
International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

20 

A Neural Network based Method to Optimize the 

Software Component Searching Results in K-Model 

 
Suresh Chand Gupta 

PIET, Samalkha 
Panipat, Haryana 

  

 

Prof. Ashok Kumar 
CSE Deptt., MMU  
Mullana, Haryana 

 

 

ABSTRACT 

Here we propose a storage and retrieval approach of reusable 

software components based on UML diagram, metadata 

repository and neural network. If we search the repository on 

the basis of attributes of MDL file descriptions, the search 

result would be better and thus giving higher precision, as 

compared to keyword based search, then apply neural network 

to searching results of reusable software component for 

optimizing the searching results. The proposed approach is 

tested on various reusable software component datasets 

containing purely continuous or purely categorical or a mix of 

both types of attributes. Many features used in the analysis of 

reusable software component. In this paper reusable software 

component classified using feed forward back propagation 

Neural Network. One thousand sets of reusable software 

component obtained by software reusable techniques. The 

dataset consist of twenty eight features which represent the 

input layer to the FNN. The FNN will classify the reusable 

software component into type4, type3, type2 and type1 

reusable software component. The sensitivity, specificity and 

accuracy were found to be equal 99.64%, 98.54% and 98.80% 

respectively. It can be concluded that FNN gives fast and 

accurate classification and it works as promising tool for 

optimizing the searching results of reusable software 

component. The overall accuracy of optimizing searching 

results of the proposed system is 96.50%.  Thus, this approach 

is suitable for automated real time reusable software storing 

and searching. 

General Terms 
Software reuse, software component, Metadata, component 

retrieval, Component based engineering, Use Case Diagram, 

Class Diagram, MDL file. 

 

Keywords 

Metadata repository, UML Diagram, MDL File, Search 

Engine, K-model, ontology, neural network 

 

1. INTRODUCTION 
Software reuse [10, 24], the use of existing software artifacts 

or knowledge either partial, modified or complete, to create 

new software, is a key method for significantly improving 

software quality, reliability and productivity or in other words, 

it is the process of implementing or updating software systems 

using existing software assets. Software assets or components 

include anything that is produced from a software 

development effort. In this way a software component is 

developed only once, and can save out development effort 

multiple times. Many software developing organization uses 

CBSE as their software development standard because it 

reduces the development cost. To achieve this, CBSE is 

relying on reusability of software assets. So in directly it is 

clear that reusability is a key factor for reducing the 

development cost and an approach puts this idea central is 

called reuse-based software engineering [5] [14].  

Software component reuse is an important concept to software 

development, as it reduces software development effort, time 

and cost and increase reliability, productivity, throughput and 

flexibility. Software component-Based Software Engineering 

proposes the reuse of software components, which can be 

retrieved and assembled into applications of specific domains 

[1, 2, 7]. In order to build these applications successfully, it is 

fundamental to choose appropriated software components 

from a collection of available software components. Thus, it is 

desirable to have a repository that supports the storage, query 

and retrieval of software components and makes reuse 

possible. Most existing software component repositories only 

retrieve a limited set of Software components and some do not 

satisfy user queries. Interrelated software components may 

exist and would be useful, but the user either does not know 

about them or is unable to retrieve them because the query is 

defined too narrowly [2] [4]. The schema of the repository 

itself often does not consider semantic relationships among 

software components and thus omits important component 

retrieval information. A technique to software component 

repositories is needed that provides the retrieval and 

recommendation of semantically interrelated software 

components. Reusing UML diagrams and source codes can 

help reduce development effort [7] [9].  
A search engine can be developed that can help in reusing the 

existing UML components, software component design, 

source codes, test cases and maintenance case. While libraries 

of Unified Modeling Language (UML) diagrams and source 

codes do exist, one of the challenges that still remain is to 

locate suitable designs and source codes, and adapt them to 

meet the specific requirements of the software designer and 

developer. Traditional approaches to component retrieval are 

keyword-based; which resulted in the retrieval of many 

irrelevant components [7] [10]. A more promising approach is 

retrieval based on MDL format, where the contents of MDL 

file of the UML diagrams are matched to retrieve the software 

components. The UML models that are used for modeling are 

stored as MDL file format. These MDL file formats are 

semantically very information rich and contains lot of 

valuable information about the asset. The information can be 

structural as well as behavioral. The class diagram MDL file 

format contains valuable information about the structural 

description and contents of a class, i.e. class name, attributes, 

behavior, relationships, generalization etc. These attributes 

can be used for specification matching with the contents of the 

repository. The Use case diagram MDL file format contains 

valuable information about the requirements specification of 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

21 

software. These include use cases and actors. If we search the 

repository on the basis of attributes of MDL file descriptions, 

the search result would be better and thus giving higher 

precision, as compared to keyword based search. Then apply 

neural network to improve the searching results [7] [19]. 

 

1.1 The K- Model 
The K-model has been proposed as a alternative to address 

software reusability and reengineering practices during 

component-based software development. The creation of 

software is characterized by assembly and frame working. 

Although the main phases may overlap each other and 

iteration is allowed, the planned phases are: domain 

engineering, frame working, assembly, archiving, system 

analysis, design, implementation, testing, deployment 

maintenance and reengineering. The main characteristic of 

this software life cycle model is the emphasis on reusability 

during software creation and maintenance  and the production 

of potentially reusable components that are meant to be useful 

in future software projects. Reusability implies the use of 

composition techniques during software development; this is 

achieved by initially selecting reusable components and 

assembling them, or by reengineering the existing software to 

a point where it is possible to pick out components. Frame 

working attempts to identify components and establish 

interrelationships within the application domain. Assembly 

focuses on selecting a collection of reusable frameworks or 

components from specific application domains. Reusability 

within this life cycle is efficient and more cost effective than 

within the traditional models because it integrates at its core 

the concern for reuse with assembling and the mechanisms to 

achieve it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K-Model 

The experience of using the K model has firstly shown that it 

is difficult to follow either a top-down or bottom-up approach 

so it is often necessary to switch over between them. It means 

that it is helpful to clarify high-level functionality for the 

software along with the identification of some low-level 

components and study their interrelationships. When 

developing large software, it is important to synthesize ideas 

from both top-down and bottom-up approaches. The idea of 

being able to classify parts of a software system as potentially 

reusable is a powerful concept. It is a time and cost saving 

formula and indeed more time can be spend on the specific 

aspects of the software than general aspects of the software 

that might be needed for specific application. The 

development of a component should therefore be with 

generality with reuse and reengineering in mind placing 

perhaps less emphasis on satisfying the specific needs of an 

application that is being developed. The specific parts of a 

design are those parts which turn a general set of components 

into a specific software system for a particular application. 

The K model supports “development with reuse and 

reengineering” through component assembly, and component 

archiving. Initially, the software engineer identifies potentially 

reusable components from existing reusable libraries. The 

components are then selected, adapted and reused through 

composition. For existing software the same technique can be 

used through using the concept of reengineering. At the end of 

software development, there may be many new reusable 

components that need to be verified, catalogued, classified 
and then stored into reusable libraries. 

2. COMPONENT RETRIEVAL AND 

STORAGE 

 

2.1 Software Component Retrieval using 

MDL File 
The primary goal of this work is to identify a retrieval 

approach by using the MDL format. The UML models that 

are used for modeling are stored as MDL file format. These 

MDL file formats are semantically very information rich and 

contains lot of valuable information about the reusable 

software component. The information can be structural as 

well as behavioral. The class diagram MDL file format 

contains valuable information about the structural description 

and contents of a class, i.e. class name, attributes, behavior, 

relationships, generalization etc. The use case diagram MDL 

file format contains valuable information about the 

requirements specification of the software, i.e. it contains use 

cases, actors, and their relationships [7]. If we search the 

repository on the basis of attributes of MDL file descriptions, 

the search result would be better and thus giving higher 

precision, as compared to keyword based search. Moreover is 

we assign some numeric weights to different contents of a 

class, and arrange the search results in descending order, we 

would be able to find out the precision of the components in 

descending order. Then apply neural network algorithms to 

improve and optimize the reusable software component 

searching results. Hence the role of (re) user to find the best-

fit component from the search result would be much easier. 

To successfully combine two paradigms software reuse and 

UML, for Component Retrieval, an automated tool must be 

designed, named as Component Retrieval Search Engine. The 

Purpose of Component Retrieval Search Engine is to retrieve 

best-fit or most reusable Component from the Repository as 

intended by the (re) user (developer). Moreover the search 

results to be displayed in descending order of percentage 

match with the input query. Hence the role of (re) user to find 

the best-fit component from the search results would be much 

easier. To model UML diagrams some software for modeling 

is required. In this work the software used is the Rational 

Rose, which is the product of IBM Corporation. In Rational 

Rose all the diagrams of the UML can be modeled and stored 

System requirement 

specification 

Partial Design 

System Design 

Implementation 

Testing 

Maintenance 

Assembly 

Frame working 

Domain Engineering 

Re-Engineering 

Existing software 

Repository 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

22 

in a single file of MDL file format. Hence various sample 

cases are taken and are modeled in Rational Rose. The 

repository should be indexed and classified according to the 

projects. Here our repository includes assets, namely source 

codes, designs and test cases. Designs are the diagrams, which 

are modeled in Rational Rose and stored in the Repository. 

Source codes consist of programs in any language. Designs 

and Source Codes about a project are stored in the Repository. 

The search engine should search upon the queries built to 

match the relevant components. The search input consists of 

MDL file. The output can be designs or source codes, as 

required by the user. The resultant should not only be most 

relevant matched items, but also some relevant matched items 

for browsing. 

 

2.2 Software component storing and 

retrieval system 
The function of a software component retrieval storing system 

is that construct the model of software component retrieval, in 

the model, functions, applied domains, work environments, 

working , static and dynamic behaviors of a software 

component can be accurately expressed, the software 

component can be store, searched and reused [4] [7]. A 

software component includes the entity, describing and 

metadata information in a software component repository. The 

three can be stored together or discretely. The discrete scheme 

is adopted so that reduce burthen, improve openness and is 

convenient for upgrade and maintenance, a component 

repository is divided into a describing repository and an entity 

repository. The software component retrieval system is based 

on meta-data, ontology faceted classification and adopts the 

model of three layers (view layer, application layer and data 

layer), the architecture is shown in Figure 1. The view layer is 

web form, the layer provides searching interfaces for software 

component users and library (repository) administration 

interfaces for administrators and knowledge experts. The 

application layer answer for describing component, 

classification, administration, feedback, authority and log, the 

layer realized by the view layer. There are four databases in 

data layer: a describing repository, component repository, a 

Meta data repository and ontology based component 

repository. The metadata repository stores information in 

special domains, provide accurate query terms, eliminate 

some phenomena such as same meanings with different names 

and same names with different meanings. According to 

describing facets, the describing repository can provide some 

information such as interfaces, functions, administrative 

levels, applied domains, developed languages, applied 

environments, editions and so on so that search software 

components[9]. The component repository store components 

and provide some services such as download and so on. More 

information on the domain semantics and also infer 

knowledge in order to recommend interrelated software 

components. The captured domain information should be 

related to the software components through an analysis of 

their purposes and functionalities. Thus, it is possible to relate 

software components to correspondent associations and 

entities in domain semantics. Therefore, the elements 

belonging to the meta-model permit retrieving and 

recommending components based on the analysis of semantic 

information. The software component retrieval is 

implemented based on the architecture of the software 

component retrieval system that is shown in Figure 1. A user 

input query terms with the interface of software component 

retrieval, these terms match terms in the metadata repository, 

and the fittest describing terms are chosen to feed back (if 

these terms cannot strictly match terms in the meta data 

repository, the thesauruses are chosen from the metadata 

repository by a heuristic algorithm [7] [10]), these terms are 

further filtered and refined by users so that accurate query 

describing terms is formed. An accurate requirement of users 

is reflected to a describing repository of software component 

based on faceted classification by a module of accurate query 

processing, appropriate software components will be searched 

by a fixed retrieval algorithm; users filter appropriate software 

components and download from the component repository of 

component. Then apply neural network algorithms to improve 

and optimize the reusable software component searching 

results. Hence the role of (re) user to find the best-fit 

component from the search result would be much easier. The 

whole searching process is shown in figure 1. 

 

2.3 Searching Result Optimization using 

neural network 

The objective of this study is to classifying reusable software 

component using feed forward back propagation neural 

network and Levenberg-Marquardt (LM) as the training 

algorithm. LM algorithm has been used in this study due to 

the reason that the training process converges quickly as the 

solution is approached. For this study, sigmoid, hyperbolic 

tangent functions are applied in the learning process. Feed 

forward back propagation neural network use to classify 

reusable software component according to reusable software 

component attribute and characteristic. FNN also classified 

reusable software component in type1, type2, and type3. Feed 

forward back propagation neural network is created by 

generalizing the gradient descent with momentum weight and 

bias learning rule to multiple layer networks and nonlinear 

differentiable transfer functions. Input vectors and the 

corresponding target vectors are used to train feed forward 

back propagation neural network. Neural network train until it 

can classify the defined pattern. The training algorithms use 

the gradient of the performance function to determine how to 

adjust the weights to minimize performance. The gradient is 

determined using a technique called back propagation, which 

involves performing computations backwards through the 

network. The back propagation computation is derived using 

the chain rule of calculus. The input vector is composed of 28 

elements corresponding characteristic and attribute value of 

reusable software component. One hidden layers are 

determined empirically to be 16 and the output layer consists 

of 4 neurons. In addition, the transfer functions of hidden and 

output layers are tan-sigmoid and tan-sigmoid, respectively. 

For the training of neural network, the target is four element 

vectors. 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

23 

 

 
                                                                                                                                                 Optimized Search Results  

 

 

 

 

 

 

 

 

 

 

 

 
                  Input query terms                                      Related Accurate Query Terms            Appropriate Components                                                                       
 

 

 

 

 
                     General   query terms       accurate describing terms                                                            Appropriate Components                               

                                                                                                                                                   
                                                                                                                      
 

 
                       General query terms         Accurate describing terms     Component information     Appropriate Components 

                   

  

 

 

 
 

 

Fig 1: Proposed System for Reusable Software Components Storage and Retrieval     

 

3. EXPERIMENT RESULTS 
 

 

3.1 Neural Network Training and Testing 

Results 
The proposed network was trained with feature vector data 

cases. When the training process is completed for the training 

data, the last weights of the network were saved to be ready 

for the testing procedure. The time needed to train the training 

datasets was approximately 28.60 minutes. The testing 

process is done for 1000 cases. These 1000 cases are fed to 

the proposed network and their output is recorded.  

 

Performance plot:  Performance plot show the training 

errors, validation errors, and test errors appears, as shown in 

the training process. Training errors, validation errors, and test 

errors appears, as shown in the following figure 2.  

Figure 2: Performance plot 

Query Terms 

Query Interface 

The original 

query module 
The accurate query module 

Meta data 

repository 

Describing 

repository 
Component 

repository 

INPUT UML Diagram 

UML Diagram Converted in MDL File 

MDL File Reader 

Extracted Keywords 

(Query Terms) from MDL 

File 

RE -USERS / EXPERT/ ADMINISTRATOR 

 

Software component Search 

Results Optimizing using Neural 

Network 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

24 

Receiver Operator Characteristic Measure 

(ROC) Plot: The colored lines in each axis represent the 

ROC curves. The ROC curve is a plot of the true positive rate 

(sensitivity) versus the false positive rate (1 -specificity) as 

the threshold is varied. A perfect test would show points in the 

upper-left corner, with 100% sensitivity and 100% specificity. 

For this problem, the network performs very well. The results 

show very good quality in the following figure 3. 

 

Figure 3: ROC Plot 

Regression plots: This is used to validate the network 

performance. The following regression plots display the 

network outputs with respect to targets for training, validation, 

and test sets. For a perfect fit, the data should fall along a 45 

degree line, where the network outputs are equal to the 

targets. For this problem the fit is reasonably good for all data 

sets, with R values in each case of 0.93 or above. The results 

show in the following figure 4. 

 

Figure 4: Regression Plots 

Training State Plot: Training state plot show the 

deferent training state in training process and validation check 

graph. These plots also show the momentum and gradient 

graph and state in training process. The results show in the 

following figure 5. 

 

Figure 5: Training State Plot 

Confusion Matrix: This figure shows the confusion 

matrices for training, testing, and validation, and the three 

kinds of data combined. The network outputs are very 

accurate, as you can see by the high numbers of correct 

responses in the green squares and the low numbers of 

incorrect responses in the red squares. The lower right blue 

squares illustrate the overall accuracies. The diagonal cells 

show the number of cases that were correctly classified, and 

the off-diagonal cells show the misclassified cases. The blue 

cell in the bottom right shows the total percent of correctly 

classified cases (in green) and the total percent of 

misclassified cases (in red). The results show very good 

recognition. 

 

Figure 6: Confusion Matrix 

 
Precision = Number of relevant components retrieved / Total 

number of components retrieved  

 

Recall: Recall is defined as the number of relevant 

components retrieved divided by the total number of relevant 

components in the index.  

 

Recall = Number of relevant component retrieved / Total 

number of relevant components in the index  

 

Metadata, Component and UML diagram based Search 

results analysis:  



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

25 

Total components in the repository = 1000  

Total number of components retrieved = 392  

Total number of relevant components retrieved = 375  

Total number of relevant components in the index =380  

Precision =375 / 392 = 0.9566  

Recall = 375/380 = 0.9868  

 Attaining the precision of 0.9566 in Case 4 is 

considerably good which indicates that match is up to 

96%.  

Recall value of 0.9868 indicates that we would have been able 

to retrieve 99% relevant components, in Case 4 
 

3.2 EXPERIMENT RESULT S ANALYSIS 
The outputs of algorithms are depicted in the following figure 

2, 3, 4, 5, 6, shows the reusable software component.  Figure 6 

show correctly classified reusable software component.  The 

accuracy of classifier is defined as the ratio of the number of 

samples correctly classified to the total number of samples 

tested. The trained network has been tested in the retrieval 

mode, in which the testing vectors are not taking part in the 

training process. We have used the standard multilayered feed 

forward back propagation neural network trained using the 

gradient descent with momentum, resilient back propagation, 

and Levenberg-Marquardt algorithms. It produced 98.80% 

diagnosis accuracy respectively, where   the 28 features of 

reusable software component are used as input of neural 

network. The overall accuracy of classification in the training, 

validation and testing mode are 99.64, 98.54 and 98.80%. The 

overall accuracy of classification show in the following figure 

2, 3, 4, 5 and 6. Given these encouraging results, we are 

confident that an automatic reusable software component 

searching and storing system can be developed to assist the re 

user by providing second opinions and alerting them to 

component that require further attention. 
Table 1, 2 and 3 show the results of proposed model used in 

the classification of reusable software component using neural 

network. The overall accuracy of classification in the testing 

mode is 98.80%.     

 

Table1 .Performance results of reusable software 

component classification algorithm 
 

Case study Training 

accuracy 

% 

Validation 

accuracy 

% 

Testing 

accuracy 

% 

Type 1 component 99.32 98.56 98.80 

Type 2 component 99.20 98.58 98.82 

Type 3 component 99.60 98.32 98.76 

Type 4 component 99.20 98.50 98.82 

 

 

 
Table 2 show total performance of the classification algorithm 

was evaluated by computing the percentages of Sensitivity 

(SE), Specificity (SP) and Accuracy (AC); the respective 

definitions are as follows: 

 

SE=TP/ (TP+FN)*100                                                          (1) 

 

SP=TN/ (TN+TP)*100                                                          (2) 

 

AC= (TP+TN)/ (TN+TP+FN+FP)*100                                (3) 

 

Sensitivity, specificity and accuracy of prediction have been 

calculated according to the above formals for all of the testing 

data (1000 reusable software component). Table 2 shows the 

resulted SE, SP and AC for testing data of the proposed 

networks. 

 

 

 

 

 

 

 

 

 

Table 2.Performance results after tasting of the cancer 

tumor classification algorithm 

 

No of 

component 

Sensitivity Specificity Accuracy 

1000 99.64% 98.54% 98.80% 

 
The overall accuracy of classification in the training, 

validation and testing mode are 99.34%, 99.54% and 98.80%. 

The proposed reusable software component system gives fast 

and accurate reusable software component storing and 

searching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

26 

 

 

 

 

 

 
Table 3: Experiment results 

 
The Method of  Retrieval Components 

in  Repository 

Components 

Retrieved 

Relevant 

Component 

Retrieved   

Relevant 

Components  

in the Index 

Precision Recall 

Traditional faceted retrieval  1000 380 280 350 73.68% 80% 

MDL File based retrieval  1000 372 305 348 81.98% 87% 

Metadata repository based 

retrieval  

1000 375 325 356 86.66% 91.29% 

Metadata repository and neural 

network based retrieval 

1000 392 375 380 96% 98% 

 

4 CONCLUSION AND FUTURE SCOPE 
The suggested approach is tested on various reusable software 

component datasets from software component repository and 

results are encouraging. Components to be stored are 

developed such that these become more and more reusable. 

Making such a reuse library requires some different 

mechanism for storage and retrieval of software components. 

One such approach based on metadata, Component repository 

and neural network based searching was described in this 

paper with algorithm for building library and searching 

mechanisms. Combining software reuse with MDL file, 

metadata, and neural network is a new emerging trend in 

software development process. Combining these technologies 

helps the software development process by locating pre-

existing components at the design time only, due to which the 

total effort of software development is decreased.  It can be 

very difficult to decide reusable software component. FNN 

has been implemented for classification of reusable software 

component. The overall accuracy of classification in the 

training, validation and testing mode are 99.64, 98.54 and 

98.80%. We are concluding that that the proposed system 

gives fast and accurate reusing software component. Given 

the encouraging test results, we are confident that an 

automatic software reusing system can be developed to assist 

the software developer and re user by providing second 

opinions and alerting them to component that require further 

attention.  
 

5 REFERENCES 
[1] F. Gibb, C. Mccartan and O. DonnellR, “The Integration 

of Information Retrieval Techniques within a Software 

Reuse Environment”, Journal of Information Science, 

vol. 26, no. 4, pp.520- 539, 2000. 

[2] W. Yuanfeng, Z. Yong and R.Hongmin, “Retrieving 

Components Based on Faceted Classification”, Journal 

of Software, vol. 13, no. 8, pp.1546-1550, 2002. 

[3] Lina and Z. Shijie, “Progress and prospects of expert 

system”, Application Research of Computers, vol. 24, 

no. 12, pp.1-5, 2007. 

[4] D. Hemer, “Specification-based retrieval strategies for 

component architectures”, Proceedings of the 2005 

Australian Software Engineering Conference 

(ASWEC‟05), pp.233-242, 2005. 

[5] R. Giliane, S. Luciana and H. Peter, “A Reference Model 

for Reusable Components Description”, Proceedings of 

the 38th Annual Hawaii International Conference on 

Systems Sciences, Los Alamitos: IEEE Computer 

Society, pp.282-283, 2005.   

[6] Li Ji-Dong, Xue-Jie Zhang and Yun-Shan Chen: 

“Applying Expert Experience to Interpretable Fuzzy 

Classification System using Genetic Algorithms,” In 

Proc. 4th IEEE Int.Conf. on Fuzzy Syst & Knwldg Disc., 

vol. 02, pp. 129-133, Haikou, Hainan, China, Aug. 2007. 

[7] Shekhar Singh,”An experiment in software component 

retrieval based on metadata and ontology repository”, 

International Journal of Computer Applications (0975 – 

8887), Volume 61– No.14, January 2013. 

[8] Y. Wensheng, T. Pinghui and C. Xiuguo, “Problem 

Oriented Analysis and Decision Expert System with 

Large Capacity Knowledge-base”, Proceedings of 2008 

International Conference on Intelligent System and 

Knowledge Engineering, China, pp.32-37, 2008. 

[9] Rajender Nath, Harish Kumar; Building Software Reuse 

Library; 3rd International Conference on Advanced 

Computing and Communication Technology- ICACCT-

08; Asia Pacific Institute of Information Technology, 

Panipat , India; November 08-09, 2008, pp. 585-587. 

[10] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “A Hybrid 

Technique for Searching a Reusable Component from 

Software Libraries”, DESIDOC Bulletin of Information 

Technology, Vol.27, No.5, September 2007, pp. 27-34.  

[11] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Ant Colony 

Based Rule Generation for  Reusable Software 

Component Retrieval”, Proceedings of the 1st 

Conference on India Software Engineering Conference, 

pp 129-130, Feb 19-22, 2008, Hyderabad, India.  

[12] Arun Sharma, Rajesh Kumar and P .S. Grover, “A 

Critical Survey of reusability aspects for component-

based systems”, Proceedings of World Academy of 

Science, Engineering & Technology, Vol. 21, Jan 2007.  

[13] Clifton, C. and W. S. Li, “Classifying software 

components using design Characteristics”, In 

proceedings of the 10th Knowledge-Based Software 

Engineering Conference, KBSE‟95, IEEE Computer 

Society press, Los Alamitos, CA PP 139-146, 1995  

[14] Daniel Lucredio, Antonio Francisico do Prado, Eduardo 

Santana de Almeida, “A Survey on Software 

Components Search and Retrieval”, euromicro, pp.152-

159, 30th  EUROMICRO Conference 

(EUROMICRO‟04), 2004  

[15] Frakes,W.B and Pole,T, “ An Empirical study of 

representation methods for reusable Software 

components”, IEEE Trans. Soft Engg 20, 8,617-630, 

1994  

[16] Hafedh Mili, Fatma Mili and Ali Mili, “Reusing 

Software: Issues and research Directions,” IEEE 

Transactions on Software Engineering, Vol. 21, No 6, 

1995  



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.7, May 2013 

27 

[17] Henninger,S “An Evolutionary Approach to constructing 

effective software reuse Repositories”, ACM 

Transactions on software engineering and methodology 

6(2), 111-140, 1997  

[18] Isakowitz,T and R,J Kauffman , “Supporting Search for 

Reusable Software  Objects”, IEEE Transactions on 

Software Engineering 22, 6, 407-423, 1996 

[19] Jiang Guo, Lqui, “A Survey of Software Reuse 

Repostories”, ecbs, p-92, 7th IEEE International 

Conference and Workshop on the Engineering of 

Computer Based Systems, 2000  

[20] Jilani L L, R.Mili, M Frappier, J.Desharnais and A.Mili, 

“Retrieving Software Components that minimize 

adaptation effort”, In Proceedings of the 12th IEEE 

International Automated Software Engineering 

Conference, ASE‟97, IEEE Computer Society Press, Los 

Alamitos, CA pp 255-262, 1997a  

[21] Jilani,L.L , R Mili and A Mili, “ Approximate Retrieval: 

An Academic Exercise or a Practical Concern”, In 

Proceedings of the 8th Annual workshop on software 

Reuse (WISR-8), 1997b  

[22] Michail,A. & Notkin,D., “Assessing Software Libraries 

by Browsing similar classes, functions and relationships” 

, In Proceedings of 21st International Conference on 

Software Engineering (ICSE‟99), ACM Press, Los 

Angeles, CA, pp. 463-472, 1999  

[23] Mili R, Mili A and Mittermeir R.T, “Storing and 

Retrieving Software Components: A Refinement Based 

System”, In Proceedings of 16th International 

Conference on Software Engineering, IEEE, pp.91-100, 

May 1994  

[24] Mili and Edward Addy, Reuse Based Software 

Engineering (A Wiley-Interscience Publication, John 

Wiley and Sons, Inc.2002)  

[25] Peter Eisinga and Jos Trienckens, Software Components 

for the Industry, From testing of applications to 

evaluation of components.  

[26] Prieto-Diaz, “Implementing Faceted Classification for 

Software Reuse”, Communication of the ACM 34, 5, 88-

97, 1991  

[27] Rajesh K Bhatia, Navneet Kaur, “Information Retrieval 

from a composite based Repository using Genetic 

Algorithms” „IICAI 2005, page 667-675  

[28] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Retrieval of 

most relevant reusable Component using genetic 

algorithms”, Software Engineering Research and Practice 

2006, 151-155  

[29] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “A Hybrid 

Technique for Searching a Reusable Component from 

Software Libraries”, DESIDOC Bulletin of Information 

Technology, Vol.27, No.5, September 2007, pp. 27-34  

[30] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Ant Colony 

Based Rule Generation for Reusable Software 

Component Retrieval”, Proceedings of the 1st 

Conference on India Software Engineering Conference, 

pp 129-130, Feb 19-22, 2008, Hyderabad, India  

[31] Rajiv D. Banker, Robert J Kauffman and Dani Zweig, 

“Repository Evaluation of Software reuse”, IEEE 

Transactions on Software Engineering, Vol. 19, No 4, 

April 1993  

[32] Rym Mili, Ali Mili and R.T.Mittermeir, “Storing and 

Retrieving Software Components: A Refinement Based 

System”, IEEE Transactions on Software Engineering, 

Vol.23, No 7, July 1997  

 

 

IJCATM : www.ijcaonline.org 


