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ABSTRACT 

With the rapid growth of Internet, E-mail, with its convenient 

and efficient characteristics, has become an important means 

of communication in people‟s life. It reduces the cost of 

communication. It comes with Spam. Spam emails, also 

known as „junk e-mails‟, are unsolicited one‟s sent in bulk  

with hidden or forged identity of the sender, address, and 

header information. It is vital to pursue more effective spam 

filtering approaches to maintain normal operations of e-mail 

systems and to protect the interests of email users. In this 

paper we developed a Spam filter based on Bayesian filtering 

method using Aho-corasick and PFAC string matching 

algorithm. This filter developed an improved version of spam 

filter based on traditional Bayesian spam filtering to improve 

spam filtering efficiency, and to reduce chances of 

misjudgement of malignant spam. For further improvement of 

Spam filtering process we are transform the filter in to parallel 

spam filter on GPGPU's by using PFAC Algorithm.  
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1. INTRODUCTION 
With the growing use of electronic mail the problem of having 

spam becomes the major issue in today‟s concern [1]. Spams 

are the unwanted emails which floods the internet with many 

copies of the same message. Sometimes spam carries 

malicious content that harm our system and degrades the 

performance [2]. It becomes a need to design a filter which is 

capable of handling different variety of spams and reduces 

false positives. Millions of email goes through the servers. 

This increases the demand of using email spam filter on server 

which is fast enough to compensate the receiving rate of 

spam. Further it should not miss a little bit of spam otherwise 

it will be costly for the receiver because there is a chance of 

spam being opened and activated and affects security. 

Therefore the filter must have high accuracy rate [3]. 

The proliferation of spam occupies a large number of mail 

server storage spaces and violates privacy of the recipients 

[4]. Spam not only costs recipients time to deal with, more 

importantly, the harm of spam‟s unhealthy content, including 

pornography and violence, is difficult to estimate and 

measure[5]. 

Various techniques have been used to design spam filters. 

Some of them are list based filters and content based filters 

[6]. List based filters check the mails on the basis of their 

servers. There is a predefined list of all the servers which 

distinguishes spammers with legitimate server. The mails 

from spammers are rejected otherwise accepted. Blacklist 

filters [7], Real time Black hole list filters and White list 

filters, Grey list filters comes in this category. Content based 

filters evaluate words or phrases found in each individual 

message to determine whether an email is spam or legitimate. 

Some content based filters are word based filters, heuristic 

filters and Bayesian filters. 

Bayesian filters, considered the most advanced form of 

content-based filtering, employ the laws of mathematical 

probability to determine which messages are legitimate and 

which are spams. In order for a Bayesian filter to effectively 

block spam, the end user must initially "train" it by manually 

flagging each message as either junk or legitimate. Over time, 

the filter takes words and phrases found in legitimate emails 

and adds them to a list; it does the same with terms found in 

spam. 

In this paper we design a Bayesian sequential and parallel 

spam filter based on Enron data set and its parallel version is 

based on PFAC algorithm. 

2. RELATED WORK 
Blacklist spam filters created a list of all the addresses and IP 

that have been previously used for sending spam. When a 

mail arrives it checks the mail against the list if it is from the 

listed sender it is rejected otherwise accepted [4].Real time 

black hole list filters is also based on same concept except 

there is a involvement of third party which creates the list of 

spam senders for the organization. It reduces the burden of IT 

staff. Third party receives the mail, checks it against the list 

and decides accordingly [5]. White list works exactly opposite 

to that of a blacklist. Instead of creating a list of spammers, a 

list of legitimate senders is created [4].Grey list is based on 

the fact that many spammers send bulk of email once. If any 

bulk of email reaches server it rejects it and reports error 

message to sender. If it is attempted to send twice it is 

considered as the legitimate mails and its address is added to 

the list of legitimate senders created by grey list filter. List 

based filters may misidentify legitimate senders as spammer 

[4, 5]. 

Word based filter is content based filter in which a list of 

spam words is created. If the receiving mail contains the 

blocked words it is reported as the spam but there may be a 

chance that spammer misspells certain words to pretend its 

spam as a legitimate mail. It increases the burden of updating 

blocked word database regularly. 

Heuristic filtering is again a concept based on content based 

filtering. It created a list of suspected words with its heuristic 

count. Whenever any new message arrives it scans the content 

of message for the list and calculates the total heuristic count 

of all the keywords if it is greater than the current count it is 

considered as a spam otherwise ham [6].  
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Bayesian filter is probability based filtering technique. It 

learns from spam as well as good mails. At the initial stage 

filter is trained by calculating spam probability of known 

spam and ham keywords. Later this list is used to calculate 

total spamicity of testing mail. If the spamicity is found 

greater than or equal to threshold value it is rejected as spam 

[6, 7]. Content based filters are considered as the most 

efficient filters as it checks the content of message and can 

easily identify spams sending through legitimate users also[8]. 

Content based filters use Aho-Corasick algorithm to calculate 

count of each pattern in test mail. Aho-Corasick is the 

multipatterns string matching algorithm which locates all the 

occurrence of set of keywords in a text of string. It first 

creates deterministic finite automata for all the predefined 

keywords and then by using automaton, it processes a text in a 

single pass. Aho-Corasick works in two phases: preprocessing 

phase and searching phase as shown in figure 1 and 2.  

Preprocessing phase constructs finite state automata for the set 

of predefined keywords (or keyword tree) which are supposed 

to be found in the text string. After constructing automata, 

failure function of each node is calculated. Failure function of 

a node is defined as the longest suffix of the string that is also 

the prefix of some node. Output function for final states has to 

be calculated. Searching phase proceeds with scanning the 

testing mail using automata build in previous phase and 

reports the count of each keywords [9,10,11]. 

Aho-Corasick is previously applied in many areas of networks 

and computer security, and bioinformatics. These networks 

and bioinformatics applications are computationally 

demanding and require high speed parallel processing. To 

speed up the performance of Aho-Corasick algorithm, a 

parallel version of Aho-Corasick PFAC (parallel failure less 

Aho-Corasick) is developed [12,13,14].  

PFAC uses the concept of GPGPU to fix the occurrence of 

keywords in a string. In preprocessing phase PFAC build 

DFA with no back track links. No failure function is 

calculated for the DFA. Suppose we have 3 patterns [HER, 

IRIS, IS]. The PFAC DFA for the patterns without back track 

lines is built as: 

 
Fig 1: pre processing phase 

DFA is placed in global memory from where it is going to 

accessed by each thread to take the copy of DFA. The concept 

of allocating DFA to each thread increases the efficiency of 

Aho-Corasick algorithm. In searching phase, each alphabet of 

text is assigned to each thread and total no. of thread is equal 

to text length. Supposed the text to be scanned is IRISTHER. 

Each thread accesses the copy of automata from global 

memory and processes its alphabet if a valid transition found, 

it proceeds otherwise terminates itself.  

Thread 0 searches the automata for alphabet I it gets valid 

transition. After taking the input “IRIS”, Thread 0 reaches 

state 7, which indicates pattern “IRIS”, is matched. Thread 1 

starts with scanning alphabet R, no transition is found for R so 

it terminates at state 0. Thread 2 gets transition for I, after 

taking input “IS”, Thread 2 reaches state 8, which indicates 

pattern “IS” is matched, no transition is found for T, 

terminates in state 8. Thread 3 and 4 found no transition for S 

and T, terminate early at state 0. Thread 5 found transition 1 

for H, after taking input “HER” reaches state 3, pattern 

“HER” is matched, terminates in state 3. Thread 6 and 7 

found no transition for E and R, terminates at state 0. 

 

Fig. 2: Searching Phase 

GPGPU is the concept used to boost many applications in real 

world [15,16].GPGPU is the use of GPU for general purpose 

computation[17,18]. To use GPU for general computation it 

must be programmed by using parallel programming language 

like Cuda and OpenCL [19, 20].GPU typically handles 

computation for computer graphics. 

GPU was originated in the late 1990s as the coprocessor for 

accelerating the simulation and visualization of 3D images. 

From 2006 GPU have developed to be more flexible and even 

considered for GPGPU. In today scenario the high 

performance of applications is mandatory; in order to meet 

that requirement GPU comprises parallization of many 

applications to hike their performance[21,22,23].  

A direct implementation of parallel computation on GPUs is 

to divide an input stream into multiple segments, each of 

which is processed by a parallel thread for string matching 

[24,25]. 

3. PROPOSED ALGORITHM 
We design a parallel spam filter using GPGPU (general 

purpose computation on GPU).For this purpose we design 

serial spam filter and parallelize this approach to make it 

parallel spam filter. To design a filter we use the Bayesian 

approach. It works in two phases: training phase and filtering 

phase. In training phase, it creates 3 databases, Database for 

keywords taken from ham and spam mails, Database for ham 

mails, Database for spam mails. After creating database, it 

calculates spam probability of every keyword by using 

Bayesian statistics. 

Bayesian statistics tell us that if a word “connect” appears in 

35 of 1000 ham mails and in 750 of 1000 spam mails. Then 

the presence of word “connect” means that the given message 

has 95.54%chance of being spam. Spam probability of 

“content”=750(750 + 35) =95.54 %. This phase creates a file 

containing list of keywords with their corresponding 

probability which is later used in filtering phase. Filtering  
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phase takes the file created in training phase and testing mail 

as input and check whether the mail is spam or ham mail. 

Spamicity of mail is calculated by using the formula 

Spamicity = p1*p2*p3……Pm / [(p1*p2*…pm) + ((1-p1) 

*(1-p2)*… (1-pm))].  

If the spamicity comes out to be greater than or equal to 

threshold the mail is reported as spam. Filtering process uses 

Aho-corasick, a multipattern string matching algorithm, to 

calculate count of each keyword in testing mail. This count is 

used to calculate spamicity of mail. Overall diagram for serial 

spam filter is represented in figure 3 and 4. Here T is training 

Bayesian probability data of keywords. 

 
Fig. 3: Serial Spam Filter 

The project is divided into two modules: Filter trainer and 

Filter. In filter trainer module, three databases are created: 

spam keywords, trainer ham database, and trainer spam 

database. These databases are passed to training algorithm i.e. 

Bayesian training. Training algorithm calculates spam 

probability of all keywords based on training data set and 

named it T. 

In second module, Aho-Corasick algorithm is used which 

takes spam keywords and test mail as inputs and provides 

count of all spam keywords in test mail. 

3.1 Training Algorithm for serial spam 

filter 
1. First we created a list of Spam Keywords and search them 

in ham and spam database. 

2.  Spam probability of all keywords is calculated by using 

Bayesian statistics  

3. We create a list having name of keywords and their 

corresponding probability and save this file being used in 

second module. 

 

 

 

 

 

 

 

 

 

 

 

3.2 Filtering Algorithm for serial spam 

filter 
 

1. First we fetch the file produced in first module having name 

of keywords and their corresponding probability. 

2. Fetch mail for which we want to know that is spam or ham 

3. Scan the mail by using Aho-Corasick algorithm and 

calculate frequency count of Spam Keywords in mail. 

4. Calculate Spamicity of the mail by using Bayes theorem: 

 Spamicity = (p1*p2*p3……Pm) / [(p1*p2*…pm) + ((1-p1) 

*(1-p2)*… (1-pm))]. 

 

5. Compare Spamicity of mail with Threshold value (which is 

set by reverse Engineering). 

 

6. If Spamicity is greater than Threshold then mail is Spam 

otherwise It is Ham. 

 

Parallel spam filter uses PFAC approach. The filter trainer 

module of parallel spam filter is same as in serial spam filter. 

In second module, PFAC algorithm is used which takes spam 

keywords and test mail as inputs. Each thread is assigned to 

each alphabet of test mail and report count of keywords. 

These counts and Bayesian formula are used to calculate 

spamicity of mail. If it comes out to be greater than or equal to 

threshold value it is reported as spam otherwise ham. The 

overall diagram is shown in Figure 5 and 6. 

 

Fig. 5: Overall diagram for parallel spam filter 

 
 

 

Fig. 3: Serial Spam Filter  
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3.3 Training Algorithm for parallel spam 

filter 
1. First we created a list of Spam Keywords and search them 

in ham and spam database. 

2. Spam probability of all keywords is calculated by using 

Bayesian statistics.  

3. Then we create a list having name of keywords and their 

corresponding probability and save this file being used in 

second module. 

3.4 Filtering Algorithm for parallel spam 

filter 
 

1. First we fetch the file produced in first module having name 

of keywords and their corresponding probability 

 

2. Then we fetch mail for which we wish to know that it is 

spam or ham. 

3. Scan the mail by using PFAC algorithm and calculate 

frequency count of Spam Keywords in mail. 

 

4. Calculate Spamicity of the mail by using Bayes theorem: 

Spamicity = p1*p2*p3……Pm / [(p1*p2*…pm) ((1-p1) *(1-

p2)*… (1-pm))]. 

 

5. Compare Spamicity of mail with Threshold value (which is 

set by reverse Engineering). 

 

6. If spamicity is greater than Threshold then mail is Spam 

otherwise It is Ham. 

3.5 Calculation of Threshold by Reverse 

Engineering 
First we scan all spam mails of Enron Data Set and calculate 

spamicity of each mail with help of second module. Set 

minimum value of Spamicity of these mails as Threshold. 

 

 

 

 

 

4.  

 

 

 

 

4. EXPERIMENTAL RESULTS AND  

 

 

4. COMPARITIVE ANALYSIS 
Comparative analysis between Serial Spam Filter and Parallel 

Spam filter is shown in table 1 and figure 7. 

4.1 Experimental Environment 
Processor: Core i3 

RAM: 4 GB 

OS: Windows 7 

Language: Visual C++ runs on Visual Studios 2008 

GPGPU: AMD Radeon HD 6800 series 

Language (parallel implementation): OpenCL 

4.2 Experimental Data 
No. of test mails size is 1000, 2000, 5000 and 10000.  

4.3 Experimental Results 
Table 1: Execution time for serial and parallel spam 

filter 

S.No. 
No. of 

Test Mail 

Parallel Filter 

Speed 

Serial Filter 

Speed 

1. 1000 0.244 sec. 129 sec. 

2. 2000 0.38 sec. 198 sec. 

3. 5000 0.64 sec. 302 sec. 

4. 10000 1.31 sec. 601 sec. 

 

Fig. 6: Parallel Spam Filter 

 

Fig. 4: 
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Graphical representation of this experimental results is shown 

in figure 7 

 

Fig. 7 Experimental Results 

Figure 7 analyze the empirical comparison between serial 

execution and parallel execution. Parallel execution takes less 

than 2 seconds to execute larger data sets where as for same 

data set serial execution takes more than 10 minutes. Figure 7 

explain that parallel execution is much efficient than serial 

execution. Two different lines represented the execution time 

in above given graph. One represents parallel execution and 

another one represents serial execution. Looking into graph 

we will find that parallel execution is much efficient than 

serial execution.  

Table 2 represents accuracy for serial spam filter and parallel 

spam filter. Accuracy for both versions will be same. As the 

no. of mails increase accuracy will decrease and after a point 

it will be constant.  

Table 2 Accuracy calculation 

S.No. No. of Test Mails Accuracy 

1. 1000 76 % 

2. 2000 72 % 

3. 3000 72. 5% 

4. 4000 71.4 % 

5. 5000 70.9 % 

6. 6000 70.2 % 

7. 7000 70.1 % 

8. 8000 70.2% 

9. 9000 70.1% 

10. 10000 70.1% 

 

 

Fig. 8: accuracy calculation 

Spam filter‟s accuracy rate is approximately 70%. For training 

we have taken Enron data sets. Keywords are limited. If we 

will increase training data sets and keywords than results will 

be more accurate and efficient. 

5. CONCLUSION 
In order to filter the emails Bayesian spam filter is an 

adequate spam filter. It is more advanced form of content 

based filtering. To ameliorate efficiency of Bayesian spam 

filter we have implemented it parallel on GPGPU with 

Parallel Failure-less Aho-Corasick technique. Parallel spam 

filter is efficient on larger data sets and processing time is 

much better than serial spam filter. Accuracy of our spam 

filter is approximately 70%.  
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