
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

12

Mining Constant Conditional Functional Dependencies
for Improving Data Quality

D Devi Kalyani
Department of Computer Science Engineering

Gitam School of Technology,
Gitam University, Hyderabad, India.

ABSTRACT

This paper applies the data mining techniques in the area of

data cleaning as effective in discovering Constant Conditional

Functional Dependencies(CCFDs) from relational databases .

These CCFDs are used as business rules for context

dependent data validations. Conditional Functional

Dependencies(CFDs) are an extension of Functional

dependencies(FDs) which captures the consistency of data by

supporting patterns of semantically related constants. Based

on the hierarchy between FDs, CFDs and Association Rules

:Union of Association Rules are CFDs, while union of CFDs

are FDs. This paper proposes the algorithms used for

Association Rule discovery to be reused for CCFD Mining i.e

CFDs with constant patterns only . Three algorithms for

CCFD mining namely CCFD-FPGrowth, CCFD-AprioriClose

and CCFD-ZartMNR are provided in this paper. CCFD-

FPGrowth uses FP-growth algorithm to find frequent itemsets

and then generates rules as constant patterns from the set of

frequent itemsets using modified Agrawal Association rule

Generation algorithm. CCFD-AprioriClose uses Apriori

algorithm to find frequent closed itemsets and then generates

rules as constant patterns from the set of frequent closed

itemsets using modified Agrawal Association rule Generation

algorithm. CCFD-ZartMNR uses Zart algorithm to find

closed itemsets and minimal generators and then generates

minimal non-redundant rules from the set of closed itemsets.

Experimental results on two real-world data sets show that

this approach performs well across several dimensions such

as recall, runtime and scalability.

General Terms

Data Quality, Data Cleaning, Data Mining

Keywords

Data Cleaning, Constant Conditional Functional

Dependency(CCFD), Conditional Functional

Dependency(CFD), Frequent Pattern Growth (FP) tree,

Frequent Itemsets, Closed Itemsets

1. INTRODUCTION
A company‟s most important asset is information. A

corporation‟s ability to compete, adapt, and grow in a

business climate of rapid change is dependent on large extent

on how well the company uses information to make decisions.

Sharing information that is not clean and consolidated to the

full extent can substantially reduce the effectiveness of a

system.

Data cleansing, is the process of ensuring data quality in

information systems. This process involves inspecting a single

set of records or between multiple sets of data that need to be

merged or that will work together. Data cleaning solutions

will involve discovering erroneous data records, correcting

data and duplicate matching.

Many data cleaning solutions are highly dependent on human

input. The deliverable of the profiling phase – the first phase

of a data quality assessment [13], is a set of metadata

describing the source data which is then used as an input for

the creation of data validation and transformation rules.

However, the validation rules have to be confirmed or

designed by a business user who is an expert in the business

area being assessed. It is not always easy or straightforward to

create such a set of business rules. The situation is very

similar where duplicate matching is concerned. Even if

business rules for record matching are provided, e.g. “Equal

SSN‟s and dates of birth”, it may be impossible to match

duplicate records, as any of the data quality issues may occur

thus preventing from exact matching. Therefore, if incorrect

SSN‟s or dates of birth stored in different positional systems

occur, exact-matching business rules may not mark the

records as duplicates.

When attribute standardization and correction is considered,

data cleaning solutions are only as good as the reference data

they use. Reference data is a set of values which are

considered to be valid for a given attribute, e.g. list of states,

countries, pin codes etc

The main focus of this article is to use data mining to discover

data validation rules from the dataset itself and use them for

attribute value correction, object-identification problem.

Recently Conditional functional dependencies (CFDs) which

are an extension of Functional dependencies(FDs) have been

introduced to detect data inconsistencies and provides a

context dependent cleaning solutions using SQL.[1],[2].

Example 1.1: Consider an example to explain the concept of

Conditional Functional Dependency. Let Customer be a

relation describing customers with attributes country code

(CC), area code (AC), phone number (PN), name (NM), street

(STR), city (CT) and pin code (PIN). A instance r0 of

Customer is shown in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

13

r0 CC AC PN NM STR CT PIN

t1

t2

t3

t4

t5

t6

t7

t8

91

91

91

91

44

44

44

91

891

891

40

891

131

131

891

884

1111111

1111111

2222222

2222222

3333333

4444444

4444444

2222222

Raju

Kalyani

Rajini

Malini

Rupa

Ravi

Ravi

Devi

B.S.Layout

B.S.Layout

Hydernagar

M.V.P

High St.

High St.

Port PI

Majestic

VIZAG

VIZAG

HYDERABAD

VIZAG

EDI

EDI

VIZAG

KAKINADA

530016

530016

500072

530016

EH4 1DT

EH4 1DT

W1B 1JH

500072

Fig. 1. An instance r0 of the Customer relation

Traditional FDs that hold on r0 include the following:

f1: [CC, AC] → CT

f2: [CC, AC,PN] → STR .

Here f1 requires that two customers with the same country

and area-codes also have the same city; similarly for f2. In

contrast, the CFDs that hold on r0 include not only the FDs f1

and f2, but also the following:

∅0: ([CC, PIN] → STR, (44, _|| _))

∅1: ([CC, AC] →CT, (91, 891 || VIZAG))

∅2: ([CC, AC] → CT, (44, 131 || EDI))

∅3: ([CC, AC] → CT, (91, 40 || HYDERABAD))

In ∅0, (44,_||_) is the pattern tuple that enforces a binding of

semantically related constants for attributes (CC, PIN, STR)

in a tuple. It states that for customers in the UK, PIN uniquely

determines STR. It is an FD that only holds on the subset of

tuples with the pattern “CC = 44”, rather than on the entire

relation r0. CFD ∅1 assures that for any customer in the

INDIA (country code 91) with area code 891, the city of the

customer must be VIZAG, as enforced by its pattern tuple (91,

891 || VIZAG); similarly for ∅2 and ∅3. These cannot be

expressed as FDs.

More specifically, a CFD is of the form (X→A, tp), where

X→A is an FD and tp is a pattern tuple with attributes in X

and A. The pattern tuple consists of constants and an unnamed

variable „_ ‟ that matches an arbitrary value. To discover a

CFD it is necessary to find not only the traditional FD X → A

but also its pattern tuple tp. With the same FD X → A there

are possibly multiple CFDs defined with different pattern

tuples, e.g., ∅1-∅3.The pattern tuple in each of ∅1-∅3,

consists of only constants in both its LHS and RHS. Such

CFDs are referred to as Constant CFDs.

In this paper the main focus is to discover such constant

conditional functional dependencies from dataset and form a

pattern tableau for each unique FD. These pattern tableau‟s

were later merged to a single pattern tableau ,which serves as

entire set of data quality rules to be validated against the

dataset to detect inconsistencies.

Contribution:

In this paper 3 new algorithms are proposed for Constant CFD

mining. Experimental study shows that first algorithm

CCFD-FPGrowth takes less time to compute Constant CFDs

but generates redundant rules that can be implied by other

rules discovered with same support and confidence. Second

algorithm CCFD-AprioriClose discovers reduced set of

Constant CFDs by mining closed itemsets and is better than

CCFD-FPGrowth, but execution time is more compared to

CCFD-FPGrowth. The third CCFD-ZartMNR performs better

compared to the above 2 algorithms and generates only

minimal non-redundant Constant CFDs but takes more time

compared to others . The rules discovered by these algorithms

serves as data quality rules. To my knowledge no previous

paper on Constant CFD mining has applied these algorithms.

Paper Organization:

Section 2 defines CFD, Constant CFDs. Section 3 describes

Constant CFD mining and presents CCFD-FPGrowth, CCFD-

AprioriClose, CCFD-ZartMNR. Section 4 describes detecting

Constant CFD Violations using SQL. Section 5 discusses

Experimental study and results. Section 6 explains related

work and Section 7 gives conclusions.

2. DEFINITIONS

2.1 CFD
Consider a relation R defined by a set of attributes, denoted

by Attribute(R). For each attribute A є Attribute(R),

domain(A) is used to denote its domain.

A conditional functional dependency (CFD) φ over R is a pair

(X → Y, tp), where (1) X, Y are a set of attributes in

Attribute(R) (2) X→ Y is a standard FD, referred to as the FD

embedded in φ; and (3) tp is a pattern tuple with attributes in

X and Y, where for each B in X U {Y}, tp[B] is either a

constant „a‟ in dom(B),or an unnamed variable „_‟ that draws

values from dom(B). X is denoted as LHS(φ) and Y as

RHS(φ). X and Y attributes in a pattern tuple are separated

with „ || ‟. Standard FDs are a special case of CFDs. Indeed, an

FD X→Y can be expressed as a CFD (X→Y, tp), where tp[B]

=_ for each B in X U {Y}. The semantics of CFDs are

explained in paper [3]

2.2 Constant CFD:
A CFD (X→ Y, tp) is called a Constant CFD if its pattern

tuple tp consists of constants only, i.e., tp[Y] is a constant and

for all B є X, tp[B] is a constant. From the CFDs given in

Example 1.1, ∅1,∅2,∅3 are constant CFDs.

3. CONSTANT CFD MINING
Given an instance r of a relation schema R, an algorithm for

Constant CFD(CCFD) mining aims to find Constant CFDs

that hold on r. Instead of mining all CCFDs that hold on r,

which may contain trivial and redundant CCFDs and is

unnecessarily large, only a non-trivial and non-redundant set

of CCFDs are returned. A CFD φ = (X → Y, tp) over R is

said to be non-trivial if Y ∉ X.

Problem statement:

Given an instance r of a relation schema R and a support

threshold s, confidence c, the discovery problem for Constant

CFDs is to find a minimal non-redundant frequent CFDs with

constant patterns in r.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

14

 Frequent CFD:

The support of a CFD φ = (X → Y, tp) in r, denoted by

support(φ, r) is a relative support, and is defined to be the set

of tuples t in r such that t[X] = tp[X] and t[Y] = tp[Y], i.e.,

tuples that match the pattern of φ. Frequent CFD is one whose

relative support is above user specified threshold.

3.1 CCFD-FPGrowth Algorithm:
Given a minsupport (i.e support threshold s), first

FrequentPattern(FP) Growth algorithm is applied to mine

frequent patterns without candidate generation. From these

frequent itemsets obtained, given a user specified confidence ,

association rules are retrieved using Faster algorithm given

by Agrawal and Srikant. These rules discovered are used as

Constant CFDs

3.1.1 Frequent- Pattern Tree Approach: Mining

Frequent Patterns without Candidate Generation
Frequent-pattern tree (FP-tree) is an extended prefix-tree

structure for storing compressed, crucial information about

frequent patterns. This FP-tree is further mined for the

complete set of frequent patterns by pattern fragment growth

(FP-growth) method

Efficiency of mining is achieved with : a) a large database is

compressed into a condensed, smaller data structure, FP-tree

which avoids costly, repeated database scans, b) FP-tree-

based mining adopts a pattern-fragment growth method to

avoid the costly generation of a large number of candidate sets

c) a partitioning-based, divide-and-conquer method is used to

decompose the mining task into a set of smaller tasks for

mining confined patterns in conditional databases, which

dramatically reduces the search space.

Fp-growth method is proven to be efficient and scalable for

mining both long and short frequent patterns, and is about an

order of magnitude faster than the Apriori algorithm.

The FP-tree construction takes exactly two scans of the

transaction database: The first scan collects the set of frequent

items, and the second scan constructs the FP-tree

Mining frequent patterns using FP-tree:
Here three properties are used:

a) Node-link property:- For any frequent item ai , all the

possible patterns containing only frequent items and ai can be

obtained by following ai‟s node-links, starting from ai‟s head

in the FP-tree header.

b) Prefix path property:- To calculate the frequent patterns

with suffix ai , only the prefix subpaths of nodes labeled ai in

the FP-tree need to be accumulated, and the frequency count

of every node in the prefix path should carry the same count

as that in the corresponding node ai in the path.

c) Pattern growth property:- Let m be a frequent itemset in

database, B be m‟s conditional pattern-base, and n be an

itemset in B. Then m U n is frequent in database if and only if

n is frequent in B.

The procedure for construction of FP-tree and Mining

frequent patterns from FP-tree by pattern fragment growth

 can be seen in [5] . The advantages of FP-growth over

Apriori becomes evident when the dataset contains an

abundant number of mixtures of short and long frequent

patterns. FP-growth can mine with support threshold as low as

0.05%, with which Apriori cannot work out within reasonable

time.

Given user specified Confidence c, Apriori Fast Algorithm[9]

is applied on frequent itemsets discovered by FP-growth

algorithm, to generate required association rules that can be

used as Constant CFDs.

It is observed that rule patterns discovered here is not a

minimal cover, as some rules discovered are implied by other

rules having the same confidence and min support. While

trying to find minimal cover, closure properties are only

applied to rules with same confidence and min support.

The association rules considered here are probabilistic in

nature. The presence of a rule X=>A does not necessarily

mean that X,Y => A also holds because the latter may not

have same minimum support as earlier. Similarly,the presence

of rules X =>Y and Y=>Z does not necessarily mean that

X=>Z holds because the latter may not have same minimum

confidence as earlier. These such rules cannot be considered

as redundant.

3.2 CCFD-AprioriClosed:

Given a minsupport (i.e support threshold s), first Apriori

algorithm is applied to mine frequent closed itemsets. From

these frequent closed itemsets , we can obtain all frequent

itemsets. The set of all frequent closed itemsets is sufficient to

determine a reduced set of association rules. Given a user

specified confidence , association rules are retrieved from

frequent itemsets using Faster algorithm given by Agrawal

and Srikant. These rules discovered are used as Constant

CFDs.

 3.2.1 AprioriClosed Algorithm:
Mining frequent closed itemsets has the same power as

mining the complete set of frequent itemsets, but it may

substantially reduce redundant rules to be generated and

increase the effectiveness of mining. This algorithm makes

use of closed itemset lattice instead of subset lattice, for

finding frequent itemsets.

Consider an example transaction database D in Fig.2:

TID ITEMS

1

2

3

4

5

A C D

B C E

A B C E

B E

A B C E

Fig.2 Transaction database D

Considering minsupport=2, A closed itemset is a maximal set

of items common to a set of objects. For example, in the

database D, the itemset {B,C,E} is a closed itemset since it is

the maximal set of items common to the objects {2,3,5}.

{B,C,E} is called a frequent closed itemset as support of

{B,C,E}= 3 ≥ minsupport.

The below Fig.3 gives the closed itemset lattice of D with

frequent closed itemsets for minsupport=2.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

15

Fig.3 Closed Itemset Lattice of D

Closed itemset lattice minimizes the search space compared

to subset lattice, thereby reducing the number of database

passes and the CPU time involved in the generation of

frequent itemsets.

Based on the closed itemset lattice properties as described in

[6], we can generate all frequent itemsets from a database D

through the following steps:

1. Discover all frequent closed itemsets in D, i.e itemsets that

are closed and have support greater or equal to minsupport

2. Derive all frequent itemsets from the frequent closed

itemsets found in step1

That is generate all subsets of the maximal frequent closed

itemsets and derive their support from the frequent closed

itemset supports.

This paper implemented the Pseudo code of Apriori-Close

Algorithm for discovering frequent closed itemsets and

deriving frequent itemsets from the frequent closed itemsets

as described in [6]

Once Frequent itemsets and their support are calculated. We

can generate valid association rules using Faster algorithm

given by Agrawal and Srikant as below :

Input:

L//Large itemsets with their support // obtained as shown in

fig.4

C // user specified minimumConfidence

Output:

R //Association Rules satisfying s and c

Steps:

R= Ø;

For each l ∈ L do //where L is a set of large itemsets of size ≥

2 , l is any large itemset contained in L.

For each x ⊂ l such that x ≠ Ø do // x is any item subset

of l

If support(l)/support(x) ≥ C then

 R=RU {x=>(l-x)};

These rules obtained are considered as Constant CFDs having

minsupport and confidence specified by user.

3.3 CCFD-ZartMNR
Given a minsupport (i.e support threshold s), we first apply

Zart, a Multifunctional Itemset Mining Algorithm to mine

frequent closed itemsets, and their associated minimal

generators. From these frequent closed itemsets and minimal

generators, given a user specified confidence , we retrieve set

of Minimum Non Redundant(MNR)association rules. These

rules discovered are used as Constant CFDs.

3.3.1 ZART Algorithm:
 ZART identifies frequent closed itemsets and associate

 generators to their closures. This allows one to find minimal

 non-redundant association rules. Minimal non-redundant

 association rules (MNR) rules are lossless(should enable

 derivation of all strong rules), sound(should forbid derivation

 of rules that are not strong) and informative (should allow

 determination of rules parameters such as support and

 confidence). [21]

 An association rule is strong if its support and confidence are

 not less than the user-defined thresholds minimum support

 and minimum confidence, respectively.

 M. Kryszkiewicz has shown in [23] that minimal non-

 redundant rules (MNR) with the cover operator, and

 transitive reduction of minimal non-redundant rules (RMNR)

 with the cover operator and the confidence transitivity

 property are lossless, sound and informative representations

 of all strong association rules. From the definitions of MNR

 and RMNR it can be seen that we only need frequent closed

 itemsets and their generators to produce these rules.

 Working steps of Zart :

1. First it identifies frequent itemsets and notes

frequent generators.

2. Second,it separates frequent closed itemsets among

frequent itemsets, like Apriori-Close [24]. The idea

is that an itemset is not closed if it has a superset

with the same support. Thus, if at the kth iteration

an itemset has a subset of size (k − 1) with the same

support, then the subset is not a closed itemset. This

way all frequent closed itemsets can be found.

3. The third step consists of relating generators to their

closures. This can be done by gathering the non-

closed generator subsets of the given closed itemset

that have the same support.

To find frequent closed itemsets and associate generators to

their closures this paper implemented the pseudo code given

by algorithms 1, 2 and 3 stated in section 4 of paper [21]

MNR has the following form: the antecedent is a frequent

generator, the union of the antecedent and consequent is a

frequent closed itemset, and the antecedent is a proper subset

of this frequent closed itemset. MNR also has a reduced

subset called RMNR. Since a generator is a minimal subset of

its closure with the same support, non-redundant association

rules allow to deduce maximum information with a minimal

hypothesis. These rules form a set of minimal non-redundant

association rules, where “minimal” means “minimal

antecedents and maximal consequents”. Among rules with the

same support and same confidence, these rules contain the

most information and these rules can be the most useful in

practice [25]. For the generation of such rules the frequent

ABCDE

ACD ABCE

AC BCE

C BE

E

Ø

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

16

closed itemsets and their associated generators are needed.

Since Zart can find both, the output of Zart can be used

directly to generate these rules.

The algorithm for finding MNR is the following: for each

frequent generator P1 find its proper supersets P2 in the set of

FCIs. Then add the rule r : P1 → P2 \ P1 to the set of MNR.

The implementation for finding MNR is based on the

description in [22].

4. GENERATING PATTERN TABLEAUX

AND DETECTING CONSTANT CFD

VIOLATIONS: (COMMON TO ALL 3

ALGORITHMS CCFD-FPGROWTH,

CCFD-APRIORICLOSE, CCFD-

ZARTMNR)

It is observed that association rules with 100% confidence

cannot be used to clean the current dataset, but can only be

used as data quality rules to clean future data. In this scenario,

where we use the same dataset to generate validation rules and

using these rules to correct data inconsistencies, we always

have to take a confidence level <100%. The usefulness or

interestingness of a rule is often application-dependent. The

need for a user in the loop , to specify values for confidence

and support and providing some interface to allow user

guidance of the rule discovery process is always essential.

All constant patterns(AR‟s) discovered for each unique

Functional dependency(X=>Y, where X and Y are set of

attributes) are identified and consolidated to generate a single

pattern tableaux Tp. Later all X attributes of pattern tableaux‟s

are merged into a single pattern tableaux T∑
X and all Y

attributes of pattern tableaux‟s are merged into a single

pattern tableaux T∑
Y ,as described in[4], which captures all

constant conditional functional dependencies.The SQL

techniques to detect Single-tuple violations of cfd [4] are

reused here to detect Constant CFD violations.

Problem Statement:

Given a instance r of R relation schema and a set Σ of constant

CFDs on r, it is to find all the inconsistent tuples in r, i.e., the

tuples that violate some constant CFD in Σ

Checking Constant CFD Violations Using SQL:

Consider the merged tableaux T∑
X and T∑

Y from a set Σ of

Constant CFDs over a relation schema R and let r be an

instance of R. Then, the following SQL query can be used to

detect inconsistent tuples of r violating any of the pattern

tuple.

select t from R t, T∑
X tp

X , T∑
Y

 tp
Y

 where tp
X.id = tp

Y.id AND

t[X1] = tp
X[X1] AND . . . t[Xn] = tp

X[Xn] AND

(t[Y1] ≠tp
Y[Y1] OR . . . t[Yn] ≠tp

Y[Yn]).

5. Experimental Study:
In order to assess performances experimental study is

conducted on the three algorithms described in section 3, for

discovering constant CFDS : CCFD-FPGrowth, CCFD-

AprioriClose, CCFD-ZartMNR.

Experiments studied the effects of the following factors on the

scalability and the number of constant CFDs produced: (1) the

support threshold s, (b) the size of a sample relation r, i.e., the

number of tuples in r, (3) the arity of r, i.e., the number of

columns in r.

5.1 Experimental Settings:
The experiments used real datasets from the UCI machine

learning repository(http://archive.ics.uci.edu/ml/), namely, the

Wisconsin breast cancer(WBC) and Chess datasets.

The following table describes the characteristics of these

datasets:

The algorithms have been implemented in Java. The program

has been tested on Intel Core 2 Duo Processor (2.2GHZ) with

3GB of memory running the Microsoft WindowsXP operating

system. All algorithms run entirely in main memory. Each

experiment was repeated over 5 times and the average is

reported here

5.2 Experimental Results:
5.2.1 Experimental Results on Wisconsin breast

cancer (WBC)
The experimental results on Wisconsin breast cancer (WBC)

are shown below. The number of attributes here is 11, number

of tuples is 699. Here first attribute is discarded from this

dataset i.e Sample code number as this is not useful in rule

discovery process. Hence we consider only 10 attributes. As

the domain of the attributes from 2 to 10 is a value between

1-10,and class attribute value being 2 or 4,a rule of the form

1 1 => 2 does not give information about from which attribute

domain this rule derived from.

Hence for all attributes(2-11) values, a common suffix is

added and converted them to string The common suffix added

to Clump Thickness is -A1, for Uniformity of Cell Size is

–A2, and so on for Class is –A10. Now an example of the

discovered rule is of the form 1-A2 1-A6 ==> 2-A10 [support

= 0.406 (284/699) confidence= 100%] which means if two

tuples have same Uniformity of CellSize and Bare Nuclei

values(LHS)with 1 and 1 respectively , the Class attribute

value(RHS)must be equal to 2.

 By keeping confidence as constant(≥70%) and varied support

threshold s (10% to 60%). Figures 6, 7, 8, 9 show the number

of Constant CFDS discovered by all the three algorithms for

constant confidence of 70%,80%,90%,100% respectively.

While figures 10,11,12,13 show the corresponding response

times (in seconds)of all three algorithms to generate constant

CFDs. Here response time is the sum of the time needed to

generate Frequent items and the time needed to generate

Association Rules from Frequent items.

From Fig.6,7,8 and 9, we observed that when support%

increases from 10 to 60 , the number of Constant CFDs

(CCFDs) are reduced. While when confidence% increases

from 70 to 100 and support is kept constant, we also observe a

reduction in number of CCFDs generated by all 3 algorithms.

The algorithm CCFD-ZartMNR always produced less number

of Constant CFDs, which are minimal and non-redundant. The

number of CCFDs generated by CCFD-FPGrowth are always

high, as it is also producing some redundant CFDs that can be

inferred by other rules having same support and confidence.

The algorithm CCFD-Aprioriclosed produced a reduced non-

redundant CCFDs compared to CCFD- FPGrowth.

Dataset Arity Size (Number of

tuples)

Wisconsin breast cancer

(WBC)

Chess

11

7

699

28,056

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

17

Fig .6 For constant confidence=70%

 Fig .8 For constant confidence=90%

 Fig .10 For constant confidence=70%

 Fig .12 For constant confidence=90%

Fig .7 For constant confidence=80%

Fig .9 For constant confidence=100%

 Fig .11 For constant confidence=80%

 Fig .13 For constant confidence=100%

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

18

From Fig.10,11,12,and 13 we observed that when support%

increases from 10 to 60 , the response time to generate CCFDs

is reduced. From support%≥40 , all the four fig‟s show the

same response time. While when confidence% increases from

70 to 100 and support is kept constant, we also observe a

reduction in response time to generate CCFDs by all 3

algorithms. Among the 3 algorithms CCFD-FPgrowth took

less time to generate CCFDs .This is because the time taken to

compute Frequent itemsets by FPGrowth is less when

compared to others. The algorithms CCFD-AprioriClosed and

CCFD-ZartMNR incur an additional overhead for computing

closed itemsets. Response time of CCFD-ZartMNR is

always observed high, as it involves cost of computing closed

itemsets and mining minimal non redundant rules.

The tuples of Wisconsin breast cancer (WBC) that violate

Constant CFD. 1-A8 1-A9 ==> 1-A2 with support=

0.5(relative) and confidence= 0.82 by all three algorithms are

76 in number. First 10 tuples that violate the constant CFD

are shown below in Table 3.

The pattern table for 1-A8 1-A9 ==> 1-A2 is given in

Table 2.

Normal Nucleoli Mitoses Uniformity of Cell Size

1 1 1

Table.2 Pattern table for CCFD 1-A8 1-A9 ==> 1-A2

TUPLE

ID

NORMAL

NUCLEOLI

MITOS

ES

CELL

SIZE

10 1 1 2

27 1 1 2

38 1 1 2

44 1 1 6

55 1 1 5

59 1 1 2

60 1 1 5

78 1 1 3

81 1 1 2

83 1 1 2

Table.3 Tuples which violated CCFD 1-A8 1-A9 ==> 1-A2

5.2.2 Experimental Results on Chess
In chess dataset all 7 attributes are considered. These attribute

values are appended with common suffix : -A1 for first

attribute,-A2 for second attribute and so on –A7 for seventh

attribute.

By keeping confidence as constant(≥70%) and varied support

threshold s (10% to 60%) Figures 14, 15, 16, 17 show the

number of Constant CFDS discovered by all the three

algorithms for constant confidence of 70%,80%,90%,100%

respectively. while figures 18,19 show the response times (in

seconds)of all three algorithms to generate constant CFDs for

constant confidence 70%,100%.Here response time is the sum

of the time needed to generate Frequent items and the time

needed to generate Association Rules from Frequent items

.

 Fig .14 For constant confidence=70%

 Fig .15 For constant confidence=80%

 Fig .16 For constant confidence=90%

The tuples of chess dataset that violate Constant CFD

fifteen-A7 ==> 1-A2 with support=0.071(relative) and

confidence=0.92 by all three algorithms are 172 in number.

First 10 tuples that violate the constant CFD are shown below

in Table 5.

The pattern table for fifteen-A7 ==> 1-A2 is given in Table4

T
Table.4 pattern table for CCFD

fifteen-A7 ==> 1-A2

Optimal depth-of-win for White White King

rank

Fifteen 1

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

19

 Fig .17 For constant confidence=100%

 Fig .18 For constant confidence=70%

 Fig .19 For constant confidence=100%

TUPLEID Optimal depth-of-win

for White

White King

rank

26690 fifteen-A7 2-A2

26691 fifteen-A7 2-A2

26692 fifteen-A7 2-A2

26693 fifteen-A7 2-A2

26694 fifteen-A7 2-A2

26695 fifteen-A7 2-A2

26696 fifteen-A7 2-A2

26697 fifteen-A7 2-A2

26698 fifteen-A7 2-A2

26699 fifteen-A7 2-A2

Table.5 Tuples which violated CCFD

fifteen-A7 ==> 1-A2

 6. Related work:
In [1,5], CFDs has been proposed and studied mainly from a

theoretical perspective, their underlying application being data

cleaning. They revise classical problems (implication,

consistency, axiomatization. . .) in data dependencies for

CFDs.

In [12], authors study the characterization and the generation

of pattern tableaux to realize the full potential of CFDs. In

[14], a hierarchy of CFDs, FDs and ARs has been proposed

along with some theoretical results on pattern tableaux

equivalence. They use the work of [7], based on horizontal

decomposition of a relation, as a way to represent and reason

on CFDs.

Two important contributions have been made for CFD mining

[8,3] while plenty of contributions have been proposed for FD

inference and AR mining (see for example [10,11,15,16,17] in

the context of this paper).

In [8], authors propose a tool for data quality management

which suggests possible rules and identify conform and non-

conform records. They present effective algorithms for

discovering CFDs and dirty values in a data instance, but the

CFDs discovered may contain redundant patterns.

In [3], authors proposed three methods to discover CFDs. The

first one is called CFDMiner which mines only constant CFDs

i.e. CFDs with constant patterns only. CFDMiner is based on

techniques for mining closed itemsets [11]. The two other

ones, called CTANE and FastCFD, were developed for

general (non constant) CFDs discovery. CTANE and FastCFD

are respectively extensions of well known algorithms TANE

[15] and FastFD [18] for mining FDs.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

20

7. CONCLUSIONS
In this paper all three algorithms discussed are implemented

for discovering constant conditional functional

dependencies(CCFDs) and studied their performance on two

real world datasets.

These CCFDs are useful in data cleaning and towards

enforcing semantic data consistency. Furthermore it is also

shown how to identify exceptions to these rules using single-

tuple violations using SQL. Of all 3 algorithms CCFD-

ZartMNR proved to be more efficient as it generates only

minimal non-redundant rules but execution time is slightly

more when compared to others. The further study is aimed to

develop algorithms which generates minimal non-redundant

CCFDs with less execution time.

8. REFERENCES
[1] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,

“Conditional functional dependencies for capturing data

inconsistencies,” TODS, vol. 33, no. 2, june 2008.

[2] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma,

“Improving data quality:Consistency and accuracy,” in

VLDB, 2007

[3] Wenfei Fan , Floris Geerts , Jianzhong Li , Ming Xiong.

Discovering Conditional Functional Dependencies. IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL.23, NO. 5, May 2011.

[4] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia,

and Anastasios Kementsietsidis. Conditional functional

dependencies for data cleaning. In Proceedings of

ICDE'07, April 15-20, Istanbul, Turkey, pages 746_755,

2007.

[5] Mining Frequent Patterns without Candidate Generation:

A Frequent-Pattern Tree Approach Data Mining and

Knowledge Discovery Journal , 8, 53–87, 2004

[6] Discovering Frequent Closed Itemsets for Association

Rules, Nicolas Pasquier, Yves Bastide, Rafik Taouil,

Lotfi Lakhal. ICDT '99 Proceedings of the 7th

International Conference on Database Theory, Pages 398

- 416 , Springer-Verlag London, UK ©1999

 [7] Paul De Bra and Jan Paredaens. Conditional

dependencies for horizontal decompositions. In

Proceedings of the 10th Colloquium on Automata,

Languages and Programming, pages 67_82, London,

UK, 1983. Springer-Verlag.

[8] Fei Chiang and Renée J. Miller. Discovering data quality

rules. PVLDB,1(1):1166_1177, 2008.

[9] Fast Algorithms for Mining Association Rules, Rakesh

Agrawal, RamaKrishnan Srikant, In Proc. 20th Int. Conf.

Very Large Data Bases, VLDB (December--

JanuaryMay~ 1994), pp. 487-499

[10] Rakesh Agrawal, Tomasz Imielinski, and Arun N.

Swami. Mining association rules between sets of items in

large databases. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of

Data, Washington, D.C., May 26-28, 1993, pages

207_216. ACM Press, 1993.

[11] Nicolas Pasquier, Yves Bastide, Ra_k Taouil, and Lot_

Lakhal. Discovering frequent closed itemsets for

association rules. In ICDT, pages 398_416, 1999.

[12] Lukasz Golab, Howard Karlo_, Flip Korn, Divesh

Srivastava, and Bei Yu.On generating near-optimal

tableaux for conditional functional dependencies.Proc.

VLDB Endow., 1(1):376_390, 2008.

[13] A. Maydanchik Data Quality Assessment Technics

Publications,336pp, ISBN-13: 9780977140022

[14] Raoul Medina and Lhouari Nourine. A unified hierarchy

for functional dependencies, conditional functional

dependencies and association rules. In ICFCA, Lecture

Notes in Computer Science, pages 235_248. Springer,

2009

[15] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.

Tane: An efficient algorithm for discovering functional

and approximate dependencies. The Computer Journal,

42(2):100_111, 1999.

[16] Stéphane Lopes, Jean-Marc Petit, and Lot_ Lakhal.

Efficient discovery of functional dependencies and

armstrong relations. In EDBT 2000, volume 1777 of

LNCS, pages 350_364, Konstanz, Germany, 2000.

Springer.

[17] Noël Novelli and Rosine Cicchetti. Fun: An efficient

algorithm for mining functional and

embeddeddependencies. In Proceedings of the 8th

International Conference on DatabaseTheory (ICDT'01),

volume 1973 of Lecture Notes in Computer Science,

pages 189_203, 2001.

[18] Catharine Wyss, Chris Giannella, and Edward Robertson.

Fastfds: A heuristic-driven, depth-first algorithm for

mining functional dependencies from relation instances

extended abstract. Data Warehousing and Knowledge

Discovery, pages 101_110, 2001.

[19] G.Birkhoff. Lattices theory. In coll.pub. XXV, Volume

25. American Mathematical Society,1967. Third edition.

[20] B.A. Davey and H.A.Priestley. Introduction to Lattices

and Order. Cambridge University Press,1994. Fourth

edition.

[21] L. Szathmary, A. Napoli, and S. O. Kuznetsov. ZART:

A Multifunctional Itemset Mining Algorithm. In Proc. of

the 5th Intl. Conf. on Concept Lattices and Their

Applications (CLA '07), pages 26{37, Montpellier,

France, Oct 2007

[22] Marzena Kryszkiewicz: Representative Association

Rules and Minimum Condition Maximum Consequence

Association Rules. PKDD 1998: 361-369 Minimum

[23] Kryszkiewicz, M. Concise representations of association

rules. In: Pattern Detection and Discovery. (2002) 92–

109

[24] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed

set based discovery of small covers for association rules.

In: Proc. 15emes Journees Bases de Donnees Avancees,

BDA. (1999) 361–381

[25] Pasquier, N.: Mining association rules using formal

concept analysis. In: Proc. Of the 8th International Conf.

on Conceptual Structures (ICCS ‟00), Shaker-Verlag

(2000) 259–264

IJCATM : www.ijcaonline.org

http://www.informatik.uni-trier.de/~ley/db/conf/pkdd/pkdd98.html#Kryszkiewicz98

