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ABSTRACT 

Image segmentation is critical for many computer vision and 

information retrieval systems, and has received significant 

attention from industry and academia over last three decades. 

Despite notable advances in the area, there is no standard 

technique for selecting a segmentation algorithm to use in a 

particular application, nor even is there an agreed upon means 

of comparing the performance of one method with 

another.This paper, explores Rough-Fuzzy K-means (RFKM) 

algorithm, a new intelligent technique used to discover data 

dependencies, data reduction, approximate set classification, 

and rule induction from image databases. Rough sets offer an 

effective approach of managing uncertainties and also used 

for image segmentation, feature identification, dimensionality 

reduction, and pattern classification. The proposed algorithm 

is based on a modified K-means clustering using rough set 

theory (RFKM) for image segmentation, which is further 

divided into two parts. Primarily the cluster centers are 

determined and then in the next phase they are reduced using 

Rough set theory (RST). K-means clustering algorithm is then 

applied on the reduced and optimized set of cluster centers 

with the purpose of segmentation of the images. The existing 

clustering algorithms require initialization of cluster centers 

whereas the proposed scheme does not require any such prior 

information to partition the exact regions. Experimental 

results show that the proposed method perform well and 

improve the segmentation results in the vague areas of the 

image.   
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1. INTRODUCTION 
Image segmentation is one of the most challenging tasks in 

image analysis. It is also useful in the field of pattern 

recognition. Image mining deals with the extraction of 

implicit knowledge, image data relationship, or other patterns 

not explicitly stored in the images [5][6][7]. Image 

Segmentation is becoming more important for medical 

diagnosis process. Currently, development an efficient 

computer aided diagnosis system that assist the radiologist has 

thus become very interest, the aim being not to replace the 

radiologist but to over a second opinion [3, 4]. Consequently, 

the need of efficient research on features extracted and their 

role to the classification results makes researchers to select 

features randomly as input to their systems. In image 

segmentation an image is divided into different regions with 

similar features. There are many different types of approaches 

of image segmentation. Edge-based method, region-based 

techniques and threshold-based techniques and so on. Images 

are partitioned according to their global feature distribution by 

clustering based image segmentation methods. In this paper, a 

image segmentation method based on K-means using rough 

set theory is proposed, in which pixels are clustered according 

to the intensity and spatial features and then clusters are 

combined to get the results of final segmentation. The paper is 

organized as follows. In section 2 rough set theory is 

described. In section 3 rough set based K-means algorithm is 

proposed. In section 4 we have shown the experimental results 

and in section 5 some conclusions have been made. 

2. ROUGH SET CONCEPTS 
Rough Set Theory was firstly introduced by Pawlak in 1982 

[2][3],and is a valuable mathematical tool for dealing with 

vagueness and uncertainty [4]. Similar or indiscernibility 

relation is the mathematical basis of the Rough Set theory. 

The key concept of rough set theory is the approximate 

equality of sets in a given approximation space [2][3]. An 

approximation space A is an ordered pair ( , )U R , whereU is 

a certain set called universe, and that equivalence relation 

R U U  is a binary relation called indiscernibility 

relation; if ,x y U  any ( , )x y R , this means that x  and 

y  are indistinguishable in A ; equivalence classes of the 

relation R  are called elementary sets (atoms) in A  (an 

empty set is also elementary), and the set of all atoms in A  is 

denoted by /U R . In the Rough Set approach, any vague 

concept is characterized by a pair of precise concepts, that is 

the lower and upper approximation of the vague concept. Let 

X U  be a subset ofU , then the lower and upper 

approximation of X  in A  are respectively denoted as: 

( ) { : [ ] }A X x U x XR   , 

( ) { : [ ] }A X x U x XR    , 

Where [ ]x R  denotes the equivalence class of the relation R  

containing element x . In addition, the set 

( ) ( ) ( )BN X A X A X
A

   is called a boundary of X  in 

A  [2][3]. If set X  is roughly definable in A  it means that 

we can describe the set X  with some "approximation" by 

defining its lower and upper approximation in A [3]. The 

upper approximation ( )A X  means the least definable set in 
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A  containing the objects that possibly belong to the concept, 

whereas the lower approximation ( )A X  

2.1 Reduction of attributes 
Discovering the dependencies between attributes is important 

for information table analysis in the rough set approach. In 

order to check whether the set of attributes is independent or 

not, it is a way to check every attribute whether its removal 

increases the number of elementary sets in an information 

system [6]. Let the ( , , , )S U Q V   be an information 

system and let ,P R Q . Then, the set of attributes P is said 

to be dependent on set of attributes R in 

S (denotation R P ) iff IND INDR P , whereas the set 

of attributes ,P R  are called independent in S   iff neither 

R P  nor P R hold [2]. Moreover, finding the 

reduction of attributes is another important thing. Let the 

minimal subset of attributes R P Q   such that 

( ) ( )Y YP R    is called Y  reduct of ,P  and is denoted 

by ( ).RED P
Y

then the intersection of all Y   reducts is 

called the Y  core of .P  especially, the core is a collection 

of the most relevant attributes in the table [5] and is the 

common part of all reducts [6]. 

2.2 Fuzzy-Rough Sets 
In many real-world applications, data is often both crisp and 

real-valued, and this is where traditional rough set theory 

encounters a problem. It is not possible in the original theory 

to say whether two attribute values are similar and to what 

extent they are the same; for example, two close values may 

only differ as a result of noise, but RST considers them as 

different as two values of a dissimilar magnitude. It is, 

therefore desirable to develop techniques which provide a 

method for knowledge modelling of crisp and real-value 

attribute datasets which utilise the extent to which values are 

similar. This can be achieved through the use of fuzzy-rough 

sets. Fuzzy-rough sets encapsulate the related but distinct 

concepts of vagueness (for fuzzy sets) and indiscernibility (for 

rough sets), both of which occur as a result of uncertainty in 

knowledge. A T-transitive fuzzy similarity relation is used to 

approximate a fuzzy concept X the lower and upper 

approximations are: 

 

       
U

( ) inf ( ( , ), ( ))
P PR X R X

y
x I x y y  


           (1) 

       
U

( ) sup ( ( , ), ( ))
PP

R XR X
y

x T x y y  


           (2) 

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy 

similarity relation induced by the subset of features P: 

           ( , ) { ( , )}
P aR a P Rx y T x y                         (3) 

( , )
aR x y is the degree to which objects x and y are similar 

for feature a, and may be defined in many ways. In a similar 

way to the original crisp rough set approach, the fuzzy 

positive region can be defined as: 

          (D)
U/D

( ) sup ( )
R PP

POS R X
X

x x 


                 (4) 

An important issue in data analysis is the discovery of 

dependencies between attributes. The fuzzy-rough 

dependency degree of D on the attribute subset P can be 

defined as: 

         
(D)

' U

( )

(D)
| U |

RP
POS

x
P

x

 


                        (5) 

A fuzzy-rough reduct R can be defined as a minimal subset of 

features which preserves the dependency degree of the entire 

dataset 
' '(D) (D)R C   

3. FUZZY k-MEANS ALGORITHM  
The fuzzy k-means clustering algorithm partitions data points 

into k clusters Sl (l = 1, 2,… k) and clusters Sl are associated 

with representatives (cluster center) Cl. The relationship 

between a data point and cluster representative is fuzzy. That 

is, a membership ui,j ∈ [0, 1] is used to represent the degree of 

belongingness of data point Xi and cluster center Cj. Denote 

the set of data points as S = {Xi}. The FKM algorithm is based 

on minimizing the following distortion: 

,

1 1

k N
m

i j ij

j i

J u d
 

  

with respect to the cluster representatives Cj and memberships 

ui,j, where N is the number of data points; m is the fuzzifier 

parameter; k is the number of clusters; and dij is the squared 

Euclidean distance between data point Xi and cluster 

representative Cj. It is noted that ui,j should satisfy the 

following constraint: 

1, for i=1to N,
1

k
ui j

j



 

The major process of FKM is mapping a given set of 

representative vectors into an improved one through 

partitioning data points. It begins with a set of initial cluster 

centers and repeats this mapping process until a stopping 

criterion is satisfied. It is supposed that no two clusters have 

the same cluster representative. In the case that two cluster 

centers coincide, a cluster center should be perturbed to avoid 

coincidence in the iterative process. If dij < η, then ui,j = 1 and 

ui,l = 0 for l ≠ j, where η is a very small positive number. The 

fuzzy k-means clustering algorithm is now presented as 

follows. 

1. Input a set of initial cluster centers SC0 = {Cj(0)} and the 

value of ε. Set p = 1. 

2. Given the set of cluster centers SCp, compute dij for i = 1 to 

N and j = 1 to k. Update memberships ui,j using the following 

equation: 
1

1/ 1

1/ 1

,

1

1
( )

mk
m

i j ij

l
d

il

u d








 
 
 
 

 
  
 
 

  

If dij < η, set ui,j = 1, where η is a very small positive number. 

3. Compute the center for each cluster using next equation 

below to obtain a new set of cluster representativesSCp+1. 

               1

1

X

( )

N
m

ij i

i
j N

m

ij

i

u

C p

u









 

If ||Cj(p) − Cj(p − 1)|| < ε for j = 1 to k, then stop, where ε > 0 

is a very small positive number. Otherwise set p + 1 → p and 

go to step 2. 

The major computational complexity of FKM is from steps 2 

and 3. However, the computational complexity of step 3 is 
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much less than that of step 2. Therefore the computational 

complexity, in terms of the number of distance calculations, 

of FKM is O(Nkt), where t is the number of iterations. 

4. PROPOSED METHOD 
Fuzzy k-means is one of the traditional algorithms available 

for the clustering. However this algorithm is crisp as it allows 

an object to be placed exactly in only one cluster. To 

overcome the disadvantages of crisp clustering fuzzy based 

clustering was introduced. The distribution of member is 

fuzzy based methods can be improved by rough clustering. 

Based on the lower and upper approximations of rough set, 

the rough fuzzy k-means clustering algorithm makes the 

distribution of membership function become more reasonable  

4.1 Rough Set Based Fuzzy K-Means 

Algorithm 
Specific steps of the RFKM clustering algorithm are given as 

follows: 

Step1: Determine the class number k (2<=k<=n), parameter 

m, initial matrix of member function, the upper approximate 

limit Ai of class, an appropriate number ε > 0 and s = 0. 

Step 2: We can calculate centroids with the formula given 

below 

                
n n

m m

ij j ij

j 1 j 1

U X / UiC
 

                         (6) 

Step3: If jX the upper approximation, then Uij = 0. 

Otherwise, update Uij as shown below 

        ij 2
k ij

j 2l=1
ij

1
U

d 1
,x Rwi( )

d m-1





                (7) 

Step4: If ( ) s+1| U U ||  s   . 

4.1.1 Obtain Each Feature’s membership value 

First, initial cluster centers {P1, P2… Pc} were generated by 

randomly choosing c points from an image point set. Where c 

∈ [cmin, cmax], cmin =2, cmax = n  (n is the image pixels 

number). Each cluster centers Pi is represented by n numeric 

image features {Fi, i=1, 2,...n}. Then each feature  Fi is 

described in terms of its fuzzy membership values 

corresponding to three linguistic fuzzy sets, namely, low (L), 

medium (M), and high (H), which characterized respectively 

by a π - membership function 

2

2

2 1      
2

1 2  0    

0                              otherwise

( )

i
i

i
i

F c
for F c

i F c
for F c

F











  
     

 

  
     

 




 



 

Where λ is the radius of the π -membership function with c as 

the central point. To select the center c and radius λ.Thus, we 

obtain an initial clustering centers set where each cluster 

center is represented by a collection of fuzzy set. 

4.1.2 Constitute a Decision Table for the Initial cluster 

Centers Set 

Definition 1 Degree of similarity between two different 

cluster centers is defined as 

1

( )
n

i

i

F

n



 


 

Higher the value of the similarity, the closer the two 

clustering center is.  

Definition 2  In a same cluster centers set, if a cluster center 

has a same similarity value to another one, then they are 

called redundant cluster center each other.  Proposition 1  If A 

and B are redundant cluster center each other, B and C are 

redundant cluster center each other, then A, B and C belong to 

a same redundant cluster center, Viz. 

A↔B, B↔C⇒ A↔B↔C 

Based on what mentioned above, taking initial cluster centers 

as objects, taking cluster centers features Fi , the central point 

c and the radius λ as conditional attributes, taking degree of 

similarity between two different cluster centers as decision 

attribute by computing the π -membership function value, 

then a decision table for the initial cluster centers set can be 

constituted as follows: 

T= <U，P∪R，C，D> 

Where U= {xi, i=1, 2…m}, it denotes a initial cluster centers 

set; P∪R is a finite set of the initial cluster center category 

attributes (where P is a set of condition attributes, R is a set of 

decision attributes); C= {pi, i=1, 2…n} (where pi is a domain 

of the initial cluster center category attribute); 

D:UⅹP∪R→C is the redundant information mapping 

function, which defines an indiscernibility relation on U. 

4.1.3 Eliminating redundant cluster centers from the initial 

cluster centers set 

Assuming D(x) denotes a decision rule, D(x)|P (condition) and 

D(x)|R(decision) denote the restriction that D(x) to P and R 

respectively, I and j denotes two different cluster centers 

respectively, and other assumptions are as the same as what 

mentioned above. Based on what described above, the initial 

cluster centers set can be optimized by reduction theory 

according to the following steps:  

1. Deducing the compatibility of each rule of an initial cluster 

center set decision table z If D(I)|P(condition)=D(j)|P 

(condition) and D(i)|R(decision)=D(j)|R(decision),then  

rules of an initial cluster center set decision table are 

compatible; 

If D(i)|P(condition)=D(j)|P(condition), but D(i)|R 

(decision)≠D(j)|R(decision),then rules of an initial cluster 

center set decision table are not compatible.  

2. Ascertaining redundant conditional attributes of an initial 

cluster center set decision table  

If an initial cluster center set decision table are compatible, 

then when p∈P and Ind(P)=Ind(P-p), p is a redundant attribute 

and it can be leaved out, otherwise p can’t be leaved out.  

If an initial cluster center set decision table are not 

compatible, then computing its positive region POS(P, R). If 

p∈P, when POS(P, R)=POS(P-p, D), then p can be leaved out, 

otherwise p can’t be leaved out. 
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3. Eliminating redundant decision items from an initial cluster 

center decision table. For each condition attribute p carries out 

the process mentioned above until condition attribute set does 

not change. As soon as redundant initial cluster centers in the 

initial cluster set is eliminated, a reduced cluster center set is 

used as the FCM initial input variance for image 

segmentation. To evaluate the quality of clusters, the Xie-Beni 

index was used  

22

1 1

/

min

c n

ij i i

j i

ij i j

x v n

XB
v v


 







 

A smaller XB reflects that the clusters have greater separation 

from each other and are more compact.  

Based on what descript above, now the procedure for Rough 

Sets based FKM image segmentation method can be 

summered as follows: 

Step1: Randomly initialize the number of clusters to c, where 

2 ≤ c ≤√n and n is number of image points. 

Step2: Randomly chooses c pixels from the image data set to 

be cluster centers.  

Step3: Optimize the initial cluster centers set by Rough Sets.  

Step4: Set step variable t=0, and a small positive number ε. 

Step5: Calculate (at t=0) or update (at t>0) the membership 

matrix ,{ }k xU u  using equation (6) 

Step6: Update the cluster centers by equation (7). 

Step7: Compute the corresponding Xie-Beni index using 

equation (12). 

Step7: Repeat step 5-8 until 
1|| ||t tXB XB     

Step8: Return the best XB and best center positions 
 

5. EXPERIMENT RESULTS 
In this section, experimental results on real images are 

described in detail. In these experiments, the number of  

different types of object elements in each image from 

manual analysis was considered as the number of 

clusters to be referenced. They were also used as the 

parameter for FKM. The Xie-Beni index value has been 

utilized throughout to evaluate the quality of the 

classification for all algorithms. All experiments were 

implemented on PC with 1.8GHz Pentium IV processor 

using MATLAB (version9.0). 

     
        (a) Original Image                         (b)   FCM 

      
               (c) RFCM   (d) RFKM 

      
      (a) Original Image                                 (b)   FCM 

       
                (c) RFCM   (d) RFKM 

Proposed algorithm applied on all the images shown above. This 

RFKM image segmentation method partitions into different 

regions exactly. Visually as well as theoretically our method 

gives better results other than state of the art methods like, FCM, 

RFCM. We present a clustering time of experiment for 2 

experiments and shows that RFKM performs better than FCM 

and RFCM 

Table 1. Table captions should be placed above the table 

 Average of the XB index values 
Clustering 

time (in sec) 

FCM 0.034024 13.64 

RFCM 0.031578 6.48 

RFKM 0.029197 5.92 

 

 
Fig 1: Clustering Time(in sec) for RFKM,RFCM,FCM 
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6. CONCLUSIONS 
We employed Rough Sets to FKM image segmentation. By 

reduction theory (the core of Rough Sets), the vagueness and 

uncertainty information inherent in a given initial cluster 

center set is analyzed, and those redundant initial cluster 

centers in the initial cluster set is then eliminated, the reduced 

initial cluster center set as input to FKM for the soft 

evaluation of the segments, this is very useful for overcoming 

the drawbacks of conventional FKM segmentation over-

dependence on initial value. To evaluate the quality of 

clusters, the Xie-Beni index was used as the cluster  

validity index. Experimental results indicate the superiority of 

the proposed method in image segmentation. 
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