets, but all are within one common re-
search or analysis context.
The simplest implementation of a TSBucket does not track the
processing state while each record is processed individually. De-
pending on the applied procedures, a TSBucket can also store its
internal state over time, e. g. in order to calculate average val-
ues at the end or in order to allow incremental updates, which is
necessary if the analysis is done on a data stream. Based on this
class, one can enhance the bulk processing capabilities. Process-
ing incoming data, which is part of a data stream, can be done
from time to time, as soon as a reasonable amount of data is in
the buffer. New data can be used in multiple internal process-
ing channels, for example if multiple time scales or windows are
processed in parallel.

Fig. 4. Class diagram for the TSProcessor and the TSTool
implementation. The AbstractTSProcessor implements a

connection to an external metadata store. The FilterTSProcessor is
a kind of a map-side join implementation for a standalone

application and all analysis functionality is implemented within the
TSOperation classes.

7.2 TSProcessor
The TSProcessor controls the analysis flow for all individual
operations on all records within a TSBucket. The procedure to
be applied to each time series is implemented by a TSOper-
ation. If one wants to create a standalone application the Ab-
stractTSProcessor is the base or template class. In case of an
scalable MapReduce application one starts with the example
MapReduce driver code and uses the delegation pattern to re-use
TSProcessor code, e. g. to connect to the central metadata stor-
age. The TSProcessor collects results and metadata from analy-
sis runs. Such data is stored within a metadata manager, which
is implemented just as a log-file storage or even based on a se-
mantic database or collaboration platform like OntoWiki. After
a MapReduce job is finished, the internal state of the TSBucket
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procedures is refreshed and stored within the processing cache.
A FilterTSProcessor is a special variant of a TSProcessor which
operates on a subset of the content in a TSBucket based on a
list of record identifiers. This is achieved by a simple map side
join operation and allows a reduction of the processed data vol-
ume without an additional preprocessing step. All operations to
be used on single time series objects or on time series pairs are
implemented as subclasses of TSOperation.

8. SAMPLE APPLICATION
To illustrate the functionality of the Hadoop.TS library, a set of
sample programs are provided. Multiple random number gen-
erators for the creation of uncorrelated and correlated time se-
ries (for examples, see Fig. 5) are included in the Hadoop.TS
library. Simple functional tests for new algorithms or a system-
atic analysis of specific properties of time series and can be done
with mono-variate analysis (single row processing). Large data
sets, stored in buckets, are used for performance benchmarking
in Hadoop clusters. Exemplary results of such calculations are
shown in Fig. 6 with distributions Pq(r) of inter-event times r
and DFA fluctuation functions F (s) for two surrogate data rows:
(i) long-term correlated data and (ii) uncorrelated data. More de-
tails on benchmarking and applications to data collected from
complex system will be presented in future publications.

Fig. 5. Probability density functions for sample data sets from
included random number generators.
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Fig. 6. For two surrogate data sets (uncorrelated: red circles,
correlated with γ = 0.2 according to Eq. (1): olive diamonds)
results of both methods of long-term correlation analysis are

shown: (a) DFA of order two and (b) RIS. The lines indicate the
theoretical behaviors according to Eqs. (3)-(5) – red line: α = 0.5 in

(a) and simple exponential in (b), olive line: α = 0.9 in (a) and
stretched exponential in (b).

9. CONCLUSION AND OUTLOOK
Statistical time series analysis, applied to large data sets, will
improve existing approaches to complexity research. The dy-
namics of complex systems, their evolution, as well as the co-
evolution of different subsystems will be analyzed and modeled
on large distributed computing clusters. In order to compare sim-
ulation results with real-world data collections, one has to man-
age such data sets within large storage clusters as well as dis-
tributed workflows. As an enhancement to existing analysis soft-
ware, especially as a contribution to the Hadoop ecosystem, the
Hadoop.TS library provides an implementation of six relevant
time series analysis algorithms, which have successfully been
applied in several research projects, e. g. in traffic data analysis
[28], and social media analysis [12, 26, 42].
During the next phase of Hadoop.TS development an optimiza-
tion of the existing code base will be done. Especially memory
consumption, conversion of intermediate data, as well as intro-
duction of multi-threading concepts will be evaluated and im-
plemented. Reference implementations of user defined functions
(UDF) and custom data loader components (SerDe) for Hive and
Pig will be implemented. The integration with GPU-based pro-
cessing environments like CUDA will also be evaluated.
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