
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

40

Implementation of Greedy Sequential Unique Path

File Carving Algorithm for

 Fragmented Bitmap Image Files

K. Srinivas
Sree Chaitanya College of Engg.

Karimnagar,Andhra Pradesh, India

 T. Venugopal,Ph.D
JNTUH College of Engg Nachupally,
Karimnagar, Andhra Pradesh, India

ABSTRACT

Digital Forensic Analyst encounters a mixed file fragments in

the absence of File Table information i.e., files‟ metadata.

File Carving is a process of reconstructing files from mixed

file fragments without using files‟ metadata. File Carving is

an interesting and challenging problem in digital forensics and

Data Recovery. Recently there have been number of research

papers in the area of File Carving. In this paper authors

describe File Carving and present its Literature Survey. The

implementation of Greedy Sequential Unique Path File

Carving algorithm for 4-bit bitmap files, with the help of

function prototypes using C language and brief explanation of

these prototypes is explained. The experimental results are

also shown. The experimental results show that the files can

be reconstructed from their fragments without knowing files‟

metadata. However there are limitations of these methods as

mentioned in section 5.

General Terms

Greedy Algorithms,, File Carving, File Fragmentation, Digital

Forensics, Data Recovery, Disk Clusters, Graph, Paths in a

Graph.

Keywords

GSUP4Bit Algorithm, tail bmp, head bmp, Data of Image

File, The Challenge File, Spurious Disk Cluster, Successor

Cluster.

1. INTRODUCTION
Day by day usage of digital devices like mobiles, computers

etc. are increasing enormously. Though their use for

betterment of the society is significant, their use for anti social

activities is alarming. Hence development and upgrade of

technology continuously to counter the tactical use of the

digital devices by anti-social elements are needed.

When investigating agencies acquire any digital device

suspecting to have been used by anti-social elements, they are

sent to forensic experts for critical examination. When a

forensic expert receives devices such as mobiles and hard-

disks, then conventional methods of finding information from

such devices is not sufficient. For example, a terrorist had

created image files containing the sketches of their plans to

execute terrorist activities and deleted all such files or

formatted the disk on suspecting the raid. When files are

deleted or disk is formatted, Operating System updates file

tables to reflect the new state of the disk but do not wipeout

the data clusters. Conventional methods do not show such

files though the data of such files is not wiped out in data

clusters. Therefore conventional methods cannot show any

clue for the law protectors though present on the disk.

Files are fragmented on disk for the following reasons.

1. File extension

2. Non-availability of contiguous space for new files.

3. File storage strategy of Operating System.

Consider the files named A, B and C on disk in contiguous

area of the disk. After creating the three files, if file A is

extended, then file A on the disk is fragmented.

The required amount of free space for a new file may not be

available contiguously on disk and the total fragmented free

space is greater than the required amount of free space.

UNIX Operating System fragments a file after allocating

certain number of contiguous clusters because the next

contiguous cluster is used for storing cluster numbers of

subsequent allocated clusters.

In the absence of File Table information it is difficult to

reassemble fragmented files. This problem is encountered by

a forensic expert while examining a disk. The problem is also

encountered by data recovery experts.

The task of reassembling fragmented files without using file

table information is called File Carving.

Recently researchers have started developing technology for

File Carving. Literature survey in the area of File Carving has

been presented and details of implementation of one of the

algorithms i.e., Greedy Sequential Unique Path Algorithm

have been presented

This paper is organized as follows. There are seven sections.

Literature Survey on File Carving is presented in section 2.

The internal structure of 4-bit bitmap file, an input file for the

File Carving problem, identification and elimination of

irrelevant clusters and description of GSUP4BIT algorithm

are presented in section 4. Experimental setup for the

implementation of GSUP4BIT algorithm and results are

presented in section 5. Finally, in section 5, the limitations of

GSUP4BIT algorithm and a common problem noticed in all

the algorithms discussed in [1], [2], [3] and [4] have been

presented.

2. LITERATURE SURVEY ON FILE

CARVING

Researchers have developed recently and are still developing

new technology for addressing various problems of File

Carving.

Automatic reassembly of fragmented document files is

described in [1]. The logic of finding a next cluster C2 for a

given cluster C1 is as follows. A word that spans the cluster

C1 and C2 is found in a dictionary corresponding to the data

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

41

present in the clusters then C2 is considered the next cluster

for the current cluster C1. This approach is not suitable for

reassembling variety of document fragmented files and

therefore this problem is addressed by context based statistical

models [1].

Automatic reassembly of fragmented image files is described

in [2]. To determine correct reordering of fragments of a file,

a smoothness property of an image is utilized. With this

approach, a fragment Aj would be considered to be a likely

candidate fragment to follow Ai if the ending „width‟ numbers

of pixels of Ai are „smooth enough‟ with starting „width‟

number of pixels of Aj. The details finding the parameters

„width‟ and „smooth enough‟ are described in the next section.

A hard disk contains millions of clusters. For finding Aj that

follows Ai in original document, every other cluster than Ai

needs to be examined. This approach needs a support of

fastening the process of finding a successor fragment of a

given fragment. Fast object validation concepts are

introduced for quickly rejecting the fragments that might not

be the candidate fragments for the fragment Ai and retain only

less number of fragments as candidates for Aj as the successor

fragment in original file [3].

File carving is refined to consist of four steps [4]. This

refinement is due to the fact, as found by researchers, that

fragmentation is not by cluster by cluster but each fragment

consists of a set of clusters and number of fragments is

normally not greater than 4. Researchers have also found that

many files are bi-fragmented i.e., number of fragments in a

file is two. The four steps are 1) To identify beginning cluster

of a file 2) To test sequentially each cluster and find

fragmentation point or end of the file 3) If fragmentation point

is detected, find starting point of next fragment 4) Continue

with step 2 from starting point of next fragment. For

identifying fragmentation point two tests have been projected.

They are Syntactical tests and statistical tests.

Table 1. Comparison of Existing Techniques

Existing

Technique

File carving

task
Remarks

Dictionary based

File Carving and

File Carving

using context

based statistical

models[1]

File Carving

of Document

Files

Prohibitively

expensive Time and

space complexities

and file type

specific file carving

Greedy

sequential/Parallel

Unique/Nonuniqu

e Path

Algorithms[2]

24-bit

Bitmap

Image File

carving

Prohibitively

expensive Time and

space complexity

issues and file type

specific file carving

Fragmentation

point detection

techniques[3]

To speed up

File Carving

using results

of

Garfinkel‟s

research

Time and space

complexity issues

solved to some

extent but the

techniques are file

type specific.

The Table 1 gives the comparative study of the existing
techniques of file carving and their limitations.

3. REPRESENTATION OF IMAGE FILE

CARVING PROBLEM WITH A

GRAPH

A disk D consists of a sequence of clusters data. Each cluster

can be represented as one node of a graph. An edge

connecting the nodes I and J has a weight WI, J that represents

the closeness of the two clusters represented by the two nodes.

So the disk is represented by a complete graph. Each image

file is represented by one path in the graph. The starting node

of each path is one separate node corresponding to a header of

each image file. Starting with a node representing a header of

a bitmap image file, each successor node is found by applying

greedy strategy. For g given node a successor node is an

adjacent node with minimum weight. As no cluster can belong

to more than one image file every path is a unique path. The

paths are found sequentially i.e. one after the other. That is

images are reconstructed one after the other. Therefore file

carving problem (i.e. images reconstruction without using file

table information) is a problem of finding unique paths P1, P2,

... , PN, one after the other, in a graph G representing the disk

D. Putting all this together the name, “Greedy Sequential

Unique Path” is given to this algorithm by researchers Pal et

al [2].

4. IMPLEMENTATION OF FILE

CARVING ALGORITHM

It is essential to know the details of image storage (explained

below) before the implementation of File Carving. An

example image and its attributes are shown below.

File Format: BMP
Image Size: 32 X 32 pixels

File Size: 582 bytes
No. of Colors used in the image: 4

No. of bits used per pixel: 4
Offset to the Bit map bits: 70

Colors

Used
Red Green Blue

 0 0 0

 128 128 0

 128 128 128

 192 192 192

Fig. 1 A Carved Stone Image File and its Attributes

The image file data for the above example image is shown

and explained in the next section.

Table 2. The data of Image File of Fig.1

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

42

4.1 The Bmp Image File Data

The File Data for an image shown in Figure 1 is shown in

Table 2. It includes 54 bytes header, Color table and color of

each pixel. The data is shown in hex. Offsets are shown in

decimal. The hex values at offsets 1 and 2 are 42 and 4d

representing characters B and M. This information is used to

identify disk clusters containing image header.

An assumption that the cluster size is 512 bytes is made. The

results shown in this paper are based on this assumption.

Data at byte offsets from 1 to 14 contain bitmap file header.

This includes file type, file size, reserved field 1, reserved

field 2 and offset of image data with their values in hex 424d,

246, 0, 0 and 46 respectively. This data indicates that it is a

file of type bitmap of size 582 bytes. And color of each pixel

is stored in this file starting at byte offset 70. This portion of

the data is shown with blue background.

Byte offset from 14 to 54 contain bitmap information header.

This includes width of the image (byte offset from 18-21),

height of the image (byte offset from 22-25), number of bits

used to represent each pixel (byte offset from 28 to 29) and

number of colors used (byte offset from 46 to 49) with their

values in (hex, decimal) are (20,32), (20,32), (4,4) and (4,4)

respectively.
Byte offset from 14 to 54 contain color table defining four

colors used in the image with (R,G,B) components for each

color equals to (0,0,0), (128,128,0), (128,128,128) and

(192,192,192) respectively. For storing each pixel, index of

the color in the color table, is stored in the file. That is why;

there is no nibble value greater than 3 from byte offset 70

onwards.

This is also the first cluster of an image. The bytes from

offset 70 to 511 represent the color of pixels in the first cluster

of the image with an assumption that the cluster size is 512

bytes. The remaining pixels colors (i.e. indexes of the

corresponding colors in color table) are stored in another

cluster. And these two clusters need not be in sequence on the

disk.

4.2 The Challenge File

The Challenge File is used to simulate a disk. In this

Challenge file, mixed fragments of files have been copied for

simulating a disk. Each fragment is of fixed size because

cluster size on disk is fixed. The size of a fragment is fixed to

a sector size i.e.512 bytes for simplicity. So a Challenge file

consists of fragments of number of files in mixed order.

4.3 Discarding Spurious Disk Clusters

 The example image (Fig 1) is a 4-color image and 4 bits

represent each pixel. That is, each pixel is represented by one

of the 4 indices (0/1/2/3) into the colour table. If a nibble

value in any image is greater than 3, it is not a valid index. As

shown in the table-1, no index is greater than 3. Disk clusters

having a nibble value greater than 3 cannot be part of this

image. Therefore all disk clusters having a nibble value

greater than 4 in it, can be discarded while processing any 4-

bit, 4 colour image. The advantage of discarding spurious

disk clusters with this method is not possible in 16-bit, 24-bit

and 32-bit bit-map images reconstruction.

4.4 Physical Storage of the Image File’s

Data on the Disk

Mostly the file data is fragmented on the disk for number of

reasons explained in section 1. When the example image file

is stored on the disk, how it might get stored on it in clusters I

and J, is shown in the following figure.

1 2 3 ... I ... J ... N

DISK

 Cluster I Cluster J

Fig. 2 File fragmentation on Disk

The above figure shows that the disk has N clusters numbered

as 1, 2, 3, ...,, N. The image is stored on the disk not

contiguously but fragmented at cluster I and cluster J.

Offset Data Bytes in hex

000-007 42 4d 46 02 00 00 00 00

008-015 00 00 46 00 00 00 28 00

016-023 00 00 20 00 00 00 20 00

024-031 00 00 01 00 04 00 00 00

032-039 00 00 00 02 04 00 00 00

040-047 00 00 00 00 00 00 04 00

048-055 00 00 04 00 00 00 00 00

056-063 00 00 80 80 00 00 80 80

064-071 80 00 C0 C0 C0 00 12 12

072-079 12 12 12 12 12 12 12 12

080-087 12 12 12 12 12 12 00 00

088-095 00 01 20 00 00 00 00 00

096-103 00 00 00 00 00 00 12 12

104-111 12 02 13 12 12 12 12 12

. …

. …

. …

552-559 33 33 33 33 33 33 33 33

560-567 33 33 33 33 33 21 21 21

568-575 21 21 21 21 21 21 21 21

576-581 21 21 21 21 21 21

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

43

4.5 Finding Successor Cluster

The colour information of pixels of an image is stored on

multiple clusters on the disk, if the image cannot fit into one

cluster. Given the first cluster of the image, the logic of

finding the next cluster is described from step five to step nine

of the algorithm described in next section. This logic is also

the basic principle of finding the next cluster, given any one

cluster of the image. The logic is explained for the bmp

image of size 32 x 32 pixels, 4-bit and 4color. This image is

stored on 2 clusters when stored on Challenge, because the

image file is 582 bytes and the cluster size is 512 bytes. Tail

means the last 16 bytes on the given cluster. Head means the

first 16 bytes on the next cluster. 16 bytes Tail (or 16 bytes

Head) stores colour information of 32 pixels. Head and Tail

do not differ much in colour in any natural image. By using

the Tail and Head, the border comparison of two pieces of a

paper containing any natural image can be initiated. The

corresponding colours along the borders of the two pieces are

almost the same. Humans reassemble torn pieces of a paper

containing an image by comparing the borders of two pieces.

When the borders match, the two pieces are reassembled.

5. GSUP4BIT ALGORITHM

GSUP4BIT algorithm is a Greedy Sequential Unique Path

algorithm for reconstructing 4-bit bitmap file fragments.

5.1 Basics Of Gsup4bit

The word „Greedy‟ is used because this algorithm is a greedy

algorithm. In general a greedy algorithm consists of n steps

with each step selecting an item that minimizes the cost or

maximizes the profit. In this algorithm it selects a successor

cluster in each step that minimizes the difference of colours of

corresponding clusters tail and head.

The word „Sequential‟ is used because this algorithm

reconstructs multiple images one after the other „parallel‟

algorithm constructs multiple images concurrently.

The word „Unique‟ is used because once a cluster is assigned

to a particular image file during reconstruction; it will not be

considered and assigned for any other image file because the

same cluster can not belong to multiple images files.

The word „Path‟ is used because this algorithm represents the

problem of reconstructing images as a problem of finding a

path in a graph. The nodes of the graph are clusters and edge

cost of an edge (I,J) represent the total of differences of

corresponding colours along the borders i.e., head and tail.

For a cluster I the successor cluster is a cluster J that has

minimum edge cost as compared to any other cluster.

This algorithm initially identifies header clusters from the

challenge file. Let H be the set of header clusters identified

from S, the set of clusters in the challenge file. By decoding

header clusters, the attributes of bitmap files are obtained. It

reconstructs the image files present in the challenge file as

follows.

For each header cluster one image file is reconstructed.

Starting with the header cluster the subsequent clusters in the

original image are found as follows.

Initially current cluster i is set to header cluster and used

cluster set C is also set to header cluster i.e., C= { I }. The

next cluster in the original image for the current cluster is

obtained by comparing tail of current cluster with the head of

the cluster j where j є S – E – C and the cluster j is one which

satisfies smoothness property with cluster i. Then j is added

to the used cluster set C i.e., C = C U { j }. Then the current

cluster is set to j i.e. I = j. Following the above logic, clusters

to the set C are added until the image file is reconstructed..

5.2 Algorithmic Steps Of Gsup4bit

The details of this algorithm are explained with the help of

following steps.

i. Obtain the Header Clusters; H1, H2, … , Hn. For

each permutation of the Header Clusters list,

perform steps ii and iii.

ii. Initialize Used Clusters array to contain the cluster

numbers of Header Clusters. Initialize used cluster

count to n.

iii. For each Header Cluster, perform step 4 to 6.

iv. Obtain the following information about the image

available on the disk. Output the Header Cluster No.

a. Size of the image file.
b. Total number of clusters of the image.
c. Width (w) of the image.
d. Color Table.
e. Number of colors used.
f. Maximum index.

v. Obtain Border bytes on the header cluster,

representing w number of pixels of the image into

„tailbmp‟.

vi. For each Data Cluster on the disk, perform the steps

vii to xii.

vii. Test if the current data cluster is in Used Clusters

list. If yes, skip this cluster and consider the next

Data Cluster.

viii. Obtain the initial border bytes representing „w‟

indices of colors of the pixels into a „headbmp‟.

ix. If any index is greater than Maximum Index, skip

this Data Cluster and proceed with the next data

cluster.

x. Calculate Candidate weight of the Data Cluster and

store it in „weights‟ array.

xi. Next Cluster is the one with minimum Candidate

Weight. Output the Data Cluster No as the

successor.

xii. Set the Current Cluster to Next Cluster.

xiii. Construct the image file by copying all the bytes

from the output clusters in the same order output by

the algorithm.

The above algorithm has been coded using C language and

tested with the Challenge file that contains mixed file

fragments. The experimental setup and the results are

explained in the next section.

2. EXPERIMENTAL SETUP AND

RESULTS

For implementing the GSUP4BIT algorithm, function

prototypes are designed and implemented using C language.

In this section, results of the experiments are shown.

5.3 FUNCTION PROTOTYPES

The following is the list of prototypes of functions developed

and tested for the implementation of Greedy Sequential

Unique Path Algorithm up to 4bit Bitmap Images.

i. int readcl(int clno , char buf[]) ;

ii. int IsHeader(int clno,char *cldata,int showattr=0) ;

iii. int getheaders(int from,int to,int headers[]) ;

iv. void getattributes(char buf[],bmpfh *fh,bmpih *ih) ;

v. int compare(color c1,color c2) ;

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

44

vi. unsigned long findweight(int nbytes,uc h[],uc t[],int

max,color ct[]) ;

vii. int min(unsigned long int x[],int n) ;

viii. int in(int used[],int usedcnt,int cur) ;

where uc,bmpfh,bmpih and color are

 typedef unsigned char uc ;

typedef struct bmpfh
 {

 char imgtype[2] ;
 long int filesize ;
 int reserved1;
 int reserved2 ;
 long int bmpoffset ;

 } ;

typedef struct bmpih
 {

 unsigned long int size ;
 unsigned long int imgwidth ;
 unsigned long int imgheight ;
 int planes ;
 int bitsperpixel ;

 unsigned long compression ;
 unsigned long biSizeImage ;
 unsigned long bixplspermeter;
 unsigned long biyplspermeter;
 unsigned long usedcolorcount;
 unsigned long biclrimportant;

 } ;
 typedef struct color
 {

 unsigned char blue ;
 unsigned char green ;
 unsigned char red ;
 unsigned char res ;

 } ;
The function readcl() reads the data of specified cluster into

the specified buffer from the Challenge File. On error, it

returns –1. If the cluster data contains a Bit map Header, it

returns, –clno, otherwise, it returns clno. This function

identifies Bitmap header by testing if the data starts with the

bytes (in hex) 42 and 4d.

The function IsHeader() is to test whether a specified cluster

is a header cluster. If required, the function can also display

the attributes of the image like width, height, file size etc. It

returns TRUE, if the cluster is a header, FALSE otherwise.

The function getheaders() is to gather header clusters numbers

in the specified range of clusters. It returns count of header

clusters and header cluster numbers it has encountered during

scanning the specified range of clusters.

The function getattributes() is to return the struct variable

pertaining to the header of a Bit Map Image, by taking the

header cluster data as an input. That is, it decodes the header

and obtains image attributes.

The function compare() is to return the difference between the

two colours specified. It is used to find how close the two

pixels are in colour. The closeness of the pixels is returned as

(abs(c1.red-c2.red)+abs(c1.green-c2.green)+abs(c1.blue-

c2.blue))/3. Lower the value returned by the above

expression for the two pixels those are closer in color. It is

clear that if the two pixels are having the same color then the

function returns zero.

The function findweight() calculates the candidate weight.

The candidate weight is calculated by comparing „width‟

number of last pixels of Ith clusters with the same number of

initial pixels of cluster Jj. The candidate weight is a measure

to indicate how close, in terms of an image, the cluster I and

cluster Jj are. Lesser the value of candidate weight between

clusters I and j more closely the clusters I and J are. A cluster

is represented by a node of a graph where as the weight is

represented as an edge weight of and edge comprising of

nodes I and J corresponding to two clusters I and J. That is a

disk is represented in the form of a graph where in each node

represents a cluster and each edge represents candidate

weights between the two clusters.

 The function min() is to find and return a cluster

whose candidate weight is minimum. That is, it returns the

cluster closest to the given cluster. That is, it finds adjacent

cluster J for the specified cluster I in original file.

 The function in() is to find whether a given cluster

is already assigned to any image; If yes, it returns 1, else 0.

This function is used to avoid assigning the same cluster to

more than one image. Thus unique list of clusters for each

image is generated.

6.2 IMPLEMENTATION OF GSUP4BIT

ALGORITHM

Using the implementations of function prototypes described in

section 6.1, a greedy algorithm is implemented in a C function

called GSUP4Bit(). This function finds N paths P1, P2, ... , PN

sequentially. Each path represents one image file. Starting

with a node corresponding to a header cluster each successive

node corresponding adjacent clusters in a original file is found

and the corresponding cluster data is read from the Challenge

file and written to a file. The reconstructed files are named as

file1.bmp, file2.bmp, ... , fileN.bmp. The input to this file

comes from the Challenge file which is constructed by writing

the data of the image files shown in Fig. 2 below.

Fig. 2 Original Images

The attributes of the above images are shown in Table 3

shown below.

Table 3. Attributes of Tested Images

The total number of clusters in the Challenge file is therefore

8. In addition to these clusters, a data from other clusters is

also written to the Challenge file making the total number of

clusters equals to 50. The other clusters data is written to the

Challenge file just to ascertain the finding of the correct

ordering of the clusters by the algorithm in the presence of

irrelevant data in it because this is the practical situation on a

disk.

Original Images Reconstructed
Image

Sequence
generated

Bubbles.bmp file1.bmp 1,2,3,4& 5

Circles.bmp file2.bmp 6

Houndstooth.bmp file3.bmp 7 & 8

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

45

6.3 EXPERIMENTAL RESULTS

Keeping the limit to 50th cluster,(#define LIMIT 50) the

program found the bit map image headers at cluster numbers

0, 5 and 6. It then reconstructed three images file1.bmp,

file2.bmp and file3.bmp in the current working directory.

That is it found the correct sequence of clusters for the first

image as shown in Table 4.

Table 4. Generated Cluster Numbers Sequence

When the above files named file1.bmp, file2.bmp and

file3.bmp were opened and viewed in Windows Paint

Application they resembled the original images shown in Fig.

2.

6.4 LIMITATIONS

The algorithm GSUP4BIT will fail when image data at cluster

boundaries are such that they do not satisfy smoothness

property of images.

Given one cluster of a particular file, many clusters in a

Challenge file i.e. disk need to be searched, for finding its

next cluster in original file.

This algorithm as it is cannot be used for other image file

types and other sub types like 24-bit bitmap image files. For

24-bit bitmap files minor changes in the C source code to be

made in a function called findweight(). However, for dealing

with other file types larger modifications in the source code to

be made. Data recovery experts and digital forensic experts

may also want to recover non-image files and this source code

needs to be refurbished entirely.

6.5 CONCLUSION

Digital forensic analysts and data recovery experts encounter

mixed file fragments and have no clue about correct ordering

of the clusters to make up files. To solve this challenging

problem the existing forensic tools like scalpel and foremost

fail because these tools assume that files are not fragmented

on the disk. Therefore, researchers have started developing

technology for automatic reconstruction of mixed fragmented

files in the absence of file table information and this area is

called File Carving.

 In this paper authors have presented literature survey of

latest developments in File Carving and carried out

experiments based on one of the research papers. The

experiments gave motivating results in File Carving. But the

solution space is very large and technology is file type

specific. Authors would like to continue conducting

experiments based on some more papers on File Carving.

In our future research, authors would like to investigate if

there can be a generalized solution that works for all file

types, present and future, and reduce the solution space for

finding the next cluster given one cluster of a particular file.

6.6 ACKNOWLEDGEMENT

Authors would like to thank all the faculty members of

department of Computer Science and Engineering, Sree

Chaithanya College of Engineering, Karimnagr, Andhra

Pradesh, India for their whole hearted support and

encouragement in carrying out experiments in labs.

7.REFERENCES

[1] Kulesh Shanmugasundaram, Nasir Memon,

Automatic Reassembly of Document Fragments via

Context Based Statistical Models, Department of

Computer and Information Science Polytechnic

University Brooklyn, NY 11201.

[2] Nasir Memon, Anandabrata Pal, “Automated

Reassembly of File Fragmented Images Using

Greedy Algorithms”, IEEE Transactions on Image

Processing, Volume 15, No.2, February, 2006.

[3] Simson L. Garfinke, “Carving contiguous and

fragmented files with fast object validation”

ELSEVEIR digital investigation 4S (2007) S2–S12.

[4] Anandabrata Pal, Husrev T. Sencar, Nasir Memon

“DetectingFile Fragmentation Point using

Sequential Hyposthesis Testing”, ELSEVIER

digital Investigations 5 (2008) s2-s13

[5] Anandabrata Pal, Nasir Memon – “The Evolution of

File Carving”, IEEE signal processing magazine

[59] march 2009

[6] Maurice J Bach Pearson, “The Design of the Unix

Operating System” (Pearson Education) – 2003.

Header

Cluster

File

Size

#Clus-

ters

Img

Size
Bpp

No of

colors

0 2118 5 64x64 4 4

5 190 1 32x32 1 2

6 618 2 38x25 4 16

IJCATM : www.ijcaonline.org

