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ABSTRACT 

This paper applies the data mining techniques in the area of 

data cleaning as effective in discovering Constant Conditional 

Functional Dependencies(CCFDs) from relational databases . 

These CCFDs are used as business rules for context 

dependent data validations. Conditional Functional 

Dependencies(CFDs) are an extension of Functional 

dependencies(FDs) which captures the consistency of data by 

supporting patterns of semantically related constants. Based 

on the hierarchy between FDs, CFDs and  Association Rules 

:Union of Association Rules are CFDs, while union of CFDs 

are FDs. This paper proposes the algorithms used for 

Association Rule discovery to be reused for CCFD Mining i.e 

CFDs with constant patterns only . Three algorithms for 

CCFD mining namely CCFD-FPGrowth, CCFD-AprioriClose 

and CCFD-ZartMNR are provided in this paper. CCFD-

FPGrowth uses FP-growth algorithm to find frequent itemsets 

and then generates rules as constant patterns from the set of 

frequent itemsets using modified Agrawal Association rule 

Generation algorithm. CCFD-AprioriClose uses Apriori 

algorithm to find frequent closed itemsets and then generates 

rules as constant patterns from the set of frequent closed 

itemsets using modified Agrawal Association rule Generation 

algorithm.  CCFD-ZartMNR uses Zart algorithm to find 

closed itemsets and minimal generators and then generates 

minimal non-redundant rules from the set of closed itemsets. 

Experimental  results on  two  real-world data sets show that 

this approach performs well across several dimensions such 

as  recall, runtime and scalability. 

General Terms 

Data Quality, Data Cleaning, Data Mining 

Keywords 

Data Cleaning, Constant Conditional Functional 

Dependency(CCFD), Conditional Functional 

Dependency(CFD),  Frequent Pattern Growth (FP) tree,  

Frequent Itemsets, Closed Itemsets 

 

1. INTRODUCTION 
A company‟s most important asset is information. A 

corporation‟s ability to compete, adapt, and grow in a 

business climate of rapid change is dependent on large extent 

on how well the company uses information to make decisions. 

Sharing information that is not clean and consolidated to the 

full extent can substantially reduce the effectiveness of a 

system.  

 

 

Data cleansing, is the process of ensuring data quality in 

information systems. This process involves inspecting a single 

set of records or between multiple sets of data that need to be 

merged or that will work together.  Data cleaning solutions 

will involve discovering erroneous data records, correcting 

data and duplicate matching. 

 

Many data cleaning solutions are highly dependent on human 

input. The deliverable of the profiling phase – the first phase 

of a data quality assessment [13], is a set of metadata 

describing the source data which is then used as an input for 

the creation of data validation and transformation rules. 

However, the validation rules have to be confirmed or 

designed by a business user who is an expert in the business 

area being assessed. It is not always easy or straightforward to 

create such a set of business rules. The situation is very 

similar where duplicate matching is concerned. Even if 

business rules for record matching are provided, e.g. “Equal 

SSN‟s and dates of birth”, it may be impossible to match 

duplicate records, as any of the data quality issues may occur 

thus preventing from exact matching. Therefore, if incorrect 

SSN‟s or dates of birth stored in different positional systems 

occur, exact-matching business rules may not mark the 

records as duplicates. 

 

When attribute standardization and correction is considered, 

data cleaning solutions are only as good as the reference data 

they use. Reference data is a set of values which are 

considered to be valid for a given attribute, e.g. list of states, 

countries, pin codes etc  

 

The main focus of this article is to use data mining to discover 

data validation rules from the dataset itself and use them for 

attribute value correction, object-identification problem.   

 

Recently Conditional functional dependencies (CFDs) which 

are an extension of Functional dependencies(FDs) have been 

introduced to detect data inconsistencies and provides a 

context dependent cleaning solutions using SQL.[1],[2].  

 

Example 1.1: Consider an example to explain the concept of 

Conditional Functional Dependency.  Let Customer be a 

relation describing customers with attributes country code 

(CC), area code (AC), phone number (PN), name (NM), street 

(STR), city (CT) and pin code (PIN).  A instance r0 of 

Customer is shown in Figure 1. 
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Fig. 1. An instance r0 of the Customer relation 

 

 

 

Traditional FDs that hold on r0 include the following:  

f1: [CC, AC] → CT  

f2: [CC, AC,PN] → STR . 

Here f1 requires that two customers with the same country 

and area-codes also have the same city; similarly for f2.  In 

contrast, the CFDs that hold on r0 include not only the FDs f1 

and f2, but also the following: 

∅0: ([CC, PIN] → STR, (44, _|| _ )) 

∅1: ([CC, AC] →CT, (91, 891 || VIZAG)) 

∅2: ([CC, AC] → CT, (44, 131 || EDI)) 

∅3: ([CC, AC] → CT, (91, 40 || HYDERABAD)) 

 

In ∅0, (44,_||_ ) is the pattern tuple that enforces a binding of 

semantically related constants for attributes (CC, PIN, STR) 

in a tuple. It states that for customers in the UK, PIN uniquely 

determines STR. It is an FD that only holds on the subset of 

tuples with the pattern “CC = 44”, rather than on the entire 

relation r0.  CFD ∅1 assures that for any customer in the 

INDIA (country code 91) with area code 891, the city of the 

customer must be VIZAG, as enforced by its pattern tuple (91, 

891 || VIZAG); similarly for ∅2 and ∅3. These cannot be 

expressed as FDs. 

 

More specifically, a CFD is of the form (X→A, tp), where 

X→A is an FD and tp is a pattern tuple with attributes in X 

and A. The pattern tuple consists of constants and an unnamed 

variable „_ ‟ that matches an arbitrary value. To discover a 

CFD it is necessary to find not only the traditional FD X → A 

but also its pattern tuple tp. With the same FD X → A there 

are possibly multiple CFDs defined with different pattern 

tuples, e.g., ∅1-∅3.The pattern tuple in each of ∅1-∅3, 

consists of only constants in both its LHS and RHS. Such 

CFDs are referred to as Constant CFDs.  

 

In this paper the main focus is to discover such constant 

conditional functional dependencies from dataset and form a 

pattern tableau for each unique FD. These pattern tableau‟s 

were later merged to a single pattern tableau ,which serves as 

entire set of data quality rules to be validated against the 

dataset to detect inconsistencies. 

 

Contribution: 

In this paper 3 new algorithms are proposed for Constant CFD 

mining. Experimental study shows that  first algorithm 

CCFD-FPGrowth takes less time to compute Constant CFDs 

but generates redundant rules that can be implied by other 

rules discovered with same support and confidence. Second 

algorithm CCFD-AprioriClose discovers reduced set of 

Constant CFDs by mining closed itemsets and is better than  

CCFD-FPGrowth, but execution time is more compared to 

CCFD-FPGrowth. The third CCFD-ZartMNR performs better 

compared to the above 2 algorithms and  generates only 

minimal non-redundant Constant CFDs but takes more time 

compared to others . The rules discovered by these algorithms 

serves as data quality rules. To my knowledge no previous 

paper on Constant CFD mining has applied these algorithms. 

 

Paper Organization: 

Section 2 defines CFD, Constant CFDs. Section 3 describes 

Constant CFD mining and presents CCFD-FPGrowth, CCFD-

AprioriClose, CCFD-ZartMNR. Section 4 describes detecting 

Constant CFD Violations using SQL. Section 5 discusses 

Experimental study and  results. Section 6 explains related 

work and Section 7 gives conclusions. 

 

2. DEFINITIONS 

2.1 CFD  
Consider a  relation  R defined by a set of attributes, denoted 

by  Attribute(R).   For each  attribute  A є Attribute(R), 

domain(A) is used to denote its domain.  

A conditional functional dependency (CFD) φ over R is a pair 

(X → Y, tp), where (1) X, Y are a set of    attributes in 

Attribute(R) (2) X→ Y is a standard FD, referred to as the FD 

embedded in φ; and (3) tp is a pattern tuple with attributes in 

X and Y, where for each B in X U {Y}, tp[B] is either a 

constant „a‟ in dom(B),or an unnamed variable „_‟ that draws 

values from dom(B).  X  is denoted as LHS(φ) and Y as 

RHS(φ).  X and Y attributes in a pattern tuple are separated 

with „ || ‟. Standard FDs are a special case of CFDs. Indeed, an 

FD X→Y can be expressed as a CFD (X→Y, tp), where tp[B] 

=_  for each B in X U {Y}.  The semantics of CFDs are 

explained in paper [3] 

 

2.2 Constant CFD: 
A CFD (X→ Y, tp) is called a Constant CFD if its pattern 

tuple tp consists of constants only, i.e., tp[Y] is a constant and 

for all B є X, tp[B] is a constant. From the CFDs given in 

Example 1.1, ∅1,∅2,∅3 are constant CFDs.  

 

3. CONSTANT CFD MINING 
Given an instance r of a relation schema R, an algorithm for 

Constant CFD(CCFD) mining aims to find Constant CFDs  

that hold on r. Instead of mining all CCFDs that hold on r, 

which may contain trivial and redundant CCFDs and is 

unnecessarily large, only a non-trivial and  non-redundant set 

of CCFDs  are returned. A CFD  φ = (X → Y, tp) over R is 

said to be non-trivial if Y ∉ X. 

 

Problem statement: 

Given an instance r of a relation schema R and a support 

threshold s, confidence c, the discovery problem for Constant 

CFDs is to find a minimal non-redundant frequent CFDs with 

constant patterns in r. 
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 Frequent CFD: 

The support of a CFD φ = (X → Y, tp) in r, denoted by 

support(φ, r) is a relative support, and is defined to be the set 

of tuples t in r such that t[X] = tp[X] and t[Y] = tp[Y], i.e., 

tuples that match the pattern of φ. Frequent CFD is one whose 

relative support is above user specified threshold. 
 

3.1 CCFD-FPGrowth Algorithm: 
Given a minsupport (i.e support threshold s), first 

FrequentPattern(FP) Growth algorithm is applied to mine 

frequent patterns without candidate generation. From these 

frequent itemsets obtained, given a user specified confidence , 

association rules  are retrieved using Faster algorithm given 

by Agrawal and Srikant. These rules discovered are used as 

Constant CFDs 

3.1.1 Frequent- Pattern Tree Approach: Mining 

Frequent Patterns without Candidate Generation 
Frequent-pattern tree (FP-tree) is an extended prefix-tree 

structure for storing compressed, crucial information about 

frequent patterns. This FP-tree is further mined for the 

complete set of frequent patterns by pattern fragment growth 

(FP-growth) method 

 

Efficiency of mining is achieved with : a) a large database is 

compressed into a condensed, smaller data structure, FP-tree 

which avoids costly, repeated database scans, b) FP-tree-

based mining adopts a pattern-fragment growth method to 

avoid the costly generation of a large number of candidate sets 

c) a partitioning-based, divide-and-conquer method is used to 

decompose the mining task into a set of smaller tasks for 

mining confined patterns in conditional databases, which 

dramatically reduces the search space. 

 

Fp-growth method is proven to be efficient and scalable for 

mining both long and short frequent patterns, and is about an 

order of magnitude faster than the Apriori algorithm. 

 

The FP-tree construction takes exactly two scans of the 

transaction database: The first scan collects the set of frequent 

items, and the second scan constructs the FP-tree 

 

Mining frequent patterns using FP-tree: 
Here three properties are used: 

a) Node-link property:- For any frequent item ai , all the 

possible patterns containing only frequent items and ai can be 

obtained by following ai‟s node-links, starting from ai‟s head 

in the FP-tree header. 

 

b) Prefix path property:- To calculate the frequent patterns 

with suffix ai , only the prefix subpaths of nodes labeled ai in 

the FP-tree need to be accumulated, and the frequency count 

of every node in the prefix path should carry the same count 

as that in the corresponding node ai in the path. 

 

c) Pattern growth property:- Let m be a frequent itemset in 

database, B be m‟s conditional pattern-base, and n be an 

itemset in B. Then m U n is frequent in database  if and only if 

n is frequent in B. 

 

The procedure for construction of FP-tree and Mining 

frequent patterns from FP-tree by pattern fragment growth 

 can be seen in [5] .  The advantages of FP-growth over 

Apriori becomes evident when the dataset contains  an 

abundant number of mixtures of short and long frequent 

patterns. FP-growth can mine with support threshold as low as 

0.05%, with which Apriori cannot work out within reasonable 

time. 

 

Given user specified Confidence c,  Apriori Fast Algorithm[9] 

is applied on frequent itemsets discovered by FP-growth 

algorithm, to generate required association rules that can be 

used as Constant CFDs. 

 
It is observed that rule patterns discovered here is not a 

minimal cover, as some rules discovered are implied by other 

rules having the same confidence and min support. While 

trying to find minimal cover, closure properties are only  

applied to rules with same confidence and min support. 

 

The association rules considered here are probabilistic in 

nature. The presence of a rule X=>A does not necessarily 

mean that X,Y => A also holds because the latter may not 

have same minimum support as earlier. Similarly,the presence 

of rules X =>Y and Y=>Z does not necessarily mean that 

X=>Z holds because the latter may not have same minimum 

confidence as earlier. These such rules cannot be considered 

as redundant. 

 

3.2  CCFD-AprioriClosed: 
 

Given a minsupport (i.e support threshold s), first Apriori 

algorithm is applied to mine frequent closed itemsets.  From 

these frequent closed itemsets , we can obtain all frequent 

itemsets. The set of all frequent closed itemsets is sufficient to 

determine a reduced set of association rules. Given a user 

specified confidence , association rules are retrieved from 

frequent itemsets using Faster algorithm given by Agrawal 

and Srikant. These rules discovered are used as Constant 

CFDs. 

 
 3.2.1  AprioriClosed Algorithm: 
Mining frequent closed itemsets has the same power as 

mining the complete set of frequent itemsets, but it may 

substantially reduce redundant rules to be generated and 

increase the effectiveness of mining. This algorithm makes 

use of closed itemset lattice instead of subset lattice, for 

finding frequent itemsets.  

 

Consider an example transaction database D in Fig.2: 

 

TID ITEMS 

1 

2 

3 

4 

5 

A  C  D 

B  C  E 

A  B  C  E 

B  E 

A  B  C  E 

Fig.2  Transaction database D 
 

Considering minsupport=2, A closed itemset is a maximal set 

of items common to a set of objects. For example, in the 

database D, the itemset {B,C,E} is a closed itemset since it is 

the maximal set of items common to the objects {2,3,5}. 

{B,C,E} is called a frequent closed itemset as support of 

{B,C,E}= 3 ≥ minsupport. 

The below Fig.3 gives the closed itemset lattice of D with 

frequent closed itemsets for minsupport=2. 
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Fig.3  Closed Itemset Lattice of D 

 

Closed itemset lattice minimizes the search space  compared 

to subset lattice, thereby  reducing the number of database 

passes and the CPU time involved in the generation of 

frequent itemsets. 

Based on the closed itemset lattice properties as described in 

[6], we can generate all frequent itemsets from a database D 

through the following steps: 

 

1. Discover all frequent closed itemsets in D, i.e  itemsets that 

are closed and have support greater or equal to minsupport 

 

2. Derive all frequent itemsets from the frequent closed 

itemsets  found in step1 

 

That is generate all subsets of the maximal frequent closed 

itemsets and derive their support from the frequent closed 

itemset supports. 

 

This paper implemented the  Pseudo code of  Apriori-Close 

Algorithm  for  discovering frequent closed  itemsets  and 

deriving frequent itemsets from the frequent closed itemsets 

as described in [6] 

         

Once  Frequent itemsets and their support are calculated. We 

can generate valid association rules using Faster algorithm 

given by Agrawal and Srikant as below : 

 

Input: 

L//Large itemsets with their support   // obtained as shown in 

fig.4 

C // user specified minimumConfidence 

Output: 

R  //Association Rules satisfying s and c 

Steps: 

R= Ø; 

For each l ∈ L do  //where L is a set of large itemsets of size ≥ 

2 , l is any large itemset contained in L. 

For each x ⊂ l such that x ≠ Ø  do   // x is any item subset 

of  l 

If support(l)/support(x) ≥ C then 

   R=RU {x=>(l-x)}; 

These rules obtained are considered as Constant CFDs  having 

minsupport and confidence specified by user.  
 

 

3.3  CCFD-ZartMNR 
Given a minsupport (i.e support threshold s), we first apply 

Zart, a Multifunctional Itemset Mining Algorithm to mine 

frequent closed itemsets, and their associated minimal 

generators.   From these frequent closed itemsets and minimal 

generators, given a user specified confidence , we retrieve set 

of Minimum Non Redundant(MNR)association rules. These 

rules discovered are used as Constant CFDs. 

 

3.3.1 ZART Algorithm: 
  ZART  identifies  frequent closed  itemsets and associate    

  generators to their closures. This allows one to  find minimal   

  non-redundant  association rules. Minimal non-redundant  

  association rules (MNR) rules are lossless(should enable  

  derivation of all strong rules), sound(should forbid derivation  

  of rules that are not strong) and informative (should allow    

  determination of  rules parameters such as support and  

  confidence). [21] 

 

 An association rule is strong if its support and confidence are  

  not less than the user-defined thresholds minimum support  

  and minimum confidence, respectively.  

 

  M. Kryszkiewicz has shown in [23] that minimal non-   

  redundant rules (MNR) with the cover operator, and     

  transitive reduction of minimal non-redundant rules (RMNR)  

  with the cover operator  and  the confidence transitivity  

  property are lossless, sound and informative representations  

  of all strong association rules. From the definitions of MNR  

  and RMNR it can be seen that we only need frequent closed  

  itemsets and their generators to produce these rules. 

 

 Working steps of  Zart : 

  

1. First it identifies frequent itemsets and notes 

frequent generators.  

2. Second,it separates frequent closed itemsets among 

frequent itemsets, like Apriori-Close [24]. The idea 

is that an itemset is not closed if it has a superset 

with the same support. Thus, if at the kth  iteration 

an itemset has a subset of size (k − 1) with the same 

support, then the subset is not a closed itemset. This 

way all frequent closed itemsets can be found. 

3. The third step consists of relating generators to their 

closures. This can be done by gathering the non-

closed generator subsets of the given closed itemset 

that have the same support. 

 

To find frequent closed itemsets and associate generators to 

their closures this paper implemented the pseudo code  given 

by algorithms 1, 2 and 3 stated in section 4 of paper [21]  

 

MNR has the following form:  the antecedent is a frequent 

generator, the union of the antecedent and consequent is a 

frequent closed itemset, and the antecedent is a proper subset 

of this frequent closed itemset. MNR also has a reduced 

subset called RMNR. Since a generator is a minimal subset of 

its closure with the same support, non-redundant association 

rules allow to deduce maximum information with a minimal 

hypothesis. These rules form a set of minimal non-redundant 

association rules, where “minimal” means “minimal 

antecedents and maximal consequents”. Among rules with the 

same support and same confidence, these rules contain the 

most information and these rules can be the most useful in 

practice [25]. For the generation of such rules the frequent 

ABCDE 

ACD ABCE 

AC BCE 

C BE

E 

Ø 
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closed itemsets and their associated generators are needed. 

Since Zart can find both, the output of Zart can be used 

directly to generate these rules.        

 

The algorithm for finding MNR is the following: for each 

frequent generator P1 find its proper supersets P2 in the set of 

FCIs. Then add the rule r : P1 → P2 \ P1 to the set of MNR. 

The implementation for finding MNR is based on the 

description in [22]. 

 

4. GENERATING PATTERN TABLEAUX  

AND  DETECTING CONSTANT CFD 

VIOLATIONS: (COMMON TO ALL 3 

ALGORITHMS CCFD-FPGROWTH, 

CCFD-APRIORICLOSE, CCFD-

ZARTMNR) 

It is observed that association rules with 100% confidence 

cannot be used to clean the current dataset, but can only be 

used as data quality rules to clean future data. In this scenario, 

where we use the same dataset to generate validation rules and 

using these rules to correct data inconsistencies, we always 

have to take a confidence level <100%. The usefulness or 

interestingness of a rule is often application-dependent. The 

need for a user in the loop , to specify values for confidence 

and support and providing  some interface to allow user 

guidance of the rule discovery process is always essential. 

 

All constant patterns(AR‟s) discovered for each unique 

Functional dependency(X=>Y, where X and Y are set of 

attributes) are identified and consolidated to generate a single 

pattern tableaux Tp. Later all X attributes of pattern tableaux‟s 

are merged into a single pattern tableaux T∑
X  and all Y 

attributes of pattern tableaux‟s are merged into a single 

pattern tableaux T∑
Y ,as described in[4], which captures all 

constant conditional functional dependencies.The SQL 

techniques to detect Single-tuple violations of cfd [4] are 

reused here to detect Constant CFD violations. 

 

Problem Statement: 

Given a instance r of R relation schema and a set Σ of constant 

CFDs on r, it is to find all the inconsistent tuples in r, i.e., the 

tuples that violate some constant CFD in Σ 

 

Checking Constant CFD Violations Using SQL: 

Consider the merged tableaux T∑
X  and  T∑

Y from a set Σ of 

Constant CFDs over a relation schema R and let r be an 

instance of R. Then, the following SQL query can be used to 

detect inconsistent tuples of r violating any of the pattern 

tuple. 

 

select t from R t, T∑
X  tp

X  , T∑
Y 

 tp
Y 

  where tp
X.id = tp

Y.id AND  

t[X1] = tp
X[X1]  AND . . . t[Xn] = tp

X[Xn] AND 

(t[Y1] ≠tp
Y[Y1] OR . . . t[Yn] ≠tp

Y[Yn]). 

5.  Experimental Study: 
In order to assess performances experimental study is 

conducted on the three algorithms described in section 3, for 

discovering constant CFDS : CCFD-FPGrowth, CCFD-

AprioriClose, CCFD-ZartMNR. 

Experiments studied the effects of the following factors on the 

scalability and the number of constant CFDs produced: (1) the 

support threshold s, (b) the size of a sample relation r, i.e., the 

number of tuples in r, (3) the arity of  r, i.e., the number of 

columns in r.  

5.1 Experimental Settings: 
The experiments used real datasets from the UCI machine 

learning repository(http://archive.ics.uci.edu/ml/), namely, the 

Wisconsin breast cancer(WBC) and Chess datasets. 

The following table describes the characteristics of these 

datasets: 

 

The algorithms have been implemented in Java. The program 

has been tested on Intel Core 2 Duo Processor (2.2GHZ) with 

3GB of memory running the Microsoft WindowsXP operating 

system. All algorithms run entirely in main memory. Each 

experiment was repeated over 5 times and the average is 

reported here 

 

5.2  Experimental Results: 
5.2.1  Experimental Results on Wisconsin breast 

cancer (WBC) 
The experimental results on Wisconsin breast cancer (WBC) 

are shown below. The number of attributes here is 11, number 

of tuples is 699. Here first attribute is discarded from this 

dataset i.e  Sample code number as this is not useful in rule 

discovery process. Hence we consider only 10 attributes. As 

the domain of the attributes from 2 to 10 is a value between  

1-10,and class attribute value being 2 or 4,a rule of the form   

1 1 => 2 does not give information about from which attribute 

domain this rule derived from.  

 

Hence for all attributes(2-11) values, a common suffix is 

added and converted them to string The common suffix added 

to Clump Thickness is -A1, for Uniformity of Cell Size is       

–A2, and so on for Class is –A10. Now an example of the 

discovered rule is of the form 1-A2 1-A6  ==> 2-A10 [support 

=  0.406 (284/699) confidence= 100%] which  means if two 

tuples have same Uniformity of CellSize and Bare Nuclei 

values(LHS)with 1 and 1 respectively , the Class attribute 

value(RHS)must be equal to 2. 

 

 By keeping confidence as constant(≥70%) and varied support 

threshold s (10% to 60%). Figures 6, 7, 8, 9 show  the number 

of Constant CFDS discovered by all the three algorithms for 

constant confidence of 70%,80%,90%,100% respectively. 

While figures  10,11,12,13 show the  corresponding response 

times (in seconds )of all three algorithms to generate constant 

CFDs.    Here response time is the sum of the time needed to 

generate Frequent items and the time needed to  generate 

Association Rules from Frequent items. 

 

From Fig.6,7,8 and 9, we observed  that  when support%  

increases from 10 to 60 , the number of Constant CFDs 

(CCFDs) are reduced. While when confidence%  increases 

from 70 to 100 and support is kept constant, we also observe a 

reduction in number of CCFDs generated by all 3 algorithms. 

The algorithm CCFD-ZartMNR always produced less number 

of Constant CFDs, which are minimal and non-redundant. The 

number of CCFDs generated by CCFD-FPGrowth are always 

high, as it is also producing some redundant CFDs that can be 

inferred by other rules having same support and confidence. 

The algorithm CCFD-Aprioriclosed produced a reduced non-

redundant CCFDs compared to CCFD- FPGrowth. 

 

Dataset Arity Size (Number of 

tuples) 

Wisconsin breast cancer 

(WBC) 

Chess 

11 

 

7 

699 

 

28,056 
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Fig .6  For constant confidence=70% 

 

                  
              Fig .8  For constant confidence=90%      

 

 
             Fig .10  For constant confidence=70%   

 

 

 
              Fig .12  For constant confidence=90%  

 

 

 

 

 

 
Fig .7  For constant confidence=80% 

 

 
Fig .9  For constant confidence=100% 

 

 
              Fig .11  For constant confidence=80%    

 

 
            Fig .13  For constant confidence=100%  
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From Fig.10,11,12,and 13 we observed  that  when support%  

increases from 10 to 60 , the response time to generate CCFDs 

is reduced. From support%≥40 , all the four fig‟s show the 

same response time. While when confidence%  increases from 

70 to 100 and support is kept constant, we also observe a 

reduction in response time to generate CCFDs  by all 3 

algorithms. Among the 3 algorithms CCFD-FPgrowth took 

less time to generate CCFDs .This is because the time taken to 

compute Frequent itemsets by FPGrowth is less when 

compared to others. The algorithms CCFD-AprioriClosed and 

CCFD-ZartMNR  incur an additional overhead for computing 

closed itemsets. Response time of  CCFD-ZartMNR  is 

always observed  high, as it involves cost of computing closed 

itemsets and mining minimal non redundant rules. 

 

The tuples of Wisconsin breast cancer (WBC) that violate 

Constant CFD.   1-A8 1-A9  ==> 1-A2  with support= 

0.5(relative) and  confidence= 0.82  by all three algorithms are 

76  in number. First 10 tuples that violate the constant CFD 

are shown  below in Table 3. 

 

The pattern table for  1-A8 1-A9  ==> 1-A2 is given in  

Table 2. 

Normal Nucleoli                Mitoses Uniformity of Cell Size        

1 1 1 

Table.2 Pattern table for CCFD 1-A8 1-A9  ==> 1-A2   

 

TUPLE                   

ID 

NORMAL 

NUCLEOLI 

MITOS

ES 

CELL 

SIZE 

10 1 1 2 

27 1 1 2 

38 1 1 2 

44 1 1 6 

55 1 1 5 

59 1 1 2 

60 1 1 5 

78 1 1 3 

81 1 1 2 

83 1 1 2 

Table.3 Tuples which violated CCFD 1-A8  1-A9 ==> 1-A2   

 

5.2.2  Experimental Results on Chess 
In chess dataset all 7 attributes are considered. These attribute 

values are appended with common suffix : -A1 for first 

attribute,-A2 for second attribute and so on –A7 for seventh 

attribute. 

 

By keeping confidence as constant(≥70%) and varied support 

threshold s (10% to 60%) Figures 14, 15, 16, 17 show  the 

number of Constant CFDS discovered by all the three 

algorithms for constant confidence of 70%,80%,90%,100% 

respectively. while figures  18,19 show the response times (in 

seconds )of all three algorithms to generate constant CFDs for 

constant confidence 70%,100%.Here response time is the sum 

of the time needed to generate Frequent items and the time  

needed to  generate Association Rules  from Frequent items 

. 

              Fig .14  For constant confidence=70% 

 

 
            Fig .15  For constant confidence=80% 

 

 

 
            Fig .16  For constant confidence=90%   

 

The tuples of chess dataset  that violate Constant CFD  

fifteen-A7  ==> 1-A2  with support=0.071(relative)  and  

confidence=0.92   by all three algorithms are 172 in number. 

First 10 tuples that violate the constant CFD  are shown below 

in Table 5. 

 

The pattern table for  fifteen-A7  ==> 1-A2  is given in Table4 

 

 

 

T
Table.4  pattern table for CCFD                       

fifteen-A7  ==> 1-A2   

Optimal depth-of-win for White White King 

rank 

Fifteen 1 
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             Fig .17  For constant confidence=100% 

 

 
               Fig .18  For constant confidence=70% 

 

 
             Fig .19  For constant confidence=100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TUPLEID Optimal depth-of-win 

for White 

White King 

rank 

26690 fifteen-A7 2-A2 

26691 fifteen-A7 2-A2 

26692 fifteen-A7 2-A2 

26693 fifteen-A7 2-A2 

26694 fifteen-A7 2-A2 

26695 fifteen-A7 2-A2 

26696 fifteen-A7 2-A2 

26697 fifteen-A7 2-A2 

26698 fifteen-A7 2-A2 

26699 fifteen-A7 2-A2 

Table.5 Tuples which violated CCFD                  

fifteen-A7  ==> 1-A2 

 6.  Related work: 
In [1,5], CFDs has been proposed and studied mainly from a 

theoretical perspective, their underlying application being data 

cleaning. They revise classical problems (implication, 

consistency, axiomatization. . . ) in data dependencies for 

CFDs. 

 

In [12], authors study the characterization and the generation 

of pattern tableaux to realize the full potential of CFDs. In 

[14], a hierarchy of CFDs, FDs and ARs has been proposed 

along with some theoretical results on pattern tableaux 

equivalence. They use the work of [7], based on horizontal 

decomposition of a relation, as a way to represent and reason 

on CFDs. 

 

Two important contributions have been made for CFD mining 

[8,3] while plenty of contributions have been proposed for FD 

inference and AR mining (see for example [10,11,15,16,17] in 

the context of this paper).  

 

In [8], authors propose a tool for data quality management 

which suggests possible rules and identify conform and non-

conform records. They present effective algorithms for 

discovering CFDs and dirty values in a data instance, but the 

CFDs discovered may contain redundant patterns.  

 

In [3], authors proposed three methods to discover CFDs. The 

first one is called CFDMiner which mines only constant CFDs 

i.e. CFDs with constant patterns only. CFDMiner is based on 

techniques for mining closed itemsets [11]. The two other 

ones, called CTANE and FastCFD, were developed for 

general (non constant) CFDs discovery. CTANE and FastCFD 

are respectively extensions of well known algorithms TANE 

[15] and FastFD [18] for mining FDs. 
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7. CONCLUSIONS 
In this paper all three algorithms discussed are implemented 

for discovering constant conditional functional 

dependencies(CCFDs)  and studied their performance on two 

real world datasets.  

These CCFDs are useful in data cleaning and towards 

enforcing semantic data consistency. Furthermore it is also 

shown how to identify exceptions to these rules using single-

tuple violations using SQL. Of all 3 algorithms CCFD-

ZartMNR proved to be more efficient as it generates only 

minimal non-redundant rules but execution time is slightly 

more when compared to others. The further study is aimed to  

develop algorithms which generates minimal non-redundant  

CCFDs with less execution time. 

8. REFERENCES 
[1]  W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, 

“Conditional functional dependencies for capturing data 

inconsistencies,” TODS, vol. 33, no. 2, june 2008. 

[2]  G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, 

“Improving data quality:Consistency and accuracy,” in 

VLDB, 2007 

[3]  Wenfei Fan , Floris Geerts , Jianzhong Li , Ming Xiong. 

Discovering Conditional Functional Dependencies. IEEE 

TRANSACTIONS ON KNOWLEDGE AND DATA 

ENGINEERING, VOL.23, NO. 5, May 2011. 

[4]  Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, 

and Anastasios Kementsietsidis. Conditional functional 

dependencies for data cleaning. In Proceedings of 

ICDE'07, April 15-20, Istanbul, Turkey, pages 746_755, 

2007. 

[5]  Mining Frequent Patterns without Candidate Generation: 

A Frequent-Pattern Tree Approach  Data Mining and 

Knowledge Discovery Journal , 8, 53–87, 2004     

[6]   Discovering Frequent Closed Itemsets for Association 

Rules, Nicolas Pasquier, Yves Bastide, Rafik Taouil, 

Lotfi Lakhal. ICDT '99 Proceedings of the 7th 

International Conference on Database Theory, Pages 398 

- 416 , Springer-Verlag London, UK ©1999  

 [7]  Paul De Bra and Jan Paredaens. Conditional 

dependencies for horizontal decompositions. In 

Proceedings of the 10th Colloquium on Automata, 

Languages and Programming, pages 67_82, London, 

UK, 1983. Springer-Verlag. 

[8]   Fei Chiang and Renée J. Miller. Discovering data quality 

rules. PVLDB,1(1):1166_1177, 2008. 

[9]   Fast Algorithms for Mining Association Rules, Rakesh 

Agrawal, RamaKrishnan Srikant, In Proc. 20th Int. Conf. 

Very Large Data Bases, VLDB (December--

JanuaryMay~ 1994), pp. 487-499  

[10]   Rakesh Agrawal, Tomasz Imielinski, and Arun N. 

Swami. Mining association rules between sets of items in 

large databases. In Proceedings of the 1993 ACM 

SIGMOD International Conference on Management of 

Data, Washington, D.C., May 26-28, 1993, pages 

207_216. ACM Press, 1993. 

 

[11]  Nicolas Pasquier, Yves Bastide, Ra_k Taouil, and Lot_ 

Lakhal. Discovering frequent closed itemsets for 

association rules. In ICDT, pages 398_416, 1999. 

[12]  Lukasz Golab, Howard Karlo_, Flip Korn, Divesh 

Srivastava, and Bei Yu.On generating near-optimal 

tableaux for conditional functional dependencies.Proc. 

VLDB Endow., 1(1):376_390, 2008. 

[13] A. Maydanchik Data Quality Assessment Technics 

Publications,336pp, ISBN-13: 9780977140022 

[14] Raoul Medina and Lhouari Nourine. A unified hierarchy 

for functional dependencies, conditional functional 

dependencies and association rules. In ICFCA, Lecture 

Notes in Computer Science, pages 235_248. Springer, 

2009 

[15] Y. Huhtala, J. Kärkkäinen, P. Porkka, and  H. Toivonen. 

Tane: An efficient algorithm for discovering functional 

and approximate dependencies. The Computer Journal, 

42(2):100_111, 1999. 

[16] Stéphane Lopes, Jean-Marc Petit, and Lot_ Lakhal. 

Efficient discovery of functional dependencies and 

armstrong relations. In EDBT 2000, volume 1777 of 

LNCS, pages 350_364, Konstanz, Germany, 2000. 

Springer. 

[17]  Noël Novelli and Rosine Cicchetti. Fun: An efficient 

algorithm for mining functional and 

embeddeddependencies. In Proceedings of the 8th 

International Conference on DatabaseTheory (ICDT'01), 

volume 1973 of Lecture Notes in Computer Science, 

pages 189_203, 2001. 

[18] Catharine Wyss, Chris Giannella, and Edward Robertson. 

Fastfds: A heuristic-driven, depth-first algorithm for 

mining functional dependencies from relation instances 

extended abstract. Data Warehousing and Knowledge 

Discovery, pages 101_110, 2001. 

[19] G.Birkhoff. Lattices theory. In coll.pub. XXV, Volume 

25. American Mathematical Society,1967.  Third edition. 

[20] B.A. Davey and  H.A.Priestley. Introduction to Lattices 

and Order. Cambridge University Press,1994. Fourth 

edition. 

[21]   L. Szathmary, A. Napoli, and S. O. Kuznetsov. ZART: 

A Multifunctional Itemset Mining  Algorithm. In Proc. of 

the 5th Intl. Conf. on Concept Lattices and Their 

Applications (CLA '07), pages 26{37, Montpellier, 

France, Oct 2007 

[22] Marzena Kryszkiewicz: Representative Association 

Rules and Minimum Condition Maximum Consequence 

Association Rules. PKDD 1998: 361-369 Minimum  

[23] Kryszkiewicz, M. Concise representations of association 

rules. In: Pattern Detection and Discovery. (2002) 92–

109 

[24] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed 

set based discovery of small covers for association rules. 

In: Proc. 15emes Journees Bases de Donnees Avancees, 

BDA. (1999) 361–381 

[25] Pasquier, N.: Mining association rules using formal 

concept analysis. In: Proc. Of the 8th International Conf. 

on Conceptual Structures (ICCS ‟00), Shaker-Verlag 

(2000) 259–264

 

 

IJCATM : www.ijcaonline.org 

http://www.informatik.uni-trier.de/~ley/db/conf/pkdd/pkdd98.html#Kryszkiewicz98

