
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

48

Verification and Validation of MapReduce Program

model for Parallel K-Means algorithm on Hadoop

Cluster

Amresh Kumar

Department of Computer
Science & Engineering,

Christ University Faculty of
Engineering Bangalore,

Karnataka, India

Kiran M.
Department of Computer
Science & Engineering,

Christ University Faculty of
Engineering Bangalore,

Karnataka, India

Ravi Prakash G.

Department of Computer
Science & Engineering,

Christ University Faculty of
Engineering Bangalore,

Karnataka, India

Saikat Mukherjee
Department of Computer
Science & Engineering,

Christ University Faculty of
Engineering Bangalore,

Karnataka, India

ABSTRACT
With the development of information technology, a large

volume of data is growing and getting stored electronically.

Thus, the data volumes processing by many applications

will routinely cross the petabyte threshold range, in that case

it would increase the computational requirements. Efficient

processing algorithms and implementation techniques are

the key in meeting the scalability and performance

requirements in such scientific data analyses. So for the

same here, it has been analyzed with the various

MapReduce Programs and a parallel clustering algorithm

(PKMeans) on Hadoop cluster, using the Concept of

MapReduce.

Here, in this experiment we have verified and validated

various MapReduce applications like wordcount, grep,

terasort and parallel K-Means Clustering Algorithm. It has

been found that as the number of nodes increases the

execution time decreases, but also some of the interesting

cases has been found during the experiment and recorded

the various performance change and drawn different

performance graphs. This experiment is basically a research

study of above MapReduce applications and also to verify

and validate the MapReduce Program model for Parallel K-

Means algorithm on Hadoop Cluster having four nodes.

Keywords

Machine learning, Hadoop, MapReduce, k-means,

wordcount, grep, terasort.

1. INTRODUCTION
Machine Learning is the study of how to build the systems

that adapt and improve with experience. Machine Learning

focus on designing of the algorithms that can recognize

patterns & take decisions.

Broadly speaking the two main subfields of machine

learning are supervised learning and unsupervised learning.

In supervised learning the focus is on accurate prediction,

whereas in unsupervised learning the aim is to find compact

descriptions of the data.

Hadoop [1] was created by Doug Cutting; he is person

behind the Apache Lucene creation, Apache Luence is the

text search library which is being widely used. Hadoop has

origin in Apache Nutch, Apache Nutch is an open source

search engine and it is a web search engine, which is a part

of the Lucene project. Apache Hadoop [1] is a software

framework that supports data-intensive distributed

applications. It empowers the applications to work with

thousands of computational autonomous and independent

computers and petabytes of data. Hadoop is the derivative of

Google's MapReduce and Google File System (GFS) [2].

These include reliability achieved by replication, scales well

to thousands of nodes, can handle petabytes of data,

automatic handling of node failures, and is designed to run

well on heterogeneous commodity class hardwares.

However, Hadoop is still a fairly new project and limited

example code and documentation is available for non-trivial

applications.

HDFS [3], the Hadoop Distributed File System, is a file

system which is designed to hold very large amounts of data

(terabytes or even petabytes), and provide high-throughput

access to the information. Files are stored in a redundant

fashion across multiple machine s to ensure their durability

to failure and high availability to parallel applications.

HDFS presents a single view of multiple physical disks or

file systems.

MapReduce [4] is a programming model designed for

processing large volumes of data in parallel by dividing the

work into a set of independent tasks. The name derives from

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

49

the application of map () and reduce () functions. In its

simplest form MapReduce is a two-step process: Map step

and Reduce step. In the Map step a master node divides a

problem into a number of independent chunks of problems

that are allocated to map tasks. Each map task performs its

own assigned part of the problem and outputs results as key-

value pairs. In the reduce step the node takes the outputs of

the maps, where a particular reducer will receive only map

outputs with a particular key and will process those. As the

result of reduce step, a collection of values is produced.

This report includes/presents the study and series of

experiments of various MapReduce Algorithms and Parallel

K-Means Clustering algorithm on Hadoop cluster, thereby

achieving a collection of sample codes and documentations.

The data set used here varies up to 1GB and also there is

some of the interesting case for different algorithm

implementation using MapReduce.

This Experiment covers Literature review (Research

Clarification & Descriptive Study I) it describes the

machine learning, MapReduce and its design, MapReduce

strategy, Hadoop, HDFS, and different clustering algorithms

with brief about K-Means & canopy clustering algorithms,

cloudera and lists of problems. Methodology (Prescriptive

Study), it tells about Hadoop architecture, MR

Programming model and Parallel K-Means algorithm. Work

done and result (Descriptive Study II) with the brief of

experimental setup and experimental results. Finally;

conclusion, future work and references.

Fig 1: Research Plan: Basic Means, Stages, Main

Outcomes

2. LITERATURE REVIEW

(RESEARCH CLARIFICATION &

DESCRIPTIVE STUDY I)

2.1 Machine Learning
Machine learning [9] is a branch of artificial intelligence,

and it is a scientific approach which care of the design and

expansion of an algorithms which take input as empirical

data, such as data from the sensors or some databases, and

yield patterns or predictions, that thought to be features of

the original mechanism which generated the data. A major

emphasis of the machine learning exploration is the design

of algorithms that recognize complex patterns and make

intelligent decisions based on input.

Machine learning is the science of making computers that

can take decisions by its own. In the past days, machine

learning has given us automated cars, auto speech

recognition, effective web searching, and an immensely

improved understanding of the human genome (the

complete set of human genetic information, stored as DNA

sequences within the 23chromosome pairs of the cell

nucleus and in a small DNA molecule within the

mitochondrion). Machine learning is so pervasive today that

it has been undoubtedly use it many times a day without

knowing about it. Many researchers also think it is the best

way to make progress towards human-level Artificial

Intelligence (AI). In this way, it will be learned about the

most effective machine learning techniques, and practice by

implementing them and getting them to work for our self.

There are two major categories of types of learning:

Supervised learning and Un-supervised learning. In

Supervised learning [9] [15], it is known (sometimes only

approximately) that the values of the m samples in the

training set T. It has been assumed that if a hypothesis h that

closely agrees with f is been found for the members of T.

Then this hypothesis will be a good guess for f especially if

T is large. For example, in case of the classification

problem, the learner estimates a function mapping a vector

into classes by looking at the input-output examples of the

function. Whereas, In Un-supervised learning [9] [15], there

is a training set of vectors without function values for them.

The problem in this case, usually, is to divide the training

set into subsets, t1. . . tr, in some appropriate way.

Unsupervised learning methods have application in

taxonomic problems in which it is desired to invent ways to

classify data into meaningful categories. Approaches to

unsupervised learning include Clustering (e.g., k-means,

mixture models, hierarchical clustering).

It has been also describe methods that are intermediate

between supervised and unsupervised learning i.e. Semi-

supervised learning. Semi-supervised learning [15] is a class

of machine learning techniques that make use of both

labeled and unlabeled data for training - typically a small

amount of labeled data with a large amount of the unlabeled

data. Semi-supervised learning lies between unsupervised

learning and supervise learning.

2.2 MapReduce
MapReduce is a programming model for expressing

distributed computations on massive amounts of data, and

also an execution framework for large-scale data processing

on clusters of commodity servers. In other word it can tell

that MapReduce represents to a framework that runs on a

computational cluster to extract the Knowledge from a large

datasets. The name MapReduce is derived from two

functions map () and reduce () functions. The Map ()

function usually applies to all the members of the dataset

and then returns a list of results. And “Reduce () function”

collates and resolves the results from one or more mapping

operations executed in parallel.

MapReduce Model splits the input dataset into independent

chunks called as subsets, which are processed by map ()

and reduce (). Generally, compute nodes & storage nodes

are the same. That is the entire computation involving map (

) and reduce () functions will be happening on DataNodes

and result of computation is going to be stored locally.

In the MapReduce Model, programs written in the

functional style are automatically parallelized and executed

on the large cluster of commodity hardware. The run-time

system takes care of the details of broken input data, and

schedules the program's execution across the number of

machines; it handles the machine failures, and manages

inter-machine communication. In this way without any

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

50

experience with parallel and distributed systems this allows

programmers, to easily utilize the resources of a large

distributed system.

2.2.1 MapReduce Design
In MapReduce, records are treated in isolation by tasks

called as Mappers. The output from the Mappers is then

brought together into a second set of tasks called as

Reducers; here results from many different mappers are

being merged together. Problems suitable for processing

with MapReduce must usually be easily split into

independent subtasks that can be processed in parallel. The

map and reduce functions are both specified in terms of data

is structured in key-value pairs.

The power of MapReduce is from the execution of many

map tasks which run in parallel on a data set and gives

output of the processed data in form of intermediate key-

value pairs. Each reduce task receives and processes data for

one particular key at a time and outputs the data which

processes as key-value pairs.

Fig 2: MapReduce key-value pair’s generation

2.2.2 MapReduce Strategy (Execution)
The Map invocations are distributed across multiple

machines by automatically partitioning the input data into a

set of M chunks. The input chunks can be processed in

parallel by different machines. Reduce requests are being

distributed by partitioning the intermediate key space into R

pieces using a partitioning function (e.g., hash (key) mod

R). The number of partitions (R) and the partitioning

function are specified by the user. Figure give below shows

the overall flow of a MapReduce operation. As soon as the

MapReduce function is called by the user program, the

following sequence starts

.
Fig 3: MapReduce Execution overview

2.3 Hadoop
Apache Hadoop [1] is an open source it is built on Java

framework and it is built for implementing the reliable and

scalable computational networks which supports data

intensive distributed applications, and it is licensed under

Apache v2 license. It enables many applications to work

with thousands and thousands of computational independent

computers and petabytes of the data. Hadoop was derived

from Google's MapReduce and Google File System (GFS).

Hadoop is a top-level Apache project which is built and

used by a global communal of contributors, it has been

written in the Java programming language. Hadoop includes

several subprojects: [1] [3]

Table 1. Hadoop Project Components (Sub-Projects)

HDFS
Distribute File System; One of the

Subject of this Experiment

MapReduce
Computational Framework for

distributed environment

HBase Column-oriented table service

Pig
Dataflow Language and it is a Parallel

execution framework

Hive Data warehouse infrastructure

ZooKeeper
It is for distributed coordination

service

Chukwa Collecting management data: System

Avro Data serialization system

2.4 HDFS
The Hadoop Distributed File System (HDFS) is designed to

store large data sets with high reliability, and to stream

those data sets with high bandwidth. In a large cluster, more

that thousands of servers both host and Client are directly

attached to storage and execute user application tasks.

Hadoop provides a distributed file system and a framework

for the analysis and transformation of very large data sets

using the MapReduce paradigm.

Fig 4: The architecture of HDFS

HDFS is the file system constituent the Hadoop. While the

interface to HDFS is being formed after the UNIX file

system, the truthfulness to standards was sacrificed in favor

of enhanced performance for the applications at hand.

HDFS stores the file system, metadata and the application

data independently. Alike to distributed file systems, like

PVFS, Lustre and GFS. HDFS stores metadata on a

dedicated server, known as NameNode. Application data are

stored on other servers known as DataNodes. All servers are

connected and communicate with each other using TCP-

based protocols [1].

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

51

2.4.1 HDFS Client
Using the HDFS client [17], user applications access the file

system. Similar to most conventional file systems, HDFS is

having provisions of reading, writing and deleting files, and

provides operations for creating and deleting directories.

2.4.2 HDFS Name Node (Master)
It manages the file system name space ,keeps track of job

execution, manages the cluster, replicates data blocks and

keeps them evenly distributed, Manages lists of files, list of

blocks in each file, list of blocks per node, file attributes and

other meta-data and also it Tracks HDFS file creation and

deletion operations in an activity log. Depending on system

load, the NameNode and JobTracker daemons may run on

separate computers. JobTracker dispatches jobs and assigns

splits (splits) to mappers or reducers as each stage

completes

2.4.3 Data Nodes (Slaves)
It stores blocks of data in their local file system, stores

meta-data for each block, serves data and meta-data to the

job they execute, sends periodic status reports to the Name

Node, and sends data blocks to other nodes required by the

Name Node. Data nodes execute the DataNode and

TaskTracker daemons. TaskTracker executes tasks sent by

the JobTracker and reports status.

2.5 Clustering Algorithms
Data clustering [5] is the partitioning of a data set or sets of

data into similar subsets; this can be accomplished by using

some of the clustering algorithms.

2.5.1 K-Means Algorithm
K-MEANS [5] [6] [11] is the simplest algorithm used for

clustering also it an unsupervised clustering algorithm. The

K-Means algorithm is used to partitions the data set into k

clusters using the cluster mean value so that in the resulting

clusters is having high intra cluster similarity and low inter

cluster similarity. K-Means clustering algorithm is iterative

in nature.

The K-means clustering algorithm is known to be efficient

in clustering large data sets. This clustering algorithm was

originally developed by MacQueen , and is one of the

simplest and the best known unsupervised learning

algorithms that solve the well-known clustering problem.

The K-Means algorithm targets to partition a set of given

objects into k clusters based on their features, where k is a

user-defined constant. The core idea is to define k centroids,

one centroid for each cluster. The centroid for a cluster is

calculated and formed in such a way that it is closely related

(in terms of similarity function; similarity can be measured

by using different methods such as cosine similarity,

Euclidean distance, Extended Jaccard) to all objects in that

cluster.

2.5.2 Canopy Clustering Algorithm
Canopy Clustering [5] [6] an unsupervised pre-clustering

algorithm related to the K-means algorithm, which can

process huge data sets efficiently, but the resulting

"clusters" are merely a rough pre-partitioning of the data set

to then analyze the partitions with existing slower methods

such as k-means clustering.

The basic steps of the canopy clustering are described

below. Given two threshold distance T1 and T2; T1>T2 and

a collection of points. Now, to determine the Canopy

Centers: there is iteration through the set of points, if the

point is at distance decide the canopy membership - for each

point in the input set if the point is at a distance < T1 from

any of points in the list of canopy centers (generated in step)

then point is member of the corresponding cluster.

Fig 5: Canopy clustering description

The Map Reduce implementation of K-Means Algorithm

with Canopy Clustering has the following steps.

Fig 6: Map Reduce Steps

2.6 Cloudera
Cloudera [7] [8] Inc. is a software company that provides

Apache Hadoop-based software, support and services called

CDH. CDH has version of Apache Hadoop patches and

updates.

2.7 List of Problems
During the literature review and observation some problems

like scalability issues, high computational costs, reliability,

compatibility problems (with the Softwares & Hardwares)

has been listed out.

3. METHODOLOGY (PRESCRIPTIVE

STUDY)

3.1 Hadoop Architecture
The architecture of a complete Hadoop cluster is in the form

of the Master-Slave architecture. Here, in the Hadoop

architecture, Master is NameNode and Slaves are

DataNodes.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

52

The HDFS NameNode runs the NameNode daemon. The

job submission node runs the JobTracker, which is the

single point of contact for a client wishing to execute a

MapReduce job. The JobTracker monitors the progress of

running MapReduce jobs and is responsible for coordinating

the execution of the mappers and reducers.

Typically, all these services runs on two distinct machines,

although in a small cluster they are often co-located. The

bulk of a Hadoop cluster consists of slave nodes (only three

of which are shown in the figure) that run both a

TaskTracker, which is responsible running the user code,

and a DataNode daemon, for serving HDFS data.

Fig 7: Hadoop Cluster Architecture

3.2 MR Programming Model
MAP-REDUCE programming model [17] is defined by

Dean et al. MAP-REDUCE computing model comprises of

two functions, Map () and Reduce () functions. The Map

and Reduce functions are both defined with data structure of

(key1; value1) pairs. Map function is applied to each item in

the input dataset according to the format of the (key1;

value1) pairs; each call produces a list (key2; value2).

Fig 8: Process of MAP and REDUCE is illustrated

All the pairs which is having the same key in the output lists

is kept to reduce function which generates one (value3) or

an empty return. The results of all calls from a list, list

(value3). This process of MAP and REDUCE is illustrated

in figure below.

3.3 PKMeans Algorithm (Parallel K-

means Algorithm) [11]
Here is the presentation of a design for Parallel K-Means

based on MapReduce. First, it has been already seen with

the overview of the k-means algorithm and then analyzed

parallel parts and serial parts of the algorithms. Now, it has

been seen that how the computations can be formalized as

map and reduce operations in detail. So, there got the details

of PK-Means Algorithm [11] [16] [17] [18] using

MapReduce with the flow diagram shown below.

Fig 9: Flow diagram of PKMeans Algorithm using

MapReduce

4. WORK DONE AND RESULT

(DESCRIPTIVE STUDY II)

4.1 Experimental Setup
The experiments were carried out on the Hadoop cluster.

The Hadoop infrastructure consists of one cluster having

four nodes, distributed in one single lab. For the series of

experiments, I have used the nodes in the Hadoop cluster,

with Intel Core 2 Duo CPU@ 2.53 GHZ, 2 CPUs and 2GB

of RAM for each node. With a measured bandwidth for end-

to-end TCP sockets of 100 MB/s, Operating System:

CentOS 6.2 (Final) and jdk 1.6.0_33 (SUN JAVA).

4.2 Experimental Result and its Analysis
In this Experiment, performance has been shown with

respect to execution time and number of nodes. Here, there

are different cases as given in table below.

Table 2. Various cases for verification and analysis.

4.2.1 Experiment 01: Sequential Algorithm vs.

MapReduce Algorithm

Graphical Analysis of Various Cases using Dataset

Sr. No. Data Size No. of Nodes

Case 1 Increasing Constant

Case 2 Constant Increasing

Case 3 Increasing Increasing

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

53

Fig 10: Speed of Sequential Algorithm vs. MapReduce

Algorithm

4.2.2 Experiment 02: Wordcount
Case 1: When Data size is increasing and Number of nodes

is Constant

Fig 11: Results of wordcount MapReduce Application

Case 2: When Data size is Constant and Number of nodes

are increasing

Fig 12: Results of wordcount MapReduce Application

Case 3: When Data size is increasing and Number of nodes

are increasing

Fig 13: Results of wordcount MapReduce Application

In case of Wordcount ,it has been observed with an

interesting case (Case 3) and also analyzed and verified that

the execution time is first decreasing and then increasing ,

as data size as well as number of nodes are increasing (from

1 to 4) because the load on nodes are increasing and the

communication between nodes are also increasing.

4.2.3 Experiment 02: Grep
Case 1: When Data size is increasing and Number of nodes

is Constant

Fig 14: Results of grep MapReduce Application

Case 2: When Data size is Constant and Number of nodes

are increasing

Fig 15: Results of grep MapReduce Application

Case 3: When Data size is increasing and Number of nodes

are increasing

Fig 16: Results of grep MapReduce Application

In case of Grep experiment, it has been observed with an

interesting case (case 3). It has been analyzed and verified

that the execution time in case of Job1 (256MB of Data

Size) is showing first decreasing and then increasing

pattern. This is happening because the load (Data set Size)

is increasing on nodes and as well as communication

between nodes is also increasing (From 1 to 4).

4.2.4 Experiment 03: Terasort
Case 1: When Data size is increasing and Number of nodes

is Constant

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

54

Fig 17: Results of terasort MapReduce Application

Case 2: When Data size is Constant and Number of nodes

are increasing

Fig 18: Results of terasort MapReduce Application

Case 3: When Data size is increasing and Number of nodes

are increasing

Fig 19: Results of terasort MapReduce Application

In case of Terasort experiment, it has been observed with an

interesting case (Case 2). It has been analyzed and verified

that the execution time is first decreases and then increases,

when Data size is kept constant and increasing number of

nodes from 1 to 4. This is happening because the load (Data

set size) is constant but the communication between nodes

is increasing since number of Node is increasing from 1 to

4.

4.2.5 Experiment 04: PKMeans Clustering

Algorithm
Case 1: When Data size is increasing and Number of nodes

is Constant

Fig 20: Results of PKMeans MapReduce Application

Case 2: When Data size is Constant and Number of nodes

are increasing

Fig 21: Results of PKMeans MapReduce Application

Case 3: When Data size is increasing and Number of nodes

are increasing

Fig 22: Results of PKMeans MapReduce Application

In case of PKMeans experiment, it has been observed with

an interesting case (Case 2). It has been analyzed and

verified that the execution time is first decreases and then

increases. The reason behind this is that the load (Data set

size) is constant but the communication between nodes is

increasing, since number of Node is increasing from 1 to 4.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.8, May 2013

55

5. CONCLUSION AND FUTURE

WORK
In this experiment, the performance of MapReduce

application has been shown with respect to execution time

and number of nodes. Also, verified and validated that in

MapReduce Program model as the number of nodes

increases the execution time decreases. In this way, it has

been shown that PKMeans performs well and efficiently and

the results totally depend on the size of Hadoop cluster. The

performance of above application has been shown with

respect to execution time, dataset size and number of nodes.

The Experiment involves the Hadoop cluster, which

contains total of four nodes i.e. one master (NameNode) and

three slaves (DataNodes).

The future research includes developing mechanisms for

Hadoop quality of service on the different size of the

datasets using MapReduce. Performance evaluation of

MapReduce with different version of software and hardware

configurations. Security Issues with respect to Hadoop and

MapReduce. The performance of PK-Means Algorithm can

be enhanced by introducing different preprocessing steps

such as Canopy Clustering algorithm. MapReduce concept

can be look forward, for the algorithms such as different set

of optimization algorithms, different set of Kernel

algorithms.

6. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/

[2] Sanjay Ghemawat, Howard Gobioff, and Shun-

TakLeung “The Google File System”,

Google,Sosp’03, October 19–22, 2003, Bolton

Landing,New York, USA. Copyright 2003 ACM 1-

58113-757.

[3] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

Robert Chansler, “The Hadoop Distributed File

System”. Yahoo! Sunnyvale, California USA, IEEE,

2010

[4] Jeffrey Dean and Sanjay Ghemawat “MapReduce:

Simplified Data Processing On Large Clusters” 2009,

[5] ,Google, Inc., Usenix Association OSDI ’04:

6thSymposium on Operating Systems Design

andImplementation.

[6] http://www.ise.bgu.ac.il/faculty/liorr/hbchap15.pdf

[7] http://en.wikipedia.org/wiki/Cluster_analysis#Newer_d

evelopments

[8] http://www.cloudera.com

[9] https://wiki.cloudera.com/display/DOC/CDH+Installati

on+Guide.

[10] http://en.wikipedia.org/wiki/Machine_learning

[11] Mahesh Maurya and Sunita Mahajan. “Performance

analysis of MapReduce Programs on Hadoop cluster”,

World Congress on Information and Communication

Technologies 2012.

[12] Weizhong Zhao, Huifang Ma, and Qing He, “Parallel

K-Means Clustering Based on MapReduce”, 2009.

[13] http://www.kdnuggets.com/gpspubs/aimag-kdd-

overview-1996-Fayyad.pdf

[14] http://ieeexplore.ieee.org/

[15] http://www.springerlink.com/content/c6211946078662

23

[16] David Barber, “Bayesian Reasoning and Machine

Learning”, Cambridge 2011; New York: Cambridge

University Press.

[17] Ron Bekkerman, Mikhail Bilenko, John Langford,

“Scalable Machine Learning” Cambridge University

Press, 2012.

[18] Jimmy Lin and Chris Dyer, “Data-Intensive Text

Processing with MapReduce”, April 2010, University

of Maryland, College Park.

[19] Tom White, “Hadoop: The Definitive Guide”, 2009

Published by O’Reilly Media, Inc., 1005 Gravenstein

Highway North, Sebastopol, CA 95472.

IJCATM : www.ijcaonline.org

