
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.1, July 2013

32

Deadlock Detection and Recovery in Distributed
Databases

 Pooja Sapra Suresh Kumar R K Rathy

Research Scholar, MRIU FET, MRIU FET, MRIU

ABSTRACT

As the need of distributed processing increases, the

complexity in handling of deadlocks also increases. In

distributed databases, the conditions for the deadlocks are

same as that in centralized but harder to detect, avoid and

prevent. Therefore special procedures are required to resolve

the deadlock. In this paper we propose a new distributed

deadlock detection and recovery algorithm that not only

detects deadlock but also resolve them efficiently by aborting

less number of transactions. We also present comparative

analysis of the proposed algorithm and observed that the

proposed algorithm reduces the number of transactions that

are to be aborted to resolve the deadlocks, thus improving the

performance of the system.

General Terms

Databases, distributed, deadlocks, detection and resolution.

Keywords

Distributed databases, deadlock detection and recovery,

transaction, wait-for-graph, transaction queue, linear

transaction structure, distributed transaction structure,

transaction manager.

1. INTRODUCTION:
A distributed system consists of a collection sites that are

interconnected through a communication network. Each site

has the local database and transactions running on them.

Although the sites are dispersed, a distributed database system

manages and controls the entire database as a single collection

of data.

A deadlock is a situation in a system where transactions wait

for one another [2] and none of them is able to proceed. In

such situations, Deadlocks are generally depicted by wait-for

graphs[12], which is a directed graph that indicates which

transactions is waiting for which transaction for its

completion. The graph consists of nodes and edges, where

nodes of the graph represent transactions and edges of the

graph represent the dependency among transactions. A direct

edge from transaction Ti to transaction Tj is drawn, if the

transaction Ti is waiting for a resource that is currently held by

the transaction Tj. If the Wait-For-Graph contains a cycle then

the system is assumed to be in a deadlock state. After the

detection of deadlocks, their recovery is done. For recovery

one of the transactions is considered as victim and aborted and

then restarted.

In distributed systems, deadlock detection requires the local

wait-for-graph and global-wait-for-graph to be constructed. A

cycle in a LWFG indicates that a deadlock has occurred

locally and a global deadlock is shown by GWFG. Even

though there is no cycle in LWFG, it does not imply that no

deadlock has occurred globally.

2. LITERATURE REVIEW :
There are two categories of distributed deadlock detection

algorithms: Probe–based detection algorithms and edge

chasing algorithms. Many authors proposed various

algorithms under these categories, which are as follows:

Chandy et. al. [3], proposed an algorithm that uses transaction

wait for graphs (TWFG) and probes to detect the local and

global deadlocks respectively. It uses colored graphs for

detecting the deadlocks and has the disadvantage of large

space complexity and no deadlock resolution mechanism in

order to make the system deadlock free.

Sinha et. al. [14], proposed an algorithm that was based on

priorities of transactions to reduce the number of messages

required for deadlock detection. In this scheme, a transaction‟s

request for a lock on a data item is sent to the data manager

for the item. When a transaction begins to wait for a lock, all

the probes from its queue is propagated. When a data manager

gets back the probe it initiated, deadlock is detected. Since the

probe contains the priority of the youngest transaction in the

cycle, the youngest transaction is aborted. In this algorithm

data managers do not store probes and transactions are used as

nodes of the graph. Due to this, another level of non-atomicity

is added and complicated rules are required to add the new

probes and delete the previous ones, whenever the WFG

changes.

Obermack‟s Algorithm [12], builds and analyzes directed

TWFG and uses a distinguished node at each site. The

detection algorithm builds a TWFG and adds on all the

information received from others processes also. Then it

creates wait-for edges from external to each node representing

agent of transaction that is expected to send on

communication link and that is waiting to receive from

communication link. Then it analyzes the TWFG and breaks

down the youngest transaction creating the cycle. The

algorithm does not work correctly because the WFG

constructed at any instant does not represent a snapshot of the

global WFG resulting into the detection of false deadlocks.

Ho‟s Algorithm [8], uses a resource table and transaction

tables. Transaction table at each site maintains the information

for resources held and waited for. The resource table at each

site maintains information regarding the transactions holding

and waiting for local resources. At the regular intervals, a site

is chosen as a central controller which performs the deadlock

detection. The drawback of this scheme is that it requires 4n

messages, where n is the number of sites in the system.

Kawazu‟s Algorithm [9], algorithm works in 2 phases: in 1st

phase it detects local cycles and in 2nd phase it detects global

cycles. To detect the global deadlocks, the local wait for

graphs are gathered to construct a pseudo wait for graph. This

technique may suffer from phantom deadlocks.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.1, July 2013

33

3. DETECTION AND RESOLUTION OF

DEADLOCKS IN DISTRIBUTED

DATABASES:
The technique presented in [2] uses a greedy approach to find

out the deadlocks and recovers them by aborting the youngest

transactions. The algorithm works in the following steps:

 Create Linear transaction Structure (LTSi) for each local

site i.

 Detect Local Deadlock cycle LDi.

 Create Transaction Queue TQi corresponding to each

LDi.

 Abort the victim transaction.

 Create Distributed Transaction Structure (DTSi) for

global communication.

 Detect Global Deadlock cycle GDi.

 Create Transaction Queue TQi corresponding to each

GDi.

 Abort the victim transaction.

Interpretation: This technique assumes that the global

deadlock detection is independent of local deadlock detection

but there are some situations where it can be seen that this is

not true.

The technique uses transaction queue to store the priority id

for all transactions which are in local deadlock cycles or in

global deadlock cycles, although assignment of priorities is

random.

4. PROPOSED ALGORITHM:
In the proposed algorithm, we have modified the algorithm

presented in [2], by relaxing the assumption, “global deadlock

detection is independent of local deadlock detection”. The

proposed algorithm is as follows:

 Create Linear transaction Structure (LTSi) for each local

site i.

 Create Distributed Transaction Structure (DTSi) for

global communication.

 Detect Local Deadlock cycle LDi.

 Detect Global Deadlock cycle GDi.

 Find common request edge if exists.(CREi)

 Abort the transaction.

 Modify LTSi.

 Modify DTSi.

 Detect Local Deadlock cycle LDi.

 Detect Global Deadlock cycle GDi.

 Create Transaction Queue TQi corresponding to each

LDi.

 Create Transaction Queue TQi corresponding to each

GDi.

Abort the victim transaction

5. ILLUSTRATIONS:

5.1. Illustration 1:
Consider an example where we have taken two sites S1 and

S2. Site S1 has transactions T1, T2, T3 and T4 and Site S2 has

the transactions T5, T6 and T7. The Wait-for-graph for the

transactions running on site S1 and S2 is depicted in Fig. 1.

T1 T2 T5

T4 T3 T7 T6

FIG. 1: WAIT FOR GRAPH

5.1.1. Deadlock detection by Alom et al.:
 Create Linear transaction Structure (LTSi) for each local

site i.

Table1: Linear Transaction Structures at site 1 and 2.

 LTS1: LTS2:

 Detect Local Deadlock cycle LDi.

LD1: {1→3, 3→4, 4→1}

LD2: {5→7, 7→6, 6→5}

 Create Transaction Queue TQi corresponding to each

LDi.

Table2: Transaction Queue for Local Deadlock

Cycles 1 and 2.

TQ1: TQ2:

 Abort the victim transactions T4 and T6.

 Create Distributed Transaction Structure (DTSi) for

global deadlocks.

Table3: Distributed Transaction Structure (DTS)

 Detect Global Deadlock cycle GDi.

GDC1: {2→5, 5→7, 7→3, 3→2}

 Create Transaction Queue TQi corresponding to each

GDi.

Table4: Transaction Queue for Global Deadlock

Cycle.

 Abort the victim transaction T3.

Total Number Of Transactions Aborted: 3(T3,T4,T6)

5.1.2 Deadlock detection by proposed algorithm:
 Create Linear transaction Structure (LTSi) for each local

site i.

p q

1 2

1 3

3 2

3 4

4 1

p q

5 7

7 6

6 5

Tno TPid

1 1

3 2

4 3

Tno TPid

5 1

7 2

6 3

p q

2 5

5 7

7 3

3 2

Tno TPid

2 1

5 2

7 3

3 4

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.1, July 2013

34

Table5: Linear Transaction Structures at site 1 and 2.

LTS1: LTS2:

P q

1 2

1 3

3 2

3 4

4 1

 Create Distributed Transaction Structure (DTSi) for

global communication.

Table6: Distributed Transaction Structure (DTS)

 Detect Local Deadlock cycle LDi.

LD1: {1→3, 3→4, 4→1}

LD2: {5→7, 7→6, 6→5}

 Detect Global Deadlock cycle GDi.

GDC1: {2→5, 5→7, 7→3, 3→2}

 Find common request edge if exists.(CREi)

CRE: {5→7}

 Abort the transaction T5.

 Modify LTSi.

Table7: Linear Transaction Structures at site 1 and 2.

LTS1: LTS2:

 Modify DTSi.

Table8: Distributed transaction Structure (DTS)

p q

2 5

3 2

7 3

 Detect Local Deadlock cycle LDi.

LD1: {1→3, 3→4, 4→1}

LD2: NULL

 Detect Global Deadlock cycle GDCi.

GDC1: NULL

 Create Transaction Queue TQi corresponding to each

LDi.

Table9: Transaction Queue for Global Deadlock Cycle.

 Create Transaction Queue TQi corresponding to each

GDi.

NO CYCLE EXISTS.

 Abort the victim transaction T4.

So, total number of transactions aborted: 2 (T4, T2)

5.2. Illustration 2:
Consider the Wait-for-graph as shown in Fig. 3 for the

transactions running on sites S1, S2 and S3.

Ti,j represents the transaction no. „i‟ on site „j‟.

On site S1 the transactions T1, T2, T3, T4 are denoted as

T1,1, T2,1, T3,1 and T4,1.

On site S2 transactions T3, T4, T5 and T6 are represented as

T3,2, T4,2, T5,2, T6,2.

On site S3 transactions T7, T8, T9, T10, T11 are represented

as T7,3, T8,3, T9,3,T10,3 AND T11,3.

T 1,1 T3,1 T3,2 T5,2

T2,1 T4,1 T4,2 T6,2

 T8,3 T7,3

 T9,3 T10,3

 T11,3

FIG. 3: WAIT-FOR-GRAPH

5.2.1. Deadlock detection by Alom et al.:
 Create Linear transaction Structure (LTSi) for each local

site.

Table10: Linear transaction Structures at site 1, 2 and 3.

LTS1: LTS2: LTS3:

 Detect Local Deadlock cycle LDi.

LD1: {3,1→1,1; 1,1→4,1; 4,1→3,1}

LD21: {3,2→4,2; 4,2→6,2; 6,2→3,2}

p q

5 7

7 6

6 5

p q

2 5

5 7

7 3

3 2

p q

1 2

1 3

3 4

4 1

P q

7 6

6 5

Tno TPid

1 1

3 2

4 3

p q

1,1 2,1

3,1 1,1

1,1 4,1

4,1 3,1

p q

3,2 4,2

4,2 6,2

6,2 3,2

3,2 5,2

5,2 6,2

p Q

7,3 8,3

8,3 9,3

9,3 7,3

7,3 10,3

10,3 9,3

9,3 11,3

11,3 10,3

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.1, July 2013

35

LD22: {5,2→6,2; 6,2→3,2; 3,2→5,2}

LD31: {7,3→8,3; 8,3→9,3; 9,3→7,3}

LD32: {7,3→10,3; 10,3→9,3; 9,3→7,3}

LD33: {10,3→9,3; 9,3→11,3; 11,3→10,3}

 Create Transaction Queue TQi corresponding to each

LDi.

Table11: Transaction Queues for local deadlock

cycles.

TQ1: TQ21:

TQ22: TQ31:

TQ32: TQ33:

 Abort the victim transactions T4,1; T6,2; T3,2; T9,3;

T7,3 and T11,3.

 Create Distributed Transaction Structure (DTSi) for

global communication.

Table12: Distributed Transaction Structures (DTSi)

DTS1: DTS2:

 Detect Global Deadlock cycle GDi.

GD1:{3,1→3,2; 3,2→4,2; 4,2→4,1; 4,1→3,1}

GD2:{4,2→6,2; 6,2→7,3; 7,3→8,3; 8,3→4,2}

 Create Transaction Queue TQi corresponding to each

GDi.

Table13: Transaction queues for global deadlock

cycles.

 Abort the victim transaction T3,1 and T8,3.

Total Number of Transactions Aborted: 8

5.2.2. Deadlock detection by proposed algorithm:
 Create Linear transaction Structure (LTSi) for

Each site:

Table14: Linear Transaction Structures at site 1,2 and 3.

LTS1: LTS2: LTS3:

p q

1,1 2,1

3,1 1,1

1,1 4,1

4,1 3,1

 Create distributed transaction structure for each site.

Table15: Distributed transaction Structures (DTSi)

 DTS1: DTS2:

p q

3,1 3,2

3,2 4,2

4,2 4,1

4,1 3,1

 Detect Local Deadlock cycle LDi.

LD1: {3,1→1,1; 1,1→4,1; 4,1→3,1}

LD21: {3,2→4,2; 4,2→6,2; 6,2→3,2}

LD22: {5,2→6,2; 6,2→3,2; 3,2→5,2}

LD31: {7,3→8,3; 8,3→9,3; 9,3→7,3}

LD32: {7,3→10,3; 10,3→9,3; 9,3→7,3}

LD33: {10,3→9,3; 9,3→11,3; 11,3→10,3}

 Detect Global Deadlock cycle GDi.

GD1:{3,1→3,2; 3,2→4,2; 4,2→4,1; 4,1→3,1}

GD2:{4,2→6,2; 6,2→7,3; 7,3→8,3; 8,3→4,2}

 Find the CREi:

CRE1: {4,1→3,1}

CRE2: {4,2→6,2}

Abort the edges: {4,1→3,1} and {4,2→6,2}

 Modify LTS:

Table16: Modified Linear Transaction Structures at

site 1, 2 and 3.

 LTS1: LTS2: LTS3:

 Detect Local Deadlock cycle LDi.

LD1: null

LD21: null

LD22: {5,2→6,2; 6,2→3,2; 3,2→5,2}

Tno TPid

3,1 1

1,1 2

4,1 3

Tno TPid

3,2 1

4,2 2

6,2 3

Tno TPid

5,2 1

6,2 2

3,2 3

Tno TPid

7,3 1

8,3 2

9,3 3

Tno TPid

10,3 1

9,3 2

7,3 3

Tno TPid

10,3 1

9,3 2

11,3 3

p Q

3,1 3,2

3,2 4,2

4,2 4,1

4,1 3,1

p q

4,2 6,2

6,2 7,3

7,3 8,3

8,3 4,2

Tno TPid

3,2 1

4,2 2

4,1 3

3,1 4

Tno TPid

4,2 1

6,2 2

7,3 3

8,3 4

p q

7,3 8,3

8,3 9,3

9,3 7.3

7,3 10,3

10,3 9,3

9,3 11,3

11,3 10,3

p q

3,2 4,2

4,2 6,2

6,2 3,2

3,2 5,2

5,2 6,2

p q

4,2 6,2

6,2 7,3

7,3 8,3

8,3 4,2

p q

1,1 2,1

3,1 1,1

1,1 4,1

p q

3,2 4,2

6,2 3,2

3,2 5,2

5,2 6,2

p q

7,3 8,3

8,3 9,3

9,3 7,3

7,3 10,3

10,3 9,3

9,3

11,3

11,3

10,3

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.1, July 2013

36

LD31: {7,3→8,3; 8,3→9,3; 9,3→7,3}

LD32: {7,3→10,3; 10,3→9,3; 9,3→7,3}

LD33: {10,3→9,3; 9,3→11,3; 11,3→10,3}

 Create Transaction Queue TQi corresponding to each

LDi.

Table17: Transaction Queues for local deadlock

cycles.

TQ1:null TQ21:null

TQ22: TQ31:

TQ32: TQ33:

 Abort the victim transactions T3,2; T9,3; T7,3 and T11,3.

 Modify Distributed Transaction Structure (DTSi) for

global communication.

Table18: Distributed transaction Structures (DTSi)

 DTS1: DTS2:

 Detect Global Deadlock cycle GDi.

GD1: null

GD2: null

 Create Transaction Queue TQi corresponding to each

GDi.

Null

Total Number of Transactions Aborted: 6

6. CONCLUSION:
Deadlock detection is the most important problem that

must have a strong attention in case of distributed systems.

Several algorithms have been proposed for detection and

resolution of deadlocks. In this paper, we have analyzed the

various algorithms and proposed a new technique for

detection and recovery of deadlocks in distributed databases.

Also we have analyzed the performance of proposed

algorithm and compared with techniques presented in the

literature. We observed that proposed technique resolve

deadlock by terminating less number of transactions.

7. REFERENCES:
1) Alkhatib G. and Labban R. S., "Transaction Management

in Distributed Database Systems: the Case of Oracle‟s

Two-Phase Commit," The Journal of Information

Systems Education, vol. 13:2, pp. 95-103, 1995

2) Alom B. M. M., Henskens F., Hannaford M., “Deadlock

Detection Views of Distributed Database”, Proc. of sixth

International Conference on Information Technology:

New Generations, pp. 730-737, 2009.

3) Chandy X. M. and Misra J.,“A Distributed Algorithm for

Detecting Resource Deadlocks in Distributed Systems”,

Proc. of the First ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, New York, pp.

157-164, 1982.

4) Choudhary A. N., “Cost of Distributed Deadlock

Detection: A Performance study”, Proc. of Sixth

International Conference on Data Engineering, Los

Angeles, CA, pp.174-181, February, 1990.

5) Choudhury A. N., Kohler W. H., Stankovic J. A., and

Towsley D.,"A Modified Priority Based Probe Algorithm

for Distributed Deadlock Detection and Resolution,"

IEEE Transactions on Software Engineering, vol. 15:1,

pp. 10-17, 1989.

6) Farajzadeh N. , Hashemzadeh M. ,Mousakhani M. and

Haghighat A. T., "An Efficient Generalized Deadlock

Detection and Resolution Algorithm in Distributed

Systems," in International Conference on Computer and

Information Technology, 2005.

7) Henskens F. and Ashton M. G. , "Graph-based

Optimistic Transaction Management", Journal Of Object

Technology, vol. 6: 6 pp. 131-148, 2007.

8) Ho G. S. and Ramamoorthy C. V., “Protocols for

Deadlock Detection in Distributed Database Systems”,

IEEE Transaction on Software Engineering, vol. 8, no. 6,

pp. 554-557, 1982.

9) Kawazu S., Susumu M., Menji I. and Kastumi T.,

"Two-Phase Deadlock Detection Algorithm in

Distributed Databases", International Conference on

Very Large Databases (VLDB) 1979 360-367.

10) Menasce D. A. and Muntz R. R., “Locking and Deadlock

Detection in Distributed Databases”, IEEE Transaction

on Software Engineering, vol. 5, no. 3, pp. 195-202,

1979.

11) Mitchell D. P. and Merritt M. J., "A Distributed

Algorithm for Deadlock Detection and Resolution",

AT&T Bell Labs, Murray Hill, NJ 07974.

12) Obermack R., “Distributed deadlock Detection

Algorithm”, ACM Transaction on Database Systems,

vol. 7, no. 2, pp. 144-56,1983.

13) Olson A. G. and Evans B. L., "Deadlock Detection for

Distributed Process Networks", in ICASSP, 2005, pp. 73-

76.

14) Sinha M. K. and Natarjan N., ”A Priority Based

Distributed Deadlock Detection Algorithm”, IEEE

Transaction on Software Engineering, vol. 11, no. 1,

pp.67-80, 1985.

15) Srinivasan S. and Rajaram Ramaswamy, “An Efficient

Detection and Resolution of Generalized Deadlocks in

Distributed Systems”, International Journal of Computer

Applications, pp. 1-7, 2010.

Tno TPid

5,2 1

6,2 2

3,2 3

Tno TPid

7,3 1

8,3 2

9,3 3

Tno TPid

10,3 1

9,3 2

11,3 3

Tno TPid

10,3 1

9,3 2

7,3 3

p q

3,1 3,2

3,2 4,2

4,2 4,1

p q

6,2 7,3

7,3 8,3

8,3 4,2

IJCATM : www.ijcaonline.org

