
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.11, July 2013

5

Analysis of Risks in Re-Engineering Software Systems

Nasir Rashid

Department of CS and I.T
University of Malakand

Pakistan

Muhammad Salam
Department of CS and I.T

University of Malakand
Pakistan

Raees Khan
ShahSani

Department of CS and I.T
University of Malakand

Pakistan

Fakhre Alam
Department of CS and I.T

University of Malakand
Pakistan

ABSTRACT

Software re-engineering has become a vital field of computer

science and an active research area. The nature of software re-

engineering is to improve or transform existing software so it

can be understood, controlled and reused as new software. Re-

engineering is frequently challenged, because certain risks

will threaten the project success. In this article we have

described some risks and their classification what we believe

to be the most important. From the analysis of risks, some

mitigation techniques have been suggested from the existing

literature that helps to make the re-engineering projects more

beneficial.

Keywords

Software re-engineering, risks, mitigation, analysis.

1. INTRODUCTION
Software Re-engineering is the examination, reorganization,

analysis and alteration of an existing software system. It helps

to make them more maintainable and to reconstitute it in a

new form and the subsequent implementation of the modified

system. This process involves the restructuring or recoding of

a component or all parts of legacy system without affecting its

functionality [1]. Re-engineering is a combination of other

processes such as reverse engineering, re-documentation,

translation, and forward engineering. The main purpose is to

understand the specification, design, implementation of the

legacy system and then to implement its modernize form to

improve its overall functionality and performance.

The difficulty lies in the conceptual understanding of the

legacy system. Usually requirements, design and

documentation of programming code is no longer available, or

is out of date, so it is not clear to the software engineer that

what types of functions are to be shifted. Often the software

system contains major functions that are not needed anymore,

and those should not be re-coded to the new system [2].

The re-engineering process is not risk free and faces various

types of risks as software engineering other approaches face.

The risk identification is crucial in development and evolution

of a legacy system. Risk identification is very important for

effective risk assessment, risk analysis, and management and

mitigation of risks. In our proposed work, the potential

challenges and risks during transformation are analyzed and

then categorized on the basis of severity and nature. A well

monitoring technique has been described for the categorized

risks. It will help a re-engineering system towards successful

and easy maintenance and cost benefit with reduced risk.

2. AN OVERVIEW OF RE-

ENGINEERING
Software re-engineering is a technology that involves the

examination and alteration of a legacy software system to re-

constitute it in a new and modernize form with its subsequent

implementation [3]. Software re-engineering is concerned

with re-structuring legacy systems to make them more

maintainable. Re-engineering may involve organizing and

restructuring, re-documenting and recoding the system

through suitable and modern programming languages. The

functionality and architecture of the system remain the same

[4]. Software re-engineering is important to recover and reuse

the existing software components, cut off high software

maintenance costs under control, and establish a sound base

for future software evolution [5].

The main objective of re-engineering as shown in Figure.1,

that helps to understand the basic process of transforming a

legacy system to a more modernize and up to date software

system. The process of restructuring, recoding, redesign and

re-documentation is applied on the old and out dated system

in order to get the target system according to the new

requirements and then re-implement it with old or new

functionality with latest available technology.

Figure 1: Basic process of re-engineering

Re-engineering a legacy software system has some major

advantages over more fundamental approaches to system

evolution.

Software re-engineering helps in reducing the cost of writing

a system from the scratch by using functionality of the legacy

software. According to [2] risks should be considered as an

important factor when redeveloping end re-engineering the

existing system. Benefits of re-engineering the system can be

measured by the formula mentioned below. It is quite possible

to derive negative benefit if the cost or risk of re-engineering

is sufficiently high compared to the costs of just starting over

from scratch.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.11, July 2013

6

Re-engineering Benefit =

 [𝑂𝑙𝑑_𝑉𝑎𝑙𝑢𝑒 – 𝑅𝑒𝑒𝑛𝑔𝐶𝑜𝑠𝑡 ∗ 𝑅𝑒𝑒𝑛𝑔𝑅𝑖𝑠𝑘 −
[𝑁𝑒𝑤_𝑉𝑎𝑙𝑢𝑒 – (𝐷𝑒𝑣_𝐶𝑜𝑠𝑡 ∗ 𝐷𝑒𝑣_𝑅𝑖𝑠𝑘)] Equation 1

 It helps to improve the business value of modernize

application software by reiterating the critical data and

business logic.

 It also helps in increasing system reliability and customer

satisfaction.

 Reduces the operational costs.

 Efficient use of the existing staff.

 It improves system performance, accessibility and system

documentation.

 It enhances software functionality [6].

3. GENERAL MODEL OF SOFTWARE

RE-ENGINEERING
Re-engineering starts with the source code of an existing

legacy system and concludes with the source code of a target

system. This process may be as simple as using a code

translation tool to translate the code from one language to

another (FORTRAN to C) or from one operating system to

another (UNIX to DOS). On the other hand, the re-

engineering task may be very complex, using the existing

source code to recreate the design, identify the requirements

in the existing system then compare them to current

requirements, removing those no longer applicable,

restructure and redesign the system (using object-oriented

design), and finally code the new target system. Figure 2

depicts a general model for software re-engineering that

indicates the processes for all levels of re-engineering based

on the levels of abstraction used in software development.

Figure 2: General model for software re-engineering [7]

4. TAXONOMY OF SOFTWARE RE-

ENGINEERING
In this section, the following key terms provide a clear scope

and taxonomy of the domain of software re-engineering.

Forward engineering (FE) is the traditional process of moving

from high-level abstractions and logical, implementation-

independent designs to the physical implementation of a

system.

Reverse engineering (RE) is the process of analyzing a subject

system to (1) identify the system’s components and their

interrelationships and (2) create representations of the system

in another form or higher level of abstraction.

Re-documentation is the creation or revision of a semantically

equivalent representation within the same relative abstraction

level.

Re-documentation is the simplest and oldest form of reverse

engineering and can be considered to be an un-intrusive, weak

form of restructuring [8].

Design recovery or reverse design recreates design

abstractions from a combination of code, existing design

documentation (if available), personal experience, and general

knowledge about problem and application domains.

Program understanding or program comprehension is a term

related to reverse engineering. Program understanding implies

always that understanding begins with the source code while

reverse engineering can start at a binary and executable form

of the system or at high-level descriptions of the design [1].

Restructuring is the transformation from one representation

form to another at the same relative abstraction level, while

preserving the subject system’s external behavior (i.e.,

functionality and semantics) [2].

Recode involves changing the implementation characteristic

of the source code. Language translation and control flow

restructuring are source-code-level changes [11]

Redesign involves changing the design characteristics.

Possible changes include restructuring design architecture,

altering a system’s data model as incorporated in data

structures or in a database, and improving an algorithm [3].

Re-specify involves changing the requirement characteristics.

This type of change can refer to changing only the form of

existing requirements (i.e., taking informal requirements

expressed in English and generating a formal specification

expressed in a formal language, such as Z) [4].

5. RISKS IN RE-ENGINEERING

SOFTWARE
Software re-engineering is aimed as a mean to mitigate risks

and reduce operational and maintenance costs of the legacy

software, but legacy transformation have many risks involved

as system development projects. The impact of these risks are

more severe than the conventional projects development

because re-engineering the existing systems involve changes

in functional operations that is integral with the current trend

and latest available technology to business operations. Early

risk identification assists programmers and project managers

in preparing for estimation and evaluation of software re-

engineering risks and provides a feasible and realistic

framework for expectations. Risk identification is essential for

effective risk assessment, risk analysis and risk management.

These potential risks can be categorized in the following areas

as depicted in figure 3 and are discussed throughout this

report.

User Satisfaction: Customer satisfaction is an integral key

element for any business strategy, therefore it is essential for

any business to effectively manage reliable measures for

customer satisfaction. In software re-engineering the user

satisfaction risks are as below [14].

 Lack of user friendliness

 Budget overflow in un-managed processes

 Unexpected result of the target system

 Unsupported to referential model

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.11, July 2013

7

Cost: Legacy software is reengineered in order to face the

market with latest technology and tools to make it more cost

benefitted. Risks involved in cost benefit are mentioned as

follow below:

 Less benefit from the cost of re-engineering

 High maintenance cost after re-engineering

 Expensive backup

 High cost to finance report

 Poor quality processes for re-engineering and

inconsistency of business plans

 Loss of investments on legacy transformation [15].

Figure 3: Software Re-engineering Risks

Forward Engineering: Forward Engineering is a traditional

technique of moving from high-level abstractions and logical,

implementation-independent designs to the physical

implementation of a system. Risks involved in FE are listed as

follow.

 Captured objects do not integrate to new system

 Difficulty in migrating existing data to for new

system

 Degree of preparation for transformation and

reverse engineering are not sufficient [16].

Reverse Engineering: Reverse engineering (RE) is the

process of analyzing a subject software system to (1) identify

its different modules and their interrelationships and (2) and

to represent the system in another visual form or higher level

of abstraction. The RE risk factors are:

 Abstract information cannot be expressed in the

designed language for requirements and design

specifications.

 It is quite difficult to capture efficient design and

few requirements from the source code.

 Existing business knowledge embedded in source

code is lost due to inappropriate processes.

 Recovered information is not useful or not used at

all.

Performance: The re-engineering process depends heavily on

the performance of modernize system. It is the degree of

uncertainty that may keep the system to meet its technical

specifications or that can result the system not meeting the

basic goals. Performance of the new system should definitely

be better than the legacy system. The Performance risks

factors are listed below.

 Non portability in new system

 Result not matched with the previous system

 Reliability mismatch

 Inappropriate Re-engineering approach and data re-

structuring.

Maintenance: Maintenance is an integral factor to be

considered in software re-engineering. Decisions are aided by

understanding what happens to any software systems over

time according to new requirements. The key software

maintenance issues can be either managerial or technical or

both. The maintenance risks are listed as follow.

 Scheduled Backup

 Recovery of legacy systems

 Improper Re-documentation and data restructuring

[17].

 We have reviewed a total of 17 papers that were downloaded

from different digital libraries, namely Google scholar, cite

seer, IEEE Xplore, Springer Link etc. in which risks in

software re-engineering have been mentioned from different

perspectives. In some papers the risks were categorized in

classes according to its frequency and severity in literature

and in real world practices. The risks discussed above have

been shown in figure 4 according to its frequency in different

papers. Some risks have been classified as critical risks due to

its negative impact on the consequences of re-engineering

projects.

Figure 4: Frequency Distribution of Re-engineering Risks

6. CONCLUSION
Many new software design methodologies and tools have

been developed to improve reusability, maintainability and to

decrease the cost of development and maintenance. Most

companies have software systems that are out of date and

costly to maintain. So re-engineering is the best solution to

replace the existing software systems. Whenever re-

engineering takes places a variety of risks might occur. This

review paper has discussed various risks which are classified

into different areas and have been shown graphically

according to its frequency in different papers. It will help for

the proper designing of mitigation plans to mitigate them with

respect of its severity and its impact on the re-engineering

projects. The main outcome is that organization must adopt

new tools and methodologies to make the project with re-

engineering according to the customer satisfaction and at a

low budget, with current trend and technology. It will lead the

project more with good performance and with an ease of

maintenance. Further, risks involved in process transformation

can be identified, analyzed and contingencies plans can be

evolved. An evolutionary method for the mitigation of these

risks will be done in a comprehensive manner in my future

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.11, July 2013

8

work related with process transformation and risk analysis in

re-engineering can become effective and efficient.

7. REFERENCES
[1] M.Solvin, and S. Malik. “Re-engineering to reduce

system maintenance: A case study”,Software

Engineering, pp.14-24,2011.

[2] Harry.M.Sneed, “Economics of Software re-

engineering”, Journal of Software Maintenance, Vol.3,

1991, p.163

[3] Moghaddas, Y., & Rashidi, H. (2009). A novel approach

for replacing legacy systems, Journal of Applied

Sciences, 9(22), 4086–4090.

[4] J. Ransom, I.S., I. Warren. A Method for Assessing

Legacy Systems for Evolution. in Proceedings of the

2nd Euromicro Conference on Software Maintenance

and Re-engineering (CSMR'98). 1998.

[5] Detection strategies: Metrics-based rules for detecting

design flaws. in Proceedings of ICSM 04 (International

Conference on Software Maintenance). 2004. . IEEE

Computer Society Press.

[6] Gerardo canfora, Aniello cimitile, “Software

maintenance”, Journal of Software Maintenance 13(1):

1-2 (2001)

[7] Byrne, E.J., A Conceptual Foundation for Software Re-

engineering, in Conference on Software Maintenance

1992.

[8] Tahvildari, L., Kontogiannis, K. On the role of design

patterns in quality-driven re-engineering. in Proceedings

of the IEEE 6th European Conference on Software

Maintenance and Re-engineering (CSMR). 2002.

Hungary.

[9] G. Ar´evalo, S.D., and O. Nierstrasz. Discovering

unanticipated dependency schemas in class hierarchies.

in In Proceedings of CSMR ’05 (9th European

Conference on Software Maintenance and Re-

engineering). 2005. IEEE Computer Society Press.

[10] Tahvildari, L., Kontogiannis, K., Mylopoulos,.

Requirements-driven software re-engineering. in

Proceedings of the IEEE 8th International Working

Conference on Reverse Engineering (WCRE). 2001.

Germany.

[11] S. Ducasse, T.G.ı., and J.-M. Favre, Modeling software

evolution by treating history as a first class entity, in on

Software Evolution Through Transformation 2004. p.

71–82.

[12] S. Ducasse, M.L., and R. Bertuli. High-level polymetric

views of condensed run-time information. in Proceedings

of CSMR 2004 (Conference on Software Maintenance

and Re-engineering). 2004.

[13] S. Tichelaar, S.D., S. Demeyer, and O. Nierstrasz. A

mmodel for Language-Independent Refactoring. in

InProceedings of ISPSE ’00 (International Conference on

Software Evolution). IEEE Computer Society.

[14] Chia-chu chang “Software stability in software re-

engineering”. Information Reuse and Integration, 2007.

[15] Moghaddas, Y., & Rashidi, H. (2009). A novel approach

for replacing legacy systems. Journal of Applied

Sciences, 9(22), 4086–4090.

[16] Jakub Miler, Janusz Górski. “Identifying Software

Project Risks with the Process Model”, ICSSEA2004.

[17] Moghaddas, Y., & Rashidi, H. (2009). A novel approach

for replacing legacy systems. Journal of Applied

Sciences, 9(22), 4086–4090

IJCATM : www.ijcaonline.org

