
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

31

XML based Interactive Voice Response System

Sharad Kumar Singh

PT PureTesting Software P Ltd.

Noida, India

ABSTRACT

The paper presents the architecture of a web based interactive

voice response system using Voice XML. The paper includes

a discussion on the architecture of the IVR system, its

components, and a detailed description of the functionality of

VXML Interpreter and its use in IVR systems. It also

describes the integration of VXML Interpreter, CCXML

Interpreter and the related media & telephony resources.

Finally it presents performance measurement techniques and

technical proposal for increasing the performance of such a

system.

General Terms

Interactive Voice Response System, Telephony, Voice XML,

Call Control XML

Keywords

IVR, Voice XML, Web based IVR, VXML Interpreter,

CCXML, FIA.

1. INTRODUCTION
Interactive voice response (IVR) is a phone technology that

allows a computer to interact with humans through the use of

voice and DTMF tones input via phone [1]. It has been an

essential element in the customer support equation for more

than a decade. The driving idea behind the development of

VXML was to reduce cost because it would not require

expensive call center agents but would be fully automated

systems capable of quick modifications.

The advancement in technology from touch-tone to speech-

enable and then integrating both has introduced new

challenges including:

•Integrating disparate customer access points and back-end

data sources.

•Scaling to ever-larger systems.

•Catering to larger number of customers.

•Quick development time for new customers and maintenance

time for the existing ones.

It was difficult to provide solution to the above problems

using the traditional interactive voice response systems.

Hence, the modern tone-speech enabled solutions were

developed to alleviate these problems. Voice XML is used to

design and develop the backbone of these solutions which are

known as voice portals.

The time required for the development of a voice xml based

solution is almost three times lesser than what is required for

traditional IVRs [2]. For the very same reasons, VoiceXML

has been widely adopted and accepted as the platform for

developing IVRs in the speech industry.

In order to understand the how a VoiceXML IVR application

operates it is useful to compare it with a traditional web

application. In a traditional web application, web browser

presents an HTML based web page from a web server,

populates data from a database server and performs specified

actions based on the user inputs through the web browser.

Similarly, in the case of a VoiceXML IVRs, the VXML

engine is responsible for performing the tasks that were

performed by the web browser and the web server.

2. A VOICE XML DOCUMENT

2.1 Sample VXML document
Following is a sample VXML document:

<?xml version="1.0"?>

<vxml application="sample.vxml" version="2.0">

 <form id="form1">

 <block>

 <prompt> Welcome World </prompt>

 </block>

 </form>

</vxml>

Each tag in the VXML document has its meaning and clearly

described functionality as per the W3C standards. However to

keep it short, this document plays “Welcome World” as soon

as the user dials in the voice xml gateway.

2.2 HTML versus VXML
HTML pages and VXML pages are equally alike and distinct.

Following is a code sample from a simple HTML page and a

VXML page.

Table 1. HTML versus VXML document

HTML Page VXML Page

<html>

 <body>

 <img

src="Coffee.jpg"/>

 </body>

 </html>

<vxml version="2.0">

 <form>

 <block>

 <prompt>Coffee </prompt>

 </block>

 </form>

</vxml>

In the above example of HTML, a page is set up where

visitors can view a picture of a cup of coffee. However, in the

VXML example, a document has been set up where callers

can hear a prompt stating "coffee. The theories behind the

VoiceXML example could be easily understood by digging a

little deeper.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

32

Fig 1: HTML v/s VXML

Using the HTML versus VXML analogy, it is important to

compare how HTML pages are served and how VXML pages

are executed when a caller calls. When designing an HTML

page, a document like above is first created, and then

uploaded it to some webserver so that it can be fetched

whenever requested. Similarly in VoiceXML the content must

be located on a webserver so that the servers can fetch it

whenever required.

 VoiceXML works with the same general principles but here

the telephone is used as the browser.

The next point of distinction is in how documents are fetched

and executed. When a user clicks a link to the 'coffee' HTML

page, a request is sent to the webserver hosting the document,

and the HTML page will then load the page in the user's web

browser with the accompanying picture of a cup of coffee.

Again, VoiceXML works on the same principles, with the

only difference that the telephone is used as the web browser.

Instead of clicking on a link, a user will dial the number

pointing to the VMXL gateway, which is the equivalent of a

hyperlink in HTML. When this number is dialed, it tells the

server/interpreter to fetch the document that has been

associated with that particular phone number. Assuming that

the code is well formed XML, and that the mapping has no

typographical errors, the coffee.vxml file will be loaded and

executed, thus outputting the text to speech message to the

caller.

3. ARCHITECTURE OF VXML BASED

IVR SYSTEM
A typical VoiceXML based system contains the four main

components.

∙ Telephone Network: It could be a PSTN network or VoIP

packet network.

∙ VoiceXML Gateway: It is the core of the voice xml based

IVR systems. It comprises of an engine for interpreting

VXML documents, speech synthesis, grammar recognition,

audio playbacks and telephony resources.

∙ Application Server: It is typically a Web Server that hosts

the VoiceXML documents.

∙ TCP/IP Network: LAN, WAN or public Internet.

VoiceXML connects to Telephone Network on one side and

TCP/IP network and Application Server on the other side.

4. VOICE XML GATEWAY
The components included in the voice xml gateway revolve

around the engine which is known as the VXML interpreter.

This engine is responsible for Mediating, Controlling and

Distributing data and logic flow in and around the other

components of the gateway. VoiceXML is not only used to

conceive and develop vocal but also multimodal solutions [3].

In such a case, VXML interpreter acts as a modality

component in the multi modal architecture [4].

4.1 VXML Interpreter

Fig 2: VXML Interpreter

4.1.1 Design options
The VXML interpreter can be designed in any of the

programming languages, the most common being C++ and

JAVA [5]. However, there isn’t much difference in the design

perspective while using C++ or JAVA, both being an Object

Oriented Language, the difference lays in the third party

libraries and devices which would be required to

communicate with the VXML Interpreter. Here, in this article

the design and discussions are based on the C++ paradigm.

4.1.2 Components
VXML Interpreter engine comprises of the following major

components:

4.1.2.1 Web Server Interface Module
The Web Server Interface Module uses various protocols,

provided within the implementation to fetch documents and

applications from a document server.

The common protocols which are used in order to request for

and download documents from the document server via the

HTTP client are through HTTP get, HTTP post, ftp and

HTTPS. The protocol to be used and the document to be

downloaded are specified during session initiation [6].

However, these could be specified again while traversing

from one document to another.

ECMA Script Scopes and

Variables

Form

Interpretation

Algorithm

VXML

Interpreter

Context

XML Parser

Module

Web Server

Interface

Module

Select

Collect

Process

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

33

A DNS lookup service is sometimes also required to resolve

the named address. Multi-threading safe third party libraries

such as libcurl etc. are used to achieve high performance

document fetching in the engine.

4.1.2.2 Form Interpretation Module
The form Interpretation Module is responsible for the

implementing the functional logic and traversing through the

VXML document based on caller inputs [7]. The form

interpretation algorithm (FIA) drives the interaction between

the caller and a VoiceXML input items. Execution of the code

in forms is handled by the form interpretation algorithm

(FIA), which loops through the items in the form and

processes (or reprocesses) them.

According to the W3C recommendation, FIA must handle the

following [7]

 Form initialization.

 Prompting or delivering audio to the caller.

 Grammar activation and deactivation

 Entering the form with an utterance that matched

one of the form's document-scoped grammars while

the user was visiting a different form or menu.

 Leaving the form because the user matched another

form, menu, or link's document-scoped grammar.

 Processing multiple field fills from one utterance,

including the execution of the relevant <filled>

actions.

 Selecting the next form item to visit, and then

processing that form item.

 Choosing the correct catch element to handle any

events thrown while processing a form item.

The interpretation algorithm of FIA is broken into three

different phases viz. select, collect and process phase [8]. In

select phase the VXML interpreter selects the form item

(input item) which needs to be processed. Then in the collect

phase it collects the caller input against the selected item and

validates with the active grammars which are basically

validation rules for the input item [9]. Finally in the process

phase, it processes the user input as per the execution logic

defined in the VXML document.

4.1.2.3 XML Parser Module
The XML Parser module acts as the interface between the

engine and the third party XML parsing and validation library.

It is also responsible for handling the tags pertaining to the

parsed DOM trees. It also contains functionality which allows

the user to validate dynamically generated XML scripts

against DTD and Schema. Its major functionality is to convert

the parsed VXML file into a binary format to facilitate quick

cycles for the Form Interpretation Module.

4.2 Media Resource
The media resource is responsible for speech recognition and

grammar validations for the input received from the caller as

an audio. It matches the input against the active grammars and

converts the audio response to binary format which could be

understood by the VXML Interpreter. It is also responsible for

converting text to speech and audio playback. Whenever FIA

encounters prompt element or block element with a text, it

needs to be played as an audio to the caller [10]. The VXML

interpreter sends this audio text or a .wav file location to the

media resource which in turn plays it to the caller.

4.3 Telephony Resource
The telephony resources include DTMF inputs and Call

control. DTMF inputs serve as caller responses to the Voice

gateway. The call control features such as call disconnect, call

transfer, conference etc. which are sent from the telephone are

handled by the telephony resource. In order to achieve these

functionalities Call Control Interpreter and VXML Interpreter

should work in conjunction as described in the fig. 3.

5. CCXML GATEWAY
The CCXML (Call Control XML) gateway is required to

handle call control requirements that are beyond the scope of

the VoiceXML specification. Although the CCXML and

VXML can be used in conjunction, both are mutually

independent. VoiceXML does support certain call control

features like transfer etc. but these would not be enough for

providing complex solutions for call controls, which would be

required in IVR systems. Hence, there are two approaches in

designing an IVR system using the VXML. The first approach

combines SIP as a control language and VoiceXML as the

interaction language [11]. The second approach is to use

CCXML as a control language. Former being more used with

traditional IVR systems built with CCXML and the latter is

used in more recent and advanced IVR systems. CCXML

offers more controlled and advanced call control features with

the advantage of short development time required to

implement and modify the system. The following

requirements are addressed by this w3c specification [12]:

 Support for multi-party conferencing, with advanced

conference and audio control. A conferencing application

involves multiple participants, and is dependent upon call

control to establish relationships between those

participants.

 The ability to give each active call leg its own dedicated

VoiceXML interpreter. For example, in VoiceXML, the

second leg of a transferred call lacks a VoiceXML

interpreter of its own, limiting the scope of possible

applications.

 Sophisticated multiple-call handling and control,

including the ability to place outgoing calls.

 Handling for a richer class of asynchronous events.

Advanced telephony operations involve substantial

amounts of signals, status events, and message-passing.

VoiceXML 2.0 does not integrate asynchronous

"external" events into its event-processing model.

 VoiceXML lacks the external interfaces required to

interact with an outside call queue, or place calls on

behalf of an external document server.

The Voice XML when used with CCXML provides the

benefits such as lower code complexity and higher

extensibility [11]. In such a scenario, the engine and gateway

once developed does not require repeated and frequent

modifications. The only customization that is required is in

creating or modifying the VXML/CCXML documents which

are easier to code when compared to traditional code

developed in a high level language. Hench the code

complexity is reduced. Also XML based languages are far

more extensible when compared with SIP based architecture.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

34

Fig 3: CCXML – VXML Integration Architecture

6. DEVELOPMENT TOOLS
There are numerous resources which can be used to quickly

create or modify an error free VXML document. Following

are few of them:

6.1 Plain text IDE
These are integrated development environments for creating

and modifying a VXML/CCXML document. The IDEs

usually should have any or all of the following features:

 Color Coding – This enables the developer to

quickly identify the reserve keywords, matching

tags, custom strings for prompt and audio playbacks

etc.

 Inline syntax checking – The IDEs usually act like a

mini interpreter; in which code can be continuously

parsed while it is being edited, providing instant

feedback when syntax errors are introduced.

 Document traversal – The VXML documents may

contain certain transition tags which require a new

document to be loaded. These IDEs are also able to

immediately load the next document as soon as the

user clicks on the hyperlink or the URL.

6.2 GUI based IDE
Using the GUI based integrated development environments

developer can use the drag and drop feature to create or

modify any VXML document. These IDEs serve the same

purpose as Plain Text IDEs but differ in the following:

 Drag and Drop – If a developer wants to create or

modify any tag in the VXML document, it is not

required to type the tag and its parameters. Instead,

the developer drags the required tag from the

available tag tools and it is automatically populated

at the desired location.

 Proactive rather than reactive – The IDE does not

allow developer to insert any incorrect tags or

correct tags at incorrect locations. Hence, it acts

proactively rather than throwing an error after the

developer finishes typing.

 Large binary size –GUI based IDEs are complex to

design and have a very large binary or source code

size.

 Low availability – Since these types of IDEs require

a lot of monetary and development effort, these are

not easily available commercially as well as in the

open source domain.

7. PERFORMANCE MEASUREMENT

AND OPTIMIZATION
Performance is one of the key features of any VXML or

CCXML interpreter. It is measured as how the integrated

system performs in terms of responsiveness and stability

under a particular workload. The approach suggested here

treats the complete gateway as a black box. Artificial load is

generated from a different program which is known as a

workload generator. The workload generator calls the APIs

exposed by the telephony interface. As soon as a call is

received on the telephony interface through the workload

HTTP

CCXML

C

Dialog
Control

Interface

Telephone
Control

Interface

Media

Telephony
Web

Application

Telephony
Interface

Voice
Web

Application

VXML

C

HTTP

Dialog
Server

Conference
Control

Interface
CCXML

Implementation

Media

Conference
Server

Telephone
Network

Caller

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

35

generator, it follows the normal execution path to complete

the call which would typically involve session initiation,

fetching documents, parsing, traversal and dialog

interpretations etc. When it completes the call it returns to the

workload generator with the status of the call. This status

would comprise of time taken, success/failure etc. A number

of calls are generated from the workload generated in order to

perform a load test on the system. The through put of the

system varies depending on many reasons but the following

two are the critical ones to look at:

𝑇ℎ𝑟𝑜𝑢ℎ𝑝𝑢𝑡 ∝
1

number of calls to the interface

𝑇ℎ𝑟𝑜𝑢ℎ𝑝𝑢𝑡 ∝
1

size of the VXML or CCXML document

The first one is more of a business requirement that drives the

load testing and cannot be regulated or improved through

technical improvements in the system. The second one is

more relevant for making improvements to the system. It is

observed that the performance degradation for huge

documents is due to two major factors:

 Time taken in downloading the document.

 Parsing the document.

Caching could be used in order to reduce the time taken to

download the document. The document should be cached and

checked before downloading, for any modifications that have

been done on the previously downloaded document. If the

document has not been modified from the last download it can

be fetched from the cache. Similarly, a caching mechanism

can be developed for the parsed binary tree which is created

after the parsing of the document as described in section

4.1.2.3 of this article. These two techniques could be used in

conjunction with each other in order to make major

improvements in the performance of the VXML Engine.

8. PLATFORM CERTIFICATION
In order to establish a VXML based IVR system, the platform

has to go through a series of validation tests which are

provided by the VXML forum [13]. These tests are based on

W3C VXML specifications and standards. These are basically

an exhaustive set of tests which act as a benchmark for the

platform based on the W3C standards. The VoiceXML

Forum’s Platform Certification Program usually provides

vendor-independent, industry-standard certification that

supports all parts of the VoiceXML ecosystem.

9. ACKNOWLEDGMENTS
The author would like to express his sincere thanks to all the

people in the VXML Interpreter development team for their

help and support without which it would not have been

possible to get the deep insights in the Voice XML.

10. REFERENCES
[1] From Wikipedia, description about interactive voice

response system

http://en.wikipedia.org/wiki/Interactive_voice_response

[2] VoiceXML Forum is a global industry organization that

works to accelerate the adoption of VoiceXML and

adjacent technologies. The reference is taken from the

frequently asked questions of the forum.

http://www.voicexml.org/about/frequently-asked-questions

[3] Anderson, E. A., Breitenbach, S., Burd, T.,

Chidambaram, N., Houle, P., D. Newsome, D, Tang, X.,

Zhu, X., Early Adopter VoiceXML, Wrox, 2001 p 24.

[4] W3C Recommendation for VoiceXML 3.0.

http://www.w3.org/TR/voicexml30/

[5] Adam Hocek, David Cuddihy, Prentice Hall Professional

Published: January 2003, Definitive VoiceXML

[6] The Staff of DreamTech Inc, McGraw-Hill Companies

2002, VoiceXML 2.0 Developer's Guide

[7] W3C Recommendation for VoiceXML 2.0.

http://www.w3.org/TR/voicexml20/

[8] A. Larson, Prentice Hall Professional Technical

Reference 2002, VoiceXML: Introduction to Developing

Speech Applications

[9] W3C Recommendation for SRGS grammar.

 http://www.w3.org/TR/speech-grammar/

[10] Bob C. Edgar, C M P Books, 2001, the VoiceXML

Handbook.

[11] Daniel Amyot and Renato Simoes 2007 “Combining

Voice XML with CCXML: A Comparative Study”,

Consumer Communications and Networking Conference,

2007.

[12] W3C Recommendation for CCXML 1.0.

http://www.w3.org/TR/ccxml/

[13] VoiceXML Forum is a global industry organization that

works to accelerate the adoption of VoiceXML and

adjacent technologies. The reference is taken from the

platform certification section of the forum.

http://www.voicexml.org/platform-certification

IJCATM : www.ijcaonline.org

