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ABSTRACT 

Dryer system is a controlled plant which is normally used in 

chemical industry. The proper modeling of this system 

facilitates its maintenance and keeping. Normally this is not 

an easy task, unless having a complete model of the process, 

due to sudden and nonlinear events. In this paper the linear 

identification of dryer plant in Arak petroleum, is introduced 

according to the Autoregressive with Exogenous Input (ARX) 

model and Box-Jenkins model and also the nonlinear 

identification based on Multi-Layer Perceptron (MLP) 

algorithm is investigated. The simulation results were 

satisfactory. It was concluded that these models can be used to 

design adaptive or robust controllers.   

Keywords 
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1. INTRODUCTION 
A dryer system is an important control plant which can be 

widely explored for teaching control engineering. The dryer 

system is suitable as a system control example because it is 

very simple to understand and there are still various control 

techniques to be studied covering many important classic and 

modern design methods.  

 

Fig. 1. A schematic of the dryer plant 

 

In the field of system identification, some recent works and 

ideas were explored to represent a suitable model which is 

more close to dryer system configuration. Identification of 

real industrial systems under load and under operation is a 

challenging task. Reviewing the other activities done in the 

field of physical system identification showed that the 

identification task was done in off-line mode with no system 

operation. This tendency could not be achievable for dryer 

system, because this industrial system could not be worked in 

off-line mode since its outputs were fed to other control parts. 

So, the novelty in this identification task was the 

formulization of some fundamental identification methods to 

realize dynamics recognition of this on-line system based on 

input-output system configuration and relation. By assuming 

the heater supply voltage as input and the heater output air 

temperature as output, the important feature of this Single-

Input Single-Output (SISO) system is its stable open loop. 

Figure 1 shows the schematic of the dryer under investigation 

[1, 2]. The system is a plant in Arak petroleum. It includes 

several parts such as motor, air supply fan, heater, dryer, 

cyclone unit, etc. The motor shaft has been connected to the 

air supply fan. Running the motor makes air supply that is 

blew to the heater. Figure 2 shows the input and output 

variables in this system. The step response for the dryer where 

the heater supply voltage is an input and the air temperature is 

output is shown in figure 3. As can be seen, in open loop case, 

the system is stable. 
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Fig. 2. Block diagram of dryer system based on input-

output signals 

 

Fig. 3. Step response of dryer 

 

2. DATA ACQUISITION CONDITIONS 
There are three factors in modeling based on the identification 

techniques: 

 Useful and valid information 

 A perfect and useful model 

 Strong method to adjust the model 

According to the input and output data to recognize the 

system behavior, the output change must be touched from 

input. So, if the disturbance be low, the model validation will 

perform better. To meet this goal, the system must be stable 

before collecting data and any change should not occur in 

output. 

The stage of data acquisition from dryer system was one of 

main challenges during this project. Since the system could 

not work on off-line mode and also its structure did not allow 

to follow the other related research manners, so this system 

was modeled as a Single-Input-Single-Output (SISO). To 

have a SISO system, the air temperature which was blown to 

the dryer having varied heater supply voltage was measured. 

A reason in choosing the supply voltage as input is because of 

its observable effect on the air temperature. Also, system 

identification just based on the input and output products, 

without considering the input air temperature, did not have a 

satisfactory result about model dynamics [1]. 

In comparison with the other related researches in 

identification mode, since this system was an industrial on-

line sample, the direct use of identification methods could not 

comprise reasonable results. At the first time, some input and 

output data were collected by using two general sensors at 

input and output and tried to follow the methods which were 

done by other researchers [4,7], but no reasonable results 

obtained. Continuing research to overcome this problem, first, 

some precise sensors were located at system input and output 

for data acquisition, second, tried to do a novelty and 

formulize the fundamental identification techniques based on 

dryer system configuration, behavior, its initial delay and 

operation which achieved via some consultant and meetings 

with some engineers operating with this systems during recent 

years. The re-formulization results for this system to carry out 

the identification task will be represented in section 4. 

As a comparison between this identification method and other 

activities have been done by other researchers, this work had 

some advantages and disadvantages [5, 7]. The on-line system 

operation and also high temperature around the data 

acquisition points and some impurities such as dust and 

environment noise forced the use of precise sensors with 

higher sensitivities which were more costly. The advantages 

of this work are achieving identification task under load while 

system full operation, overcoming the environment undefined 

noise and distribution affecting sensors response by 

formulization of identification methods and realizing them by 

correct definition of system training via neural networks [11, 

12, 14-16]. The disadvantage of this work is the influence of 

environment conditions such as high temperature around data 

acquisition points, dust and noise on sensors accuracy in input 

and output measurement in short times and the necessity of 

recalibration or treatment after some months. Actually, the 

industrial limitations for this system forced these conditions to 

the identification task [8, 13]. Two types of sensors have been 

used in this plant. A voltage sensor for sampling the heater 

input voltage, and a temperature sensor for sampling the 

heater output air temperature. Both sensors sampled with 

10Hz rate [9, 30]. 

Data pretreatment, such as DC level correction and peak 

shaving, is a very important technique for better 

understanding of the process behavior. So the obtained data 

should have valid information to be usable for identification 

to make the process dynamics visible which is achieved by 

filtering and data pretreatment [10, 17, 18]. An important 

point about data acquisition to be considered is that the 

disturbances and unexpected events such as fan speed 

reduction and noise in the input voltage should not affect the 

system behavior. The dryer system identification is a passive 

task. So it is impossible for the model to have the same 

behavior with the real system unless satisfying these 

conditions in the model. 

Figure 4 shows the change of the input (voltage) and output 

(temperature) signals. The voltage signal is analogue while 

temperature is given by a signal based on a Pulse Width 

Modulation (PWM). 

3. DATA PRETREATMENT  
The data from dryer contain high frequency noises and spikes. 

Sometimes immeasurable disturbances occur and take the 

system out of its linear range. Operation point change causes 

entering nonlinear effects in output data [2]. 

It is advisable to use a sampling frequency that is a multiple of 

the desired working frequency. This will build redundancy 

into the measured data that can reduce the information loss in 

the pretreatment of the data. When the data are acquired, one 

must always first plot the data in order to inspect them for 

these deficiencies [19, 31]. 

To solve some of these problems, some pre-processing 

methods mentioned in identification references were applied 

[3], to reach an optimized model of process. Thus, the effort 

was to choose a better model structure and focus on its 

flexibilities. 
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Fig. 4. Input and output data representation for dryer identification 

 

3.1   DC Level Correction 
In industrial practice all inputs and outputs have not the same 

order of magnitude. The obtained numerical values are related 

to physical quantities generally; do not have the same 

dimensions. The signals with the largest numerical values will 

automatically get the highest weight in the quadratic loss 

function which is minimized for determining the model, if 

these signals are directly used [32]. 

Notice that with DC level correction, the real level of data will 

be lost. When the system has a net integrator or it is unstable, 

analyzing the system without dc level correction of data is not 

recommended. Figure 5 shows the DC level correction for 

input data [36]. 

 

Fig. 5. DC level correction 

3.2   Peak Shaving 
At first, it is necessary to recognize the system dynamics 

based on input and output data. It is important to smooth the 

spikes and to apply peak shaving. These spikes are because of 

a little inaccuracy of sensors or some impedance mismatch 

and power dissipation in data acquisition card that causes a 

numerical fault in data representation [34, 35]. Whereas the 

high energy, interferes the model parameters estimation and 

its validation. By using a third order Butterworth filter, the 

filtered data were obtained. The filtered output for dryer is 

shown in figure 6. In comparison to [4], the results depicted in 

figure 6 are more satisfactory for implementation [33]. 

The correlation analysis is used to obtain the weight and 

correlation dynamics between input and output data [5]. The 

similarity of two signals will be measured in correlation 

analysis. In this analysis, the correlation order of two signals 

is measurable. These contexts for this system could be written 

as the following equations: 

 

 





N

1=k
N

yu,

τ)y(ku(k)
N

1
lim=

τ)y(tu(t)E=)(τΦ

  (1) 

where )(τΦ yu,  is the correlation between u and y. 
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where )(τΦ uu,  is the autocorrelation of u. 

 

Fig. 6. Measured data and filtered data 

 

4. LINEAR MODELING WITH ARX 

MODEL 
The Autoregressive with exogenous input (ARX) model 

(Figure 7) is an extended autoregressive (AR) model which is 

represented in equation 3. 

v(k)
A(q)

1
+(k)u

A(q)

B(q)
=(k)y   (3) 

According to figure 7, one of the ARX characteristics is that 

the disturbance, i.e., the white noise (k)v , is assumed to 

enter the process before the denominator dynamics (q)A . 

This fact can be expressed in another way by saying that the 

ARX model has a noise model of (q)A/1 [1, 31]. 

)k(u

)k(v

)k(y)q(B
)q(A

1

 
 

Fig. 7. Diagram of the linear model based on 

autoregressive with exogenous input 

 

Let the process be described by an nth order difference 

equation: 

n)u(tb++)1u(tb

n)y(ta++)1y(ta+y(t)

n1

n1




  (4) 

the transfer function of the process is given by: 

(q)A

(q)B
=(q)G     (5) 

where 

n
n

1
1

n
n

1
1

qb++qb+1=(q)B
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


  (6) 

Figure 8 shows the block diagram of error generation in 

transfer operator estimation using the ARX method [1]. 
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 Fig. 8. Error generation in ARX method 

 

The result of simulation with ARX model is shown in figure 

9. 

 

Fig. 9. Simulated model for system with ARX method 

According to figure 9, it can be seen that ARX gives a strong 

fit and it confirms above theories. So as a conclusion, in 

analysis, ARX is a good model to control the system. The 

error for output temperature is shown in figure 10 where the 

RMS value of error for this model amounts to 4.6%. 
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Fig. 10. Error for output temperature 

5. LINEAR MODELING WITH BOX-

JENKINS MODEL 
In this model the real system is assumed like below: 

e(t)
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=y(t)   (7) 
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  (8) 

This structure has been introduced by Box-Jenkins (BJ) in 

1970 [3]. The predictor for this model is: 

y(t)
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
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   (9) 

The parameters of this model which are valuable for dryer 

system will be obtained with the following equation: 
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Figure 11 shows the block diagram of Box-Jenkins (BJ) 

model. The main advantage of the BJ model is giving a better 

estimation for the closed-loop models [31]. On the other hand, 

its implementation is a challenging task. Error generation 

procedure in BJ model is shown in figure 12. 
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Fig. 11. Block diagram of Box-Jenkins model 

 

Process

)t(U

)t(v

)t(Y

)q(F)q(B

)t(
)q(C)q(D

+

_

 

 Fig. 12. Block diagram of error generation in BJ model 

 

The result of simulation with BJ model is shown in figure 13. 

The error for output temperature is shown in figure 14 where 

the RMS value of error for BJ model amounts to 3.1%. 

 

 

Fig. 13. Simulated model for system with BJ method 

 

Fig. 14. Error for output temperature 
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6. NONLINEAR MODELING WITH 

MLP NETWORK 
Next, the Multi Layer Perceptron (MLP) network with 

Levenberg-Marquadt (LM) learning algorithm has been used 

for modeling the dryer system. The Levenberg–Marquardt 

algorithm, which was independently developed by Kenneth 

Levenberg and Donald Marquardt, provides a numerical 

solution to the problem of minimizing a nonlinear function. It 

is fast and has stable convergence. In the artificial neural-

networks field, this algorithm is suitable for training small- 

and medium-sized problems [22]. The Levenberg–Marquardt 

algorithm blends the steepest descent method and the Gauss–

Newton algorithm. Fortunately, it inherits the speed advantage 

of the Gauss–Newton algorithm and the stability of the 

steepest descent method. It’s more robust than the Gauss–

Newton algorithm, because in many cases it can converge 

well even if the error surface is much more complex than the 

quadratic situation. Although the Levenberg–Marquardt 

algorithm tends to be a bit slower than Gauss–Newton 

algorithm (in convergent situation), it converges much faster 

than the steepest descent method. The basic idea of the 

Levenberg–Marquardt algorithm is that it performs a 

combined training process: around the area with complex 

curvature, the Levenberg–Marquardt algorithm switches to 

the steepest descent algorithm, until the local curvature is 

proper to make a quadratic approximation; then it 

approximately becomes the Gauss–Newton algorithm, which 

can speed up the convergence significantly [23-25, 28, 29]. In 

order to make sure that the approximated Hessian matrix JJT
 

is invertible, Levenberg–Marquardt algorithm introduces 

another approximation to Hessian matrix as shown in 

Equation 11. 

IJJH T      (11) 

where 

μ is always positive, called combination coefficient 

I is the identity matrix 

From Equation 11, one may notice that the elements on the 

main diagonal of the approximated Hessian matrix will be 

larger than zero. Therefore, with this approximation (Equation 

11), it can be sure that matrix H is always invertible. As a 

point of view, the updated rule of Guass-Newton algorithm is 

presented as Equation 12. 

  kk

1

k
T
kk1k eJJJww



     (12) 

By combining Equations 11 and 12, the update rule of 

Levenberg–Marquardt algorithm can be presented as Equation 

13 [26, 27]. 

  kk

1

k
T
kk1k eJIJJww



    (13) 

The MLP is the most applicable neural network. This network 

is able to perform a nonlinear mapping with the correct choice 

of neuron weights and transfer function bias [20, 21]. The 

MLP network structure is shown in figure 15. 

 

Fig. 15.  Structure of one layer perceptron 

This network contains two hidden layers and an output layer. 

The network inputs take the weights and biases, and then go 

to the nonlinear part. This part involves a transfer function 

that has been assumed as (x)tanh=y . The Levenberg 

Marquadt learning algorithm has been used for system 

identification. Figure 16 and figure 17 show the result of 

simulation with a constant number of neurons. The epochs are 

the number of iteration to train the network. According to 

figure 16, the system performance amounts to 0.0443084

and 0=Goal . 

 

 

Fig. 16.  Training function for test and train data 

 

6.1   Effect of Increasing Number of 

Neurons in the Hidden Layer 
By increasing the number of neurons, a better fitness could be 

met. On the other hand, increasing the neurons more than 

optimal case, results overtraining in system and this is 

inadequate. 
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Fig. 17.  Plant output based on the LM learning algorithm 

 

For each number of neurons, the weights and biases in the 

first layer have been chosen between 0 and 1 randomly to 

prevent overtraining. This allows the network to be trained 

also within the negative data in the output. 

Initially the number of neurons was 9 in the first layer and 9 

in the second layer.  In order to achieve an optimal training 

the number of neurons were modified in hidden layer from 9 

to 12 in the first layer and 9 to 15 in the second layer, that 

they are optimal case for training. The result of simulation in 

this case is shown in figure 18 and figure 19. 

 

Fig.18. Training function for test and train data 

 

Figure 20 shows the block diagram of error generation in 

MLP algorithm which the calculation of error is mentioned in 

Equation 14 [1, 31]. Figure 21 shows the calculated error in 

MLP learning algorithm, which results in 1.85% RMS value 

introducing the error between input and output of plant in this 

algorithm. 

 

Fig. 19.  Plant output based on LM with increasing 

number of neurons in the hidden layer 
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Fig. 20.  Block diagram of error generation in MLP 

algorithm 
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where P and M are the transfer function of Process and 

Model, respectively. 

 

Fig. 21.  Error measured for model output based on LM 

learning algorithm 
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7. CONCLUSIONS 
A theoretical comparison between two linear models for a 

temperature control dryer system was presented. According to 

environment conditions and system configuration, using the 

fundamental identification methods could not comprise 

reasonable results for identification task. So, as a novel 

method, the identification techniques based on system 

configuration and input-output relation obtained from data 

acquisition was formulized. In nonlinear identification, the 

output of dryer system have been trained, based on its input 

and output with a two-layer MLP network and the LM 

learning algorithm. By changing the number of neurons, in the 

worst case, the RMS value for test data was about 1.85% that 

means the system identification is around the operation point. 

Based on results it could be concluded that these models can 

be used to design adaptive or robust controllers and also, the 

Box-Jenkins model presented better results for this application 

compared to the ARX model. 
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