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ABSTRACT 
This  paper describes the prototyping of a BCH (Bose, 

Chaudhuri, and Hocquenghem) code using a Field 

Programmable Gate Array (FPGA) reconfigurable chip. BCH 

code is one of the most important cyclic block codes. 

Designing on FPGA leads to a high calculation rate using 

parallelization (implementation is very fast), and it is easy to 

modify. BCH encoder and decoder have been designed and 

simulated using MATLAB, Xilinx-ISE 10.1 Web PACK and 

implemented in a xc3s700a-4fg484 FPGA. In this 

implementation we used 15 bit-size code word and 5 bits data, 

any 3 bits error in any position of 15 bits has been corrected. 

The results show that the system works quite well.  
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1. INTRODUCTION 

The error control coding is one of the basic requirements of 

digital information and communication systems. It is 

important to ensure reliable transmission of information over 

noisy channels. Error correction coding is the means whereby 

errors which may be introduced into digital data as a result of 

transmission through a communication channel can be 

corrected based upon received data [1,2]. Error correcting 

codes have a wide range of applications in different fields like 

digital data communications, memory system design, and fault 

tolerant computer design among others [3]. 
BCH codes are one of the most powerful random-error 

correcting cyclic codes. BCH codes can be defined by two 

parameters that are code size n and the number of errors to be 

corrected t. BCH codes are being widely used in mobile 

communications, computer networks, satellite 

communication, as well as storage systems such as computer 

memories or the compact disc [1,4]. 

BCH codes are polynomial codes that operate over Galois 

fields (or finite fields). The generator polynomial of this code 

is specified in terms of its roots from the Galois field GF(2𝑚 ). 

The generator polynomial g(x) of the t error-correcting BCH 

code of length 2𝑚 − 1 is the lowest-degree polynomial over 

GF(2) which has 𝛼, 𝛼2 , 𝛼3 , … , 𝛼2𝑡  as its roots [i.e., g(𝛼𝑖 ) = 0 

for 1 ≤ 𝑖 ≤ 2𝑡]. Let 𝜙𝑖(x) be the minimal polynomial of 

𝛼𝑖 .Then g(x) must be the least common multiple 

of  𝜙1 x , 𝜙2 x , …  , 𝜙2𝑡 x , that is, 

g(x) = LCM { 𝜙1 x , 𝜙2 x , …  , 𝜙2𝑡 x }                         (1) 

For any positive integers m (m ≥ 3) and t (t < 2𝑚−1), there 

exists a binary BCH code with parameters of code words 

length  𝑛 = 2𝑚 − 1, number of parity check bits 𝑛 − 𝑘 ≤ 𝑚𝑡, 
and minimum distance ( 𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1) [5]. 

2. BCH CODES 
BCH codes are polynomial codes that capable of correcting 

any combination of t or fewer errors in a block of 𝑛 = 2𝑚 −
1 digits. To know the encoding and decoding of the BCH 

code, the knowledge of finite fields is necessary [5]. 
2.1 BCH Encoder      
An (n,k) binary BCH code encodes k-bits message  into n-bits 

code word. The message vector can be expressed in a 

polynomial form as follows [6]:  

m x = m0 + m1x + m2x2 + ⋯ + mk−1xk−1                 (2)   

The message digits are utilized as a part of the codeword. The 

systematic encoding can be implemented by: 

c x = p(x) + xn−k  m x                                                  (3) 

Where p(X)  is the reminder and can be expressed as  

p X = xn−k  m x  mod g(x)                                            (4) 

It follows from the definition of a t-error-correcting BCH code 

of length 𝑛 = 2𝑚 − 1 that-each code polynomial has 𝛼, 𝛼2 ,

… , 𝛼2𝑡  as roots, c 𝛼𝑖 = 0, for (1 ≤ 𝑖 ≤ 2𝑡) [7]. 

 

2.2 BCH Decoder 
The biggest advantage of BCH codes is the existence of 

efficient decoding methods due to the special algebraic 

structure introduced in the codes [8]. 

 

Suppose that a code word c x = c0 + c1x + c2x2 + ⋯ +
cn−1xn−1 is transmitted and the transmission errors result in 

the following received vector  

r x =  c x + e(x)                                                           (5) 

where e(x) is the error pattern [9].    

Suppose that the error pattern e(x) has v errors at locations 

Xj1 , Xj2 , … , Xjv , that is,  

e x = xj1 + xj2 +  … + xjv                                              (6)  

Where 0 ≤ j1 < j2 < ⋯ < jv < 𝑛. Since v αi = 0, then  

r αi = e αi  [7]. 

The algebraic decoding BCH codes has the following general 

steps [2]: 

 

1- Computation of the syndrome. 

2- Determination of an error location polynomial σ(x), 

whose roots provide an indication of where the error are. 

There are several different ways of finding the error 
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polynomial such as Peterson’s algorithm, and the 

Berlekamp-Massey algorithm.  

3- Finding the roots of the error locator polynomial. This is 

usually done using the Chien search, which is an 

exhaustive search over all the elements in the field. 

The first step of decoding a code is to compute the 2t 

syndrome components from the received vector r(x). These 

syndrome components may be obtained by substituting the 

field elements 𝛼, 𝛼2 , … , 𝛼2𝑡  into the received polynomial 

r(x). 

𝑆𝑖 = 𝑟 𝛼𝑖 = 𝑒(𝛼𝑖)                                                          (7)  

From equation (7) we see that the syndrome S depends on the 

error pattern e(x) only. 

To determine the error-location polynomial σ(x), we use 

Peterson’s algorithm or Berlekamp algorithm. For small 

number of errors, Peterson’s algorithm is more efficient than 

Berlekamp algorithm [2,5]. 

The error location polynomial σ(x) can be :  

𝜎 x = 𝜎0 + 𝜎1x + 𝜎2x2 + ⋯ + 𝜎𝑣x𝑣                              (8)  

Where 𝑣 ≤ 𝑡. Which is equivalent to :  

𝜎 x = (1 + 𝛽1x)(1 + 𝛽2x) … (1 + 𝛽𝑣x)                         (9)   

The error location polynomial coefficients 𝜎1 , 𝜎2 , … , 𝜎𝑣 are 

obtained for triple error correction  

𝜎1 = 𝑆1 

𝜎2 =
𝑆1

2𝑆3+𝑆5

𝑆1
3+𝑆3

 

𝜎3 =  𝑆1
3 + 𝑆3 + 𝑆1𝜎2                                                   (10)                              

The last step in decoding a BCH code is to find the error-

location numbers that are the reciprocals of the roots of σ(x). 

The roots of σ (x) can be found simply by substituting 

1, 𝛼, 𝛼2 , … , 𝛼 𝑛−1  into σ (x). Since 𝛼𝑛 = 1, 𝛼−𝑙 = 𝛼𝑛−𝑙 . 

Therefore if 𝛼𝑙  is a root of σ(X),  𝛼𝑛−𝑙  is an error-location 

number and the received digit  𝑟𝑛−1 is an erroneous digit. The 

decoding of the code is completed by adding (modulo-2) e(x) 

to the received vector r(x) [8,10].The decoding steps are 

shown in the following block diagram in fig.(1) 

  

 

 

 

 

 

Fig 1: Block diagram for Decoding of BCH code 

3. FIELD PROGRAMMABLE GATE 

ARRAY (FPGA) 

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated 

silicon devices that can be electrically programmed to become 

almost any kind of digital circuit or system [11].  

FPGAs provide a number of advantages over fixed-function 

Application Specific Integrated Circuit (ASIC) technologies 

such as standard cells. ASICs are designed for specific 

application , and once manufactured, they cannot be modified, 

while FPGAs are configured in a relatively short amount of 

time, and often be reconfigured if a mistake is made [11,12].  

An FPGA consists of an array of uncommitted configurable 

logic blocks (CLBs), programmable interconnects and Input 

Output blocks (IOBs). The basic architecture of an FPGA is 

shown in Fig.(2). FPGA architecture is dominated by 

programmable interconnects, and the configurable logic 

blocks which are relatively simple. This feature makes these 

devices far more flexible in terms of the range of designs that 

can be implemented with these devices [13].  

FPGA can be configured anytime is needed, having a 

structure based on RAM technology that allowing the 

interconnectivity of the components to be changed as 

required. On the other hand, they allow parallel structures 

implementation, with response time less than a system with 

microprocessor [14]. 

 

Fig 2: FPGA architecture 

4. PROPOSED BCH CODEC DESIGN 
The system proposed in this paper is based on the use of 

reconfigurable FPGA circuit for hardware implementation of  

encoder and decoder. Fig.(3) shows that one FPGA is 

implemented as encoder and the other as decoder. Each FPGA 

is connected with a computer in order to download the 

software of each system into an FPGA chip. 

     

 

                                                     

 

 

 

Fig 3: Communication system with FPGA. 

 

4.1 Encoder Design 
The encoding circuit calculates the parity bits using the LFSR 

(Linear Feedback Shift Register). The feedback connections 

of the LFSR are formed in a way that depends on the 
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generator polynomial of the code. The generator polynomial 

of the (15,5) BCH code is: 

g 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥4 + 𝑥5 + 𝑥8 + 𝑥10 . 

So the feedback connections of the LFSR are formed as 

shown in fig.(4). 

The message digits are utilized as a part of the codeword. We 

shift the message digits into the rightmost k stages of a 

codeword register, and then appending the parity digits by 

placing them in the leftmost n-k stages. The input data of the 

encoding circuit is 5 bits and the output is a serial of 15 bits. 

 

 

 

 
 

 

 

 

 

 

 

 

Fig 4: Encoding circuit for (15,5) BCH code. 

 

Based on fig.(4), the proposed BCH encoder has been 

implemented on FPGA target device as shown in fig.(5).  

 

Fig 5: BCH encoding logic circuit implemented on FPGA. 

For  the BCH encoding circuit, a control signal is needed to 

allow the data signal to enter the encoding circuit and pass to 

the output at the same time. Also control signal gives a delay 

in order to make the encoding circuit able to prepare the parity 

bits. As a result the control signal is necessary to control the 

operation of switch 1 and switch 2 shown in fig.(4).  

 

4.2 Decoder Design 
The decoding process includes three steps as described in 

section 2. We have implemented the  syndrome computation 

circuit for (15,5) BCH code. When the received word has 

entered the decoder, six syndrome components 

(s1 , s2, s3 ,  s4,  s5, and s6 ) are computed by substituting the 

field elements 𝛼, 𝛼2 , … , 𝛼6  into the received polynomial r(x). 

All the computations depend on Galois fields  GF(24). 
Fig.(6a), (6b), and (6c) show syndromes computation circuits. 

 

Fig 6a: Syndrome components (𝒔𝟏, 𝒔𝟐 𝐚𝐧𝐝  𝒔𝟒) logic circuit 

implemented on FPGA. 

 

Fig 6b: Syndrome component (𝒔𝟑 , 𝒔𝟔) logic circuit 

implemented on FPGA. 
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Fig 6c: Syndrome component (𝒔𝟓) logic circuit 

implemented on FPGA. 

When all the syndrome components are zero, this means that 

there is no error introduced for the transmitted code word 

during the transmission through a communication channel and 

hence the received data is the same as the transmitted data. 

A BCH code is a polynomial code that operates over Galois 

fields (or finite field) so that the computation processes of a 

BCH error correcting code such as addition, subtraction, 

multiplication, and division are designed to operate over finite 

fields.  

The error location polynomial coefficients of (15,5) BCH 

code are computed by using equation (10). The multiplication 

circuit which  multiplies  two elements over Galois fields 

GF(2m ) for  m = 4 is needed in computations of error 

location polynomial coefficients. This circuit is shown in 

fig.(7) below. The result of the multiplication is stored in shift 

registers. 

Fig 7: Circuit for multiplying two elements of 𝐆𝐅(𝟐𝟒) 

implemented on FPGA.        

In the computation process of the decoder, we need to 

determine the inverse of an element in the field. The circuit 

that compute the inverse of any element over Galois fields 

GF(2m ) for  m = 4 is shown in fig.(8). 

 
Fig 8: Circuit for computing the inverse of any element 

over 𝐆𝐅(𝟐𝟒) implemented on FPGA 

When the error location polynomial σ(x) is computed, then the 

error-location numbers represent the reciprocals of the roots 

of 

σ(x). The roots of σ(x) can be found simply by substituting 

1, 𝛼, 𝛼2 , … , 𝛼 𝑛−1  into σ (x). Then the error-location 

numbers are computed. This is called the Chien’s search. 

After that we add (modulo-2) the detected error to the 

received word to get the corrected code word. The Chien’s 

search circuit implemented on FPGA is shown in fig.(9). 
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Fig 9: Chien’s searching circuit for (15,5) BCH code implemented on FPGA 

The complete decoder circuit which includes syndromes 

computation, error location polynomial coefficients and the 

Chien’s search is shown in fig.(10) below. The decoder 

system also contains processing circuits such as shifting and 

enabling circuits which are needed to manage and control the 

operation of the decoder. 

 

 
Fig 10: Complete decoder circuit for (15,5) BCH code implemented on FPGA. 

At this point, it would be appropriate to map the decoding 

procedure in the following flowchart 
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Fig 11: Flowchart for the decoding algorithm 

5. RESULTS AND DISCUSSION 
The proposed BCH encoder and decoder have been 

implemented on Spartan 3a-xc3s700a FPGA. Fig.(12) shows 

the experimental system of the block diagram shown in 

fig.(3). One FPGA is used as encoder and the other as 

decoder, and a wire channel is used between the two FPGAs. 

Each FPGA is connected with a computer in order to 

download the software of each system into an FPGA chip.  

 

Fig 12: Picture of experimental system 

The system is implemented in 50 MHZ clock frequency and 

the simulation results show that the circuits work quite well. 

In order to make the results of the system appear purely in the 

oscilloscope. We used 1.5625 MHZ clock frequency such as 

in [10]. So (1.5625 MHZ) clock frequency is used in our 

simulation and hardware implementation. 

The proposed BCH encoder and decoder have been designed 

and simulated using MATLAB and Xilinx-ISE 10.1 Web 

PACK. Fig.(13a) shows the simulation results of BCH 

encoder using Xilinx-ISE 10.1 simulator and illustrates the 

date word (10011) which entered to the FPGA encoder to be 

encoded. After adding the parity bits to the data, the codeword 

are performed to be (100110111000010) as shown in the 

figure. 

The simulation results of the BCH decoder are shown in 

fig.(13b). This figure shows the received word at the input of 

the decoder. When we make a comparison between the 

received word and the codeword, it appears that 3 bits error 

have been introduced into the codeword. 

 

 

 

 

 

Fig 13a: Simulation results of BCH encoder
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Fig 13b: Simulation results of BCH decoder 

The values of the error location polynomial coefficients 

𝜎1, 𝜎2 , and 𝜎3 are also computed to be 𝜎1 = 1001, 𝜎2 =
0101, and 𝜎3 = 1100. The error that may be introduced 

into the codeword  as a result of transmission through a 

communication channel is determined from the Chien’s 

search circuit. By adding (modulo-2) the detected error 

to the received vector, the codeword can be recovered. 

The experimental results of BCH encoder and decoder 

are shown in fig.(14). The results of encoder decoder on 

the FPGA are displayed on oscilloscope. 

 

  

Fig 14a: Data word (5 bits) and codeword(15 bits). 

Voltage: 5V/DIV, Time: 1µsec/DIV 

The upper signal is the data word (5 bits) while the lower 

signal is the code word ( 15 bits). The codeword is 

transmitted through the channel. Fig (14.b) shows the 

transmitted codeword and the error presented by the 

channel. 

 

Fig 14b: Codeword and error presented by the 

channel. 

Voltage: 5V/DIV, Time: 1µsec/DIV 

 

 

Fig 14c: Codeword and received word. 

Voltage: 5V/DIV, Time: 1µsec/DIV 

 

Fig 14d:  Received word and the error detected by the 

decoder. 

Voltage: 5V/DIV, Time: 1µsec/DIV 

 

Fig 14e: Codeword and the corrected word. 

Voltage: 5V/DIV, Time: 1µsec/DIV 
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After the hardware synthesis of the encoder and the 

decoder, the following device utilization summary was 

obtained: 

Table 1. Encoder and decoder area summary. 

Encoder  Decoder  

Number of 

slices 
16 out of 

5888 
1

% 
147 out of 

5888 

2

% 
Number of 

slices flip 

flops 

26 out of 

11776 

1

% 
235 out of 

11776 
1

% 

Number of 4 

input LUTs 
22 out of 

11776 
1

% 
154 out of 

11776 
1

% 
Number of 

bonded IOBs 
5 out of 

372 
1

% 
28 out of 

372 
7

% 
Number of 

BUFGMUXs 

1 out of 

24 
4

% 
1 out of 

24 

4

% 
 

Table (1) shown above illustrates that the chip area 
occupied in a  xc3s700a-4fg484 FPGA is very small. 

Therefore our systems can be integrated on one FPGA 

chip with others modules. 

Also implementation of the system with FPGA has less 

computation time as compared with software solution. 

Table (2) shows  a comparison between the computation 

time of the hardware system and the estimated response 

time, when the detection and correction processes run on 

a computer with a processor which works 2.4 GHZ clock 

frequency. 

 

Table 2. Comparison between hardware and software 

processing at encoder and decoder for (15,5) BCH 

code 

𝐓𝐡𝐚𝐫𝐝𝐰𝐚𝐫𝐞 𝐓𝐬𝐨𝐟𝐭𝐰𝐚𝐫𝐞  n k 

Encoder  9.6106 µsec 1245.1 µsec 15 5 

Decoder  40.22 µsec 13678.2 µsec 
 

6. CONCLUSION  
The reliable transmission of information over noisy 

channels is one of the basic requirements of digital 

information and communication systems. Because of this 

requirement, modern communication systems rely 

heavily on error control coding. 

In this work we have presented the prototyping of a BCH 

encoder and decoder using a Field Programmable Gate 

Array (FPGA). We used 15 bit-size codeword, any 3 bits 

error in any of 15 bits has been corrected. 

The proposed BCH encoder and decoder have been 

designed and simulated using MATLAB and Xilinx-ISE 

10.1 Web PACK and implemented in a xc3s700a-4fg484 

FPGA and the results show that  the system works quite 

well. Implementation of the system with FPGA has less 

computation time as compared with software solution. 
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