
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

9

Serial and Parallel Bayesian Spam Filtering using Aho-
Corasick and PFAC

Saima Haseeb

TIEIT
 Bhopal

 Mahak Motwani
TIEIT

Bhopal

 Amit Saxena
 TIEIT

 Bhopal

ABSTRACT

With the rapid growth of Internet, E-mail, with its convenient

and efficient characteristics, has become an important means

of communication in people‟s life. It reduces the cost of

communication. It comes with Spam. Spam emails, also

known as „junk e-mails‟, are unsolicited one‟s sent in bulk

with hidden or forged identity of the sender, address, and

header information. It is vital to pursue more effective spam

filtering approaches to maintain normal operations of e-mail

systems and to protect the interests of email users. In this

paper we developed a Spam filter based on Bayesian filtering

method using Aho-corasick and PFAC string matching

algorithm. This filter developed an improved version of spam

filter based on traditional Bayesian spam filtering to improve

spam filtering efficiency, and to reduce chances of

misjudgement of malignant spam. For further improvement of

Spam filtering process we are transform the filter in to parallel

spam filter on GPGPU's by using PFAC Algorithm.

Keywords

Spam Filter, Bayesian Spam Filter, Aho-Corasick, PFAC.

1. INTRODUCTION
With the growing use of electronic mail the problem of having

spam becomes the major issue in today‟s concern [1]. Spams

are the unwanted emails which floods the internet with many

copies of the same message. Sometimes spam carries

malicious content that harm our system and degrades the

performance [2]. It becomes a need to design a filter which is

capable of handling different variety of spams and reduces

false positives. Millions of email goes through the servers.

This increases the demand of using email spam filter on server

which is fast enough to compensate the receiving rate of

spam. Further it should not miss a little bit of spam otherwise

it will be costly for the receiver because there is a chance of

spam being opened and activated and affects security.

Therefore the filter must have high accuracy rate [3].

The proliferation of spam occupies a large number of mail

server storage spaces and violates privacy of the recipients

[4]. Spam not only costs recipients time to deal with, more

importantly, the harm of spam‟s unhealthy content, including

pornography and violence, is difficult to estimate and

measure[5].

Various techniques have been used to design spam filters.

Some of them are list based filters and content based filters

[6]. List based filters check the mails on the basis of their

servers. There is a predefined list of all the servers which

distinguishes spammers with legitimate server. The mails

from spammers are rejected otherwise accepted. Blacklist

filters [7], Real time Black hole list filters and White list

filters, Grey list filters comes in this category. Content based

filters evaluate words or phrases found in each individual

message to determine whether an email is spam or legitimate.

Some content based filters are word based filters, heuristic

filters and Bayesian filters.

Bayesian filters, considered the most advanced form of

content-based filtering, employ the laws of mathematical

probability to determine which messages are legitimate and

which are spams. In order for a Bayesian filter to effectively

block spam, the end user must initially "train" it by manually

flagging each message as either junk or legitimate. Over time,

the filter takes words and phrases found in legitimate emails

and adds them to a list; it does the same with terms found in

spam.

In this paper we design a Bayesian sequential and parallel

spam filter based on Enron data set and its parallel version is

based on PFAC algorithm.

2. RELATED WORK
Blacklist spam filters created a list of all the addresses and IP

that have been previously used for sending spam. When a

mail arrives it checks the mail against the list if it is from the

listed sender it is rejected otherwise accepted [4].Real time

black hole list filters is also based on same concept except

there is a involvement of third party which creates the list of

spam senders for the organization. It reduces the burden of IT

staff. Third party receives the mail, checks it against the list

and decides accordingly [5]. White list works exactly opposite

to that of a blacklist. Instead of creating a list of spammers, a

list of legitimate senders is created [4].Grey list is based on

the fact that many spammers send bulk of email once. If any

bulk of email reaches server it rejects it and reports error

message to sender. If it is attempted to send twice it is

considered as the legitimate mails and its address is added to

the list of legitimate senders created by grey list filter. List

based filters may misidentify legitimate senders as spammer

[4, 5].

Word based filter is content based filter in which a list of

spam words is created. If the receiving mail contains the

blocked words it is reported as the spam but there may be a

chance that spammer misspells certain words to pretend its

spam as a legitimate mail. It increases the burden of updating

blocked word database regularly.

Heuristic filtering is again a concept based on content based

filtering. It created a list of suspected words with its heuristic

count. Whenever any new message arrives it scans the content

of message for the list and calculates the total heuristic count

of all the keywords if it is greater than the current count it is

considered as a spam otherwise ham [6].

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

10

Bayesian filter is probability based filtering technique. It

learns from spam as well as good mails. At the initial stage

filter is trained by calculating spam probability of known

spam and ham keywords. Later this list is used to calculate

total spamicity of testing mail. If the spamicity is found

greater than or equal to threshold value it is rejected as spam

[6, 7]. Content based filters are considered as the most

efficient filters as it checks the content of message and can

easily identify spams sending through legitimate users also[8].

Content based filters use Aho-Corasick algorithm to calculate

count of each pattern in test mail. Aho-Corasick is the

multipatterns string matching algorithm which locates all the

occurrence of set of keywords in a text of string. It first

creates deterministic finite automata for all the predefined

keywords and then by using automaton, it processes a text in a

single pass. Aho-Corasick works in two phases: preprocessing

phase and searching phase as shown in figure 1 and 2.

Preprocessing phase constructs finite state automata for the set

of predefined keywords (or keyword tree) which are supposed

to be found in the text string. After constructing automata,

failure function of each node is calculated. Failure function of

a node is defined as the longest suffix of the string that is also

the prefix of some node. Output function for final states has to

be calculated. Searching phase proceeds with scanning the

testing mail using automata build in previous phase and

reports the count of each keywords [9,10,11].

Aho-Corasick is previously applied in many areas of networks

and computer security, and bioinformatics. These networks

and bioinformatics applications are computationally

demanding and require high speed parallel processing. To

speed up the performance of Aho-Corasick algorithm, a

parallel version of Aho-Corasick PFAC (parallel failure less

Aho-Corasick) is developed [12,13,14].

PFAC uses the concept of GPGPU to fix the occurrence of

keywords in a string. In preprocessing phase PFAC build

DFA with no back track links. No failure function is

calculated for the DFA. Suppose we have 3 patterns [HER,

IRIS, IS]. The PFAC DFA for the patterns without back track

lines is built as:

Fig 1: pre processing phase

DFA is placed in global memory from where it is going to

accessed by each thread to take the copy of DFA. The concept

of allocating DFA to each thread increases the efficiency of

Aho-Corasick algorithm. In searching phase, each alphabet of

text is assigned to each thread and total no. of thread is equal

to text length. Supposed the text to be scanned is IRISTHER.

Each thread accesses the copy of automata from global

memory and processes its alphabet if a valid transition found,

it proceeds otherwise terminates itself.

Thread 0 searches the automata for alphabet I it gets valid

transition. After taking the input “IRIS”, Thread 0 reaches

state 7, which indicates pattern “IRIS”, is matched. Thread 1

starts with scanning alphabet R, no transition is found for R so

it terminates at state 0. Thread 2 gets transition for I, after

taking input “IS”, Thread 2 reaches state 8, which indicates

pattern “IS” is matched, no transition is found for T,

terminates in state 8. Thread 3 and 4 found no transition for S

and T, terminate early at state 0. Thread 5 found transition 1

for H, after taking input “HER” reaches state 3, pattern

“HER” is matched, terminates in state 3. Thread 6 and 7

found no transition for E and R, terminates at state 0.

Fig. 2: Searching Phase

GPGPU is the concept used to boost many applications in real

world [15,16].GPGPU is the use of GPU for general purpose

computation[17,18]. To use GPU for general computation it

must be programmed by using parallel programming language

like Cuda and OpenCL [19, 20].GPU typically handles

computation for computer graphics.

GPU was originated in the late 1990s as the coprocessor for

accelerating the simulation and visualization of 3D images.

From 2006 GPU have developed to be more flexible and even

considered for GPGPU. In today scenario the high

performance of applications is mandatory; in order to meet

that requirement GPU comprises parallization of many

applications to hike their performance[21,22,23].

A direct implementation of parallel computation on GPUs is

to divide an input stream into multiple segments, each of

which is processed by a parallel thread for string matching

[24,25].

3. PROPOSED ALGORITHM
We design a parallel spam filter using GPGPU (general

purpose computation on GPU).For this purpose we design

serial spam filter and parallelize this approach to make it

parallel spam filter. To design a filter we use the Bayesian

approach. It works in two phases: training phase and filtering

phase. In training phase, it creates 3 databases, Database for

keywords taken from ham and spam mails, Database for ham

mails, Database for spam mails. After creating database, it

calculates spam probability of every keyword by using

Bayesian statistics.

Bayesian statistics tell us that if a word “connect” appears in

35 of 1000 ham mails and in 750 of 1000 spam mails. Then

the presence of word “connect” means that the given message

has 95.54%chance of being spam. Spam probability of

“content”=750(750 + 35) =95.54 %. This phase creates a file

containing list of keywords with their corresponding

probability which is later used in filtering phase. Filtering

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

11

phase takes the file created in training phase and testing mail

as input and check whether the mail is spam or ham mail.

Spamicity of mail is calculated by using the formula

Spamicity = p1*p2*p3……Pm / [(p1*p2*…pm) + ((1-p1)

(1-p2)… (1-pm))].

If the spamicity comes out to be greater than or equal to

threshold the mail is reported as spam. Filtering process uses

Aho-corasick, a multipattern string matching algorithm, to

calculate count of each keyword in testing mail. This count is

used to calculate spamicity of mail. Overall diagram for serial

spam filter is represented in figure 3 and 4. Here T is training

Bayesian probability data of keywords.

Fig. 3: Serial Spam Filter

The project is divided into two modules: Filter trainer and

Filter. In filter trainer module, three databases are created:

spam keywords, trainer ham database, and trainer spam

database. These databases are passed to training algorithm i.e.

Bayesian training. Training algorithm calculates spam

probability of all keywords based on training data set and

named it T.

In second module, Aho-Corasick algorithm is used which

takes spam keywords and test mail as inputs and provides

count of all spam keywords in test mail.

3.1 Training Algorithm for serial spam

filter
1. First we created a list of Spam Keywords and search them

in ham and spam database.

2. Spam probability of all keywords is calculated by using

Bayesian statistics

3. We create a list having name of keywords and their

corresponding probability and save this file being used in

second module.

3.2 Filtering Algorithm for serial spam

filter

1. First we fetch the file produced in first module having name

of keywords and their corresponding probability.

2. Fetch mail for which we want to know that is spam or ham

3. Scan the mail by using Aho-Corasick algorithm and

calculate frequency count of Spam Keywords in mail.

4. Calculate Spamicity of the mail by using Bayes theorem:

 Spamicity = (p1*p2*p3……Pm) / [(p1*p2*…pm) + ((1-p1)

(1-p2)… (1-pm))].

5. Compare Spamicity of mail with Threshold value (which is

set by reverse Engineering).

6. If Spamicity is greater than Threshold then mail is Spam

otherwise It is Ham.

Parallel spam filter uses PFAC approach. The filter trainer

module of parallel spam filter is same as in serial spam filter.

In second module, PFAC algorithm is used which takes spam

keywords and test mail as inputs. Each thread is assigned to

each alphabet of test mail and report count of keywords.

These counts and Bayesian formula are used to calculate

spamicity of mail. If it comes out to be greater than or equal to

threshold value it is reported as spam otherwise ham. The

overall diagram is shown in Figure 5 and 6.

Fig. 5: Overall diagram for parallel spam filter

Fig. 3: Serial Spam Filter

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

12

3.3 Training Algorithm for parallel spam

filter
1. First we created a list of Spam Keywords and search them

in ham and spam database.

2. Spam probability of all keywords is calculated by using

Bayesian statistics.

3. Then we create a list having name of keywords and their

corresponding probability and save this file being used in

second module.

3.4 Filtering Algorithm for parallel spam

filter

1. First we fetch the file produced in first module having name

of keywords and their corresponding probability

2. Then we fetch mail for which we wish to know that it is

spam or ham.

3. Scan the mail by using PFAC algorithm and calculate

frequency count of Spam Keywords in mail.

4. Calculate Spamicity of the mail by using Bayes theorem:

Spamicity = p1*p2*p3……Pm / [(p1*p2*…pm) ((1-p1) *(1-

p2)*… (1-pm))].

5. Compare Spamicity of mail with Threshold value (which is

set by reverse Engineering).

6. If spamicity is greater than Threshold then mail is Spam

otherwise It is Ham.

3.5 Calculation of Threshold by Reverse

Engineering
First we scan all spam mails of Enron Data Set and calculate

spamicity of each mail with help of second module. Set

minimum value of Spamicity of these mails as Threshold.

4.

4. EXPERIMENTAL RESULTS AND

4. COMPARITIVE ANALYSIS
Comparative analysis between Serial Spam Filter and Parallel

Spam filter is shown in table 1 and figure 7.

4.1 Experimental Environment
Processor: Core i3

RAM: 4 GB

OS: Windows 7

Language: Visual C++ runs on Visual Studios 2008

GPGPU: AMD Radeon HD 6800 series

Language (parallel implementation): OpenCL

4.2 Experimental Data
No. of test mails size is 1000, 2000, 5000 and 10000.

4.3 Experimental Results
Table 1: Execution time for serial and parallel spam

filter

S.No.
No. of

Test Mail

Parallel Filter

Speed

Serial Filter

Speed

1. 1000 0.244 sec. 129 sec.

2. 2000 0.38 sec. 198 sec.

3. 5000 0.64 sec. 302 sec.

4. 10000 1.31 sec. 601 sec.

Fig. 6: Parallel Spam Filter

Fig. 4:

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

13

Graphical representation of this experimental results is shown

in figure 7

Fig. 7 Experimental Results

Figure 7 analyze the empirical comparison between serial

execution and parallel execution. Parallel execution takes less

than 2 seconds to execute larger data sets where as for same

data set serial execution takes more than 10 minutes. Figure 7

explain that parallel execution is much efficient than serial

execution. Two different lines represented the execution time

in above given graph. One represents parallel execution and

another one represents serial execution. Looking into graph

we will find that parallel execution is much efficient than

serial execution.

Table 2 represents accuracy for serial spam filter and parallel

spam filter. Accuracy for both versions will be same. As the

no. of mails increase accuracy will decrease and after a point

it will be constant.

Table 2 Accuracy calculation

S.No. No. of Test Mails Accuracy

1. 1000 76 %

2. 2000 72 %

3. 3000 72. 5%

4. 4000 71.4 %

5. 5000 70.9 %

6. 6000 70.2 %

7. 7000 70.1 %

8. 8000 70.2%

9. 9000 70.1%

10. 10000 70.1%

Fig. 8: accuracy calculation

Spam filter‟s accuracy rate is approximately 70%. For training

we have taken Enron data sets. Keywords are limited. If we

will increase training data sets and keywords than results will

be more accurate and efficient.

5. CONCLUSION
In order to filter the emails Bayesian spam filter is an

adequate spam filter. It is more advanced form of content

based filtering. To ameliorate efficiency of Bayesian spam

filter we have implemented it parallel on GPGPU with

Parallel Failure-less Aho-Corasick technique. Parallel spam

filter is efficient on larger data sets and processing time is

much better than serial spam filter. Accuracy of our spam

filter is approximately 70%.

6. REFERENCES
[1] Wu, Y. L., “Using Visual Features For Anti-Spam

Filtering, ”2005 IEEE International Conference on Image

Processing (ICIP2005), pp. 509–512, 2005. Postini :

Email Monitoring + Email Filtering

Blog.http://www.dicontas.co.uk/blog/quick-

facts/emailspam-trafficrockets/65/.

[2] Toshihiro Tabata, “SPAM mail filtering : commentary of

Bayesian filter, ” The journal of Information Science and

Technology Association, Vol.56, No.10, pp.464-468,

2006.

[3] http://www.cs.nmt.edu/~janbob/SPAM, Spam corpus,

SMS corpus,

[4] http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora

/smsCorpus/

[5] Amayri O, Bouguil N (2009). Online Spam Filtering

Using Support Vector Machines.IEEE., pp. 337- 340.

[6] C. Pu, S. Webb, O. Kolesnikov, W. Lee, and R. Lipton.

Towards the Integration of Diverse Spam Filtering

Techniques. In Proc. of IEEE International Conference

on Granular Computing, pages 7 – 10, 2006.

[7] I. Androutsopoulos and et., “An Evaluation of Naïve

Bayesian Anti-Spam Filtering”, 11th

EurpoeanConference on Machine Learning, pp 9-17,

Barcelona, Spain, June 2000

[8] Paul Graham, “Better Bayesian Filter”

,http://www.paulgraham.com/better.htm

[9] A.V. Aho and M. J. Corasick, “Efficient String

Matching: An aid Bibliographic search”. In

Communication of the ACM Vol. 18, issues 6, pp.-333-

340, 1975.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.17, July 2013

14

[10] Cheng-Hung Lin and Shih-Chieh-Chang,” Efficient

pattern matching algorithm for memory architecture”,

Vol. 19, issue 1, pp. 33-41, January 2011.

[11] Chengguo Chang and Hui Wang,” Comparison of Two-

Dimensional String Matching Algorithms”In the proc.

International Conference on Computer Science and

Electronics Engineering (ICCSEE), Vol. 3, pp. 608-

611,march 2012.

[12] Raphael Clifford, Markus Jalsenius, Ely Porat and

Benjamin Sach,”Pattern matching in multiple stream”, in

the proc. 23rd Annual conference on Combinatorial

Pattern Matching, pp. 97-109,2012.

[13] R. Takahashi, U. Inoue, “Parallel Text Matching Using

GPGPU”, in the proc. 13th ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel & Distributed

Computing (SNPD), pp. 242-246, Aug. 2012.

[14] C. Lin, et al., “Accelerating String Matching Using

Multi-Threaded Algorithm on GPU,” Proc. IEEE Global

Telecommunications Conf., pp. 1-5, 2010.

[15] J. D. Owens, et al., “A Survey of General-Purpose

Computation on Graphics Hardware,” Computer

Graphics forum, Vol. 26, No. 1, pp.80-113, 2007.

[16] C. Lin, C. Liu, L. Chien, and S. Chang,” Accelerating

Pattern Matching Using a Novel Parallel Algorithm on

GPUs”, IEEE Transactions on computers, vol. pp, issue

1.

[17] ZhaXinyan and S. Sahni,” Multipattern string matching

on a GPU”, In the proc. IEEE conference on Computers

and Communications (ISCC), pp. 277-282, July 2011.

[18] Tran Nhat-Phuong, Lee Myungho, Hong Sugwon and

Minho Shin,” Memory Efficient Parallelization for Aho-

Corasick Algorithm on a GPU”, IEEE 14th International

Conference on High Performance Computing and

Communication, pp. 432-438, June 2012.

[19] Jungwon Kim, Honggyu Kim, Joo Hwan Lee and Jaejin

Lee,” Achieving a single compute device image in

OpenCL for multiple GPUs”, Proceedings of the 16th

ACM symposium on Principles and practice of parallel

programming, pp. 277-288,2011.

[20] NVIDIA, “CUDA Best Practices Guide: NVIDIA

CUDA C Programming Best Practices Guide – CUDA

Toolkit 4.0”, May, 2011

[21] Xinyan Zha and Sartaj Sahni,” GPU-to-GPU and Host-

to-Host Multipattern String Matching on a GPU”, IEEE

Transactions on Computers, Volume 62, Issue 6, pp.

1156-1169,2013

[22] J.E. Stone, D.Gohara, and G.Shi, “OpenCl: A parallel

programming standard for heterogeneous computing

systems, “Computing in Science Engineering,vol.

12,no.3,pp.66-73,2010.

[23] HyeranJeon, Xia Yinglong and V.K. Prasanna,” Parallel

Exact Inference on a CPU-GPGPU Heterogeneous

System”, In the proc. 39th International Conference on

parallel Processing (ICPP), pp. 61-70,Sept. 2010.

[24] Liang Hu, CheXilong and XieZhenzhen,”GPGPU cloud:

A paradigm for general purpose computing”, Tsinghua

Science and Technology, Vol. 18, issue 1, pp. 22-23,

Feb. 2013.

[25] M. C. Schatz and C. Trapnell, “Fast Exact String

Matching on the GPU,” Technical report

IJCATM : www.ijcaonline.org

