
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.18, June 2013

38

New Approach for Graph Algorithms on GPU using

CUDA

1Gunjan Singla, 2Amrita Tiwari, 3Dhirendra Pratap Singh

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology

Bhopal, Madhya Pradesh

ABSTRACT

Large Graph algorithms like Breadth-First Search (BFS),

Depth-First Search(DFS), shortest path algorithms etc. used

frequently in various engineering and real world applications

that demand execution of these algorithms in large graphs

having millions of edges and sequential implementation of

these algorithms takes large amount of time. Today’s

Graphics Processing Units (GPUs) provide a platform to

implement such applications with high computation power

and massively multithreaded architecture at low price. In this

paper, we present parallel implementations of two basic graph

algorithms breadth-first search and Dijkstra’s single source

shortest path algorithm by using a new approach called edge

based kernel execution on GPU. The performance analysis of

parallel implementation over the serial execution gives a good

speed-up.

Keywords

SSSP (Single Source Shortest Path) problem, Dijkstra’s

algorithm, BFS (Breadth -First Search), CUDA (Compute

Unified Device Architecture) model, GPU(Graphic

Processing Unit).

1. INTRODUCTION
 Graphs are the commonly used data structures that describe a

set of objects as nodes and the connections between them as

edges. A large number of graph operations are present, such

as minimum spanning tree, breadth-first search, shortest path

etc., having applications in different problem domains like

VLSI chip layout [1], phylogeny reconstruction [2] , data

mining, and network analysis[3].

With the development of computer and information

technology, researches on graph algorithms get wide

attention. In particular, the Single Source Shortest Path

(SSSP) problem is a major problem in graph theory which

computes the weight of the shortest path from a source vertex

to all other vertices in a weighted directed graph. The most

well-known algorithm for solving this problem was given by

Dijkstra in 1959 [4] with non-negative edge weights and

further, more work is done considering it as base algorithm.

So far, many different variants of Dijkstra’s algorithm have

implemented sequentially as well as in parallel manner. In all

parallel implementations, a thread corresponds to a node in

graph database but in our implementation, a thread

corresponds to edges and as number of edges is greater than

number of nodes, comparatively more degree of parallelism is

achieved.

We have also given parallel implementation of BFS [5] [6] on

the basis of edges as it is one of the basic paradigm for the

design of efficient graph algorithm and hence, requires high

degree of parallelism. Given a graph G= (V, E) with m edges,

n vertices and a source vertex s, BFS traverses the edges of G

to discover every vertex that is reachable from s.

At present, the serial graph algorithms have reached the time

limitation as they used to take a large amount of time.

Therefore, the parallel computation is an efficient way to

improve the performance by applying some constraints on the

data and taking the advantage of the hardware available

currently.

Different implementations of parallel algorithms for the SSSP

problem are reviewed in [7]. Bader et al. [8], [9] use CRAY

supercomputer to perform BFS and single pair shortest path

on very large graphs. A. Crauser et al. [10] have given a

PRAM implementation of Dijkstra’s algorithm while such

methods are fast, hardware used in them is very expensive. N.

Jasika et al. [11] presented a parallel dijkstra’s algorithm

using OpenMP (Open Multi-Processing) and OpenCL (Open

Computing Language) which gives good results over serial

algorithm. Pedro J. Martín et al. [12] have given an efficient

parallel dijkstra’s algorithm on GPU using CUDA. L. Luo et

al. [13] have given a GPU implementation of BFS which

gives around 10X speed-up over the algorithm given by P.

Harish et al. [14].

In this paper, we present new edge based parallel

implementations of Dijkstra’s algorithm and breadth first

search (BFS) on GPU using CUDA handling large graphs up

to 2 million edges. We show the results for the speed-up

obtained by our parallel algorithm over its serial execution.

 The rest of the paper is organized as follows: CUDA basics

along with GPU architecture is discussed in Section 2. Graph

representation used by our implementation is discussed in

Section 3. Section 4 presents edge based parallel Dijkstra’s

algorithm with a subsequent edge based parallel BFS

implementation in section 5. Performance analysis of our

implementation on various types of graphs is done in section 6

and finally concluded in section 7.

2. CUDA MODEL ON GPU
Graphics Processing Unit (GPU) was introduced by NVIDIA

and has four types of memory in it i.e. shared memory,

constant memory, texture memory and global memory. Its

design does not have any memory restrictions as one can

access all these memory available on the device except shared

memory with no restrictions on its representation though the

access times may differ for different types of memory. It uses

a massively multithreaded computing architecture called

CUDA for parallel processing of data. In CUDA

programming model, GPU is referred as device and CPU is

referred as host. Basically, CUDA device is a multi-core co-

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.18, June 2013

39

processor that is used only for the computational task and

cannot initiate the task without CPU. Each multiprocessor has

a number of cores which execute in Single Instruction

Multiple Data (SIMD) manner. In this model, execution is

done on threads, a set of threads form a block and a group of

blocks that executes same instruction set constitutes one grid.

Each thread and block is given its own unique ID by which

they are referred, named as threadID and blockID. Each

thread executes a single instruction set called the kernel which

is a part of code which defines the task and is executed on

each thread by using threadID. The use of shared memory in

this model improves performance of computation [15], [16].

Figure 1: CUDA hardware interface [15]

3. GRAPH REPRESENTATION
In this paper, we have represented graph in the form of

adjacency list as it takes less space as compared to adjacency

matrix representation. We have stored the adjacency lists of

all the nodes into a single large array. The data representation

consists of node array Va and edge array Ea, where each

element in the Va points to the starting index from Ea array of

each edge and the array Ea stores the destination nodes of each

edge. One extra element is needed in node array to indicate

outdegree of last node as shown in Fig 1. Moreover, three

arrays: edge start node array Sa stores the start node of each

edge, edge end node array Ea stores the end node of each

edge, edge weight array Wa stores the weight of each edge,

are also required for parallel implementation such that each

thread can run on edges rather than on nodes as in previous

implementations.

Figure 2: Graph representation

4. EDGE BASED PARALLEL

DIJKSTRA’S ALGORITHM

4.1 Dijkstra’s algorithm overview
Dijkstra’s algorithm is inherently sequential and solves SSSP

problem in time. In Dijkstra’s algorithm,

nodes are divided into two categories: settled and unsettled,

settled nodes are those nodes having minimum node weight

and whose outgoing edges are relaxed while unsettled nodes

may be unreachable nodes i.e. Node weight = ∞ or nodes not

having minimum node weight. Initially s is settled and its

outgoing edges (s, u) are relaxed. In next iteration,

node u having minimum node weight is settled and its

outgoing edges (u, w) are relaxed. This procedure is repeated

until all the nodes come to settled state.

4.2 Parallel Dijkstra’s algorithm
In parallel implementation, number of threads is equal to

number of edges in the graph. For each unsettled node, its

outgoing edges are relaxed in parallel in order to reduce

computation time. Initially, cost i.e. node weight of all the

vertices is initialised to ‘∞’ and mask is set to ‘0’, except for

the start node whose cost is initialised to ‘0’ and mask value is

set to ‘1’. Each time, from a settled node, we relax all

unsettled nodes outgoing from settled node i.e. minimum cost

is set for each unsettled node and then, threshold value

‘minimum’ is updated with minimum cost among all unsettled

nodes. Edge based parallel Dijkstra’s algorithm is given in

Figure 3.

Figure 3: Edge based parallel Dijkstra’s algorithm

 In kernel RELAX as shown in Figure 4, if a node is

unsettled and its node weight is minimum, then its outgoing

edges should be relaxed and node weight of adjacent nodes

should be updated.

EDGE_DIJ (Graph G (V, E, W), Source Vertex S)

Create start node array Sa, end node array Ea, weight

array Wa, node weight array Na from G (V, E, W);

Create outdegree array Da, Mask array Ma and

minimum variable;

Initialise Ma[v] to 0 and Na[v] to ∞ for every v V

Set Na[S] to 0, Ma[S] to 1 and minimum to 0;

for each vertex v Sa[i] for edge index i if Ma[v] not

equals to 1 do in parallel

set minimum equal to minimum node weight;

end for

for each vertex u Sa[i] for edge index i having Na[u]

equal to minimum and Ma[u] not equal to 1 do in

parallel

 Invoke RELAX(Ma, Na, Ea, Wa, Da) kernel;

end for

RELAX (Ma, Na, Ea, Wa, Da)

Set Ma[u] equal to 1;

While Da[u] is greater than 0 do

 for each vertex v Ea[i] for edge index i

 if Na[v] is greater than Na[u] + Wa[i] then

Na[v] equal to Na[u] + Wa[i];

 end for

end while

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.18, June 2013

40

Figure 4: Kernal Relax

5. EDGE BASED PARALLEL BFS

IMPLEMENTATION

5.1 BFS overview
BFS is a graph traversal technique to discover every node that

is reachable from starting node level by level and uses queue

for traversing all the nodes of the graph G. In this, first we

take any node s as a starting node, then, we take all the nodes

adjacent to s. Similar approach we take for all other adjacent

nodes, which are adjacent to s and so on. We maintain the

status of visited node in one array so that no node can be

traversed again. At the end, it produces a breadth first tree

rooted with s containing all the vertices reachable from s. It

works in the way such that all vertices at level k are first

visited, before traversing any vertices at level k+1.

5.2 Parallel BFS algorithm
In edge based parallel BFS implementation using CUDA,

number of threads is equal to the number of edges in the

graph. We have created a flag variable to denote whether an

updation in visited array occurred or not and if yes, flag is set

to true. First, source node s is marked as visited node then its

adjacent nodes are marked during graph traversal level by

level. Whenever there is no updation, program exits, hence

making the program efficient. Edge based parallel BFS is

shown in Figure 5.

Figure 5: Edge based parallel BFS algorithm

 Figure 6: Kernal search

In kernel SEARCH (Va, Sa, Ea, F) as shown in Figure 6, if

status of start node of an edge is visited then we are setting

status of its all end node to visited in parallel. At each update,

flag value is set to true so that the algorithm continues and if

there is no change in flag value then algorithm exits. Three

factors which make it better than sequential BFS are: first,

nodes at a particular level traverse next level node in parallel

manner, second, early exit of program rather than looping for

every node, third, threads run corresponding to edges

achieving high degree of parallelism.

6. PERFORMANCE ANALYSIS
We have evaluated the performance of edge based parallel

Dijkstra’s algorithm and edge based parallel BFS algorithm

on a large range of graph statistical data such as sparse,

general, almost complete directed graphs of 6 thousands to 0.2

million vertices having up to 2 million edges. We will

compare the execution times of these algorithms over their

respective serial algorithms.

6.1 Experimental Setup
We have used two Desktop PCs to evaluate the results of edge

based parallel Dijkstra’s algorithm and edge based parallel

BFS algorithm with their respective sequential versions.

Experimental Setup 1:

 CUDA 4.1

 NVIDIA GeForce GTS 450 GPU

 Compute Capability 2.1

 192 Cores and 4 Multiprocessors

 1 GB Dedicated GPU Memory

 Intel Core i5 CPU @ 3.20 Ghz

 2 GB RAM

 Windows 7 Professional x86

 Visual Studio Professional 2008

Experimental Setup 2:

 CUDA 5.0

 NVIDIA Tesla C2075 GPU

 Compute Capability 2.0

 448 Cores and 14 Multiprocessors

 4 GB Dedicated GPU Memory

 Intel Xeon CPU @

 24 GB RAM

 Windows 7 Professional 64-bit OS

 Visual Studio Professional 2010

The results for edge based Dijkstra’s algorithm are

summarized in Figure 7 for NVIDIA GeForce Graphic card.

Experimental results show that GPU implementation achieves

a significant speed-up of up to 5 times over serial

implementation. For a graph of 30K vertices and 90K edges, it

computes SSSP in about 7 milliseconds.

EDGE_BFS (Graph G (V, E, W), Source Vertex S)

Create start node Sa, end node array Ea, and weight

array Wa from G (V, E, W) Create boolean flag F

variable initialised to true and visited array Va

Initialise F and Va[S] to true;

While F is true

Invoke SEARCH (Va, Sa, Ea, F) for each

edge in parallel

end while

SEARCH (Va, Sa, Ea, F)

for each vertex u Sa[i] for edge index i if Va[u]

is true do

for each vertex v Sa[i] for edge index

i if Va[v] is false do

 set Va[v] to true;

 set flag to true

end for

end for

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.18, June 2013

41

Figure 7: Comparison of parallel Edge based Dijkstra’s

algorithm with serial Dijkstra’s algorithm on the basis of

edges on Setup 1.Here, edge_Dij_GPU refers to parallel

edge based implementation of Dijkstra’s algorithm and

Dij_CPU refers to serial Dijkstra’s algorithm.

Figure 8 summarizes comparison of parallel edge based

implementation of Breadth First Search with serial BFS on

NVIDIA GeForce GTS Graphic card. As can be seen from

figure that implementation of BFS over GPU reduces

considerable amount of execution time over CPU. For

1,50,000 edges, it takes just 9 seconds.

For larger graphs, it can show better speed-up but due to the

restriction of memory on the CUDA device and host CPU,

graphs above 2 million vertices cannot be handled using

current GPUs.

Figure 8: Comparison of parallel Edge based BFS with

serial BFS algorithm on varying number of edges on Setup

1. Here, edge_BFS_GPU refers to parallel implementation

of BFS and BFS_CPU refers to serial implementation.

Figure 9 shows comparison of parallel edge based Dijkstra’s

algorithm with corresponding sequential implementation on

NVIDIA Tesla Graphic Card as depicted in Experimental

Setup 2. As can be seen from Figure 9, with the increase of

number of edges in the graph, speed-up also increases.

Initially, the gap between two curves, depicting parallel and

sequential implementations respectively, is less, but with the

increase of graph size, gap widens. For a graph having

23,12,777 edges, parallel implementation is taking just 0.5

seconds while, sequential implementation is taking

approximately 2 seconds.

Figure 9: Comparison of parallel edge based Dijkstra’s

algorithm with serial Dijkstra’s algorithm based on edges

on Setup 2. Here, edge_Dij_GPU refers to edge based

parallel implemenation of Dijkstra’s algorithm and

Dij_CPU refers to sequential implementation.

In Figure 10, comparison of edge based parallel

implementation of Breadth First Search with sequential

Breadth First Search is represented. For a graph having

20,000 edges, parallel implementation is showing a speed-up

of just 1.5 times, but for a graph having 23,12,777 edges, it is

showing a speed-up of up to 11 times. So, for larger graphs, It

can show more speed-up.

Figure 10: Comparison of parallel edge based BFS

algorithm with serial BFS algorithm based on edges on

Setup 2. Here, edge_BFS_GPU refers to edge based

parallel implemenation of BFS algorithm and BFS_CPU

refers to sequential implementation.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.18, June 2013

42

7. CONCLUSION
In this paper, we presented a new method to perform graph

operations such that shortest path computation by Dijkstra’s

algorithm and graph traversal by BFS,using edges. As number

of edges is greater than number of nodes and threads are

mapped to edges rather than nodes, greater degree of

parallelism can be achieved. Achieved results show a

considerable speed-up over corresponding serial

implementation for various graph instances having varying

degrees.

8. REFERENCES

[1] Ashok Jagannathan. Applications of Shortest Path

Algorithms to VLSI Chip Layout Problems. Thesis

Report. University of Illinois. Chicago. 2000.

[2] Karla Vittori, Alexandre C.B. Delbem and Sérgio L.

Pereira. Ant-Based Phylogenetic Reconstruction

(ABPR): A new distance algorithm for phylogenetic

estimation based on ant colony optimization. Genetics

and Molecular Biolog., 31(4), 2008.

[3] Jiyi Zhang, Wen Luo, Linwang Yuan, Weichang Mei.

Shortest path algorithm in GIS network analysis based on

Clifford algebra. Transactions of the IRE Professional

Group. 18(11, 12).

[4] Dijkstra E.W. 1959. A note on two problems in

connexion with graphs. Num. Math. 1, pp. 269–271

[5] Quinn M.J. and Deo N. 1984. Parallel graph algorithms.

ACM Comput. Surv., 16(3), pp. 319-348.

[6] Reghbati A.E. and Corneil D.G. 1978. Parallel

computations in graph theory. SIAM Journal of

Computing, 2(2): pp. 230-237.

[7] Meyer U., Sanders P. 2003. Δ -stepping: a parallelizable

shortest path algorithm. J. of Algorithms 49, pp. 114–

152.

[8] Bader D.A., Madduri K. 2006. Designing multithreaded

algorithms for breadth-first search and st-connectivity on

the Cray MTA-2. ICPP, pp. 523–530.

[9] Bader D.A., Madduri K. 2006. Parallel algorithms for

evaluating centrality indices in real-world networks.

ICPP 2006. Proceedings of the 2006 International

Conference on Parallel Processing, IEEE Computer

Society Press, Los Alamitos , pp. 539–550

[10] Crauser A., Mehlhorn K., Meyer U., and Sanders P.

1998. A Parallelization of Dijkstra's Shortest Path

Algorithm. MFCS'98- LNCS 1450, Lubos Prim et al.

(Eds.), Springer-Verlag Berlin Heidelberg, pp. 722-731.

[11] Jasika N., Alispahic N., Elma A., Ilvana K., Elma L. and

Nosovic N. 2012. Dijkstra's shortest path algorithm serial

and parallel execution performance analysis. MIPRO, pp.

1811-1815.

[12] Martín P. J., Torres R., and Gavilanes A. 2009. CUDA

Solutions for the SSSP Problem. ICCS 2009, Part I,

LNCS 5544, G. Allen et al. (Eds.), Springer-Verlag

Berlin Heidelberg , pp. 904-913.

[13] Luo L. And Wong M., Hwu W. 2010An Effective GPU

Implementation of Breadth-First Search, DAC'10, ACM,

pp. 52-55.

[14] Harish P. and Narayanan P. J. 2007. Accelerating large

graph algorithms on the GPU using CUDA, IEEE High

Performance Computing, pp. 197-208.

[15] Nvidia, CUDA programming guide version 3, at

developer.download.nvidia.com/compute/cuda/1_1/NVI

DIA_CUDA_Programming_Guide.pdf (2010).

[16] Nvidia CUDA: http://www.nvidia.com/cuda/.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wen%20Luo.QT.&searchWithin=p_Author_Ids:37532966100&newsearch=true

