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ABSTRACT 
The exponential growth in the amount of data brings in new 

challenges for data analysis. Gene expression dataset is one 

such type of data necessitating analytical methods to mine 

patterns implicit in it. Although clustering has been a popular 

way to analyze such dataset, the increase in size of dataset 

necessitates the need for improving the efficiency of 

clustering methods. In this paper, we study the use of using 

Principal Components (PCs) as a pre-processing step to 

provide a more efficient data structure to a parallel 

formulation of the sequential K-Means algorithm, utilizing 

multiple cores available in a desktop computer, via the 

Simple Network of Workstations (SNOW) package. Initial 

result suggests that SNOW package provides an intuitive way 

for biologists to parallelize algorithms and speedup job 

execution, particularly for jobs like K-Means clustering 

which depends on random starting centroid locations. 

 

General Terms 

Parallel K-Means 

 

Keywords 
 

SNOW, Parallel K-Means Clustering, Scalability Testing 

 

 

 1. INTRODUCTION 
The exponential growth in the amount of data, popularly 

known as big data, brings in new challenges for data capture, 

storage, search, transfer, curation, visualization, accessibility, 

and analysis. Big data analysis is widely believed to be one 

of the next frontiers for innovation, scientific discovery, 

business competition, and industrial productivity. Gene 

expression dataset is one such type of big data, necessitating 

analytical methods to mine patterns towards understanding 

the functions and structural organization of genes. One of the 

popular ways to analyze gene expression dataset is clustering, 

such as (sequential) K-Means. With the increase in the size of 

data, the need for improving the efficiency of clustering 

methods grows. Two main directions have been explored to 

improve the efficiency of sequential K-Means. First, using 

various parallel formulation of the sequential K-Means 

algorithm which leverage multiple processing units [1][2][3], 

and second, by adopting a more efficient data 

structure/algorithm [4]. In this paper, we study the use of 

using Principal Components (PCs) as a pre-processing step to 

provide a more efficient data structure to the parallel 

formulation of the sequential K-Means algorithm, utilizing 

multiple cores available in a desktop computer, via the 

Simple Network of Workstations (SNOW) package [5]. We 

employed a variant of the popular parallel programming style 

based on message passing model, known as the Single  

 

Program Multiple Data (SPMD) [6], where each worker have 

their own replica of the data, and multiple processing units 

simultaneously execute the same program with different 

inputs to obtain results faster. Initial result suggests that it is 

convenient to adopt this technique for small and medium 

parallel environments. 

 

In this work, we study the combined pre-processing by PCA 

and parallel formulation for the sequential K-Means 

algorithm using multiple cores available in a desktop 

computer using the SNOW package. There are several 

contributions of our approach. First, we implemented the 

parallel K-Means algorithm for PCA pre-processed data 

leveraging multiple cores available in a desktop computer. 

Second, we experimentally analyzed the load balancing and 

speedup issues of the parallel algorithm. Third, we validated 

the obtained clusters by statistical validation. 

 

The rest of the paper is organised as follows. Section 2 

discusses related works in Principal Component Analysis 

(PCA) and parallel K-Means clustering, followed by our 

proposed algorithm in section 3. Section 4 provides an 

experimental analysis of the proposed algorithm. Finally, 

section 5 provides conclusive remarks, limitations of our 

approach, and future research directions.  

 

 

2. LITERATURE SURVEY 
Clustering data to discover interesting patterns is an 

important process within the field of data mining. In a review 

by [7], three broad classes of clustering algorithms has been 

identified. The first is the heuristics-based algorithms such as 

K-Means whose output depends on starting centroid 

locations, second is the model-based algorithms such as 

mixture models, and third is the density-based algorithms 

such as DBSCAN. Among the widely used clustering 

algorithms are the K-Means, hierarchical, and model-based 

clustering, each having its own pros and cons. K-Means 

require pre-defining the number of clusters (k) and is 

dependent upon the random starting centroid locations, 

whereas hierarchical clustering does not produce hard-

clustering, leaving a challenge to the user to interpret the 

resulting dendogram. The K-Means algorithm is also an NP-

hard optimization problem [8], which makes it impractical to 

apply classical problem solving methods to find an exact 

solution. Given such challenges in K-Means, attempts have 

been made to obtain satisfactory solution by following 

greedy approach, also knows as heuristics. Following such an 

approach, the K-Means method partitions n observations into 

k clusters, where each observation belongs to the cluster with 

the nearest mean, and the convergence is determined by using 

a squared error distortion measure.  
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Due to the problem of immense growth in the amount of 

data, both in terms of size and dimensionality, the sequential 

K-Means algorithm could face several challenges such as 

load balancing and speedup. Several studies have been 

conducted to adapt the the sequential K-Means for a parallel 

version to improve the efficiency while handling big data [4]. 

Largely, two main directions have been explored in this area. 

First, distributing data and computation loads over multiple 

processing units, by using parallel computing frameworks 

such as MapRreduce [9], Iterative MapReduce, Bulk 

Synchronous Parallel, Graphics Processing Units, and 

Message Passing Interface (MPI) based frameworks such as 

SNOW [10]. Second, by adopting a more efficient data 

structure/algorithm, such as pre-processing the data with 

Principal Component Analysis (PCA) to reduce data 

dimensionality and the amount of computation [11][12]. 

However, little work has been done to provide a combined 

pre-processing with PCA and parallel formulation of K-

Means. In this work, we study the combined pre-processing 

by PCA and parallel formulation for the K-Means algorithm 

leveraging multiple cores available in a desktop computer via 

the SNOW package. 

 

PCA [12] is a data dimensionality reduction method by 

combining two or more (possibly) correlated variables into a 

new factor variable and variance maximizing rotation of the 

original variable space. It is a method commonly used to find 

patterns in high-dimensional data. For a square matrix A, 

given X as the eigenvector and λ as the eigenvalue, we can 

write AX = λX. Once the eigenvectors are found, they are 

ordered according to decreasing eigenvalues. The highest 

eigenvalue indicates the most "significant" eigenvector 

having the highest variance of data. The new variables known 

as the Principal Components (PCs) are linear combinations of 

original variables. PCA uses co-variance analysis between 

the variables, to reduce the observed variables into a smaller 

number of principal components (PCs). 

 

 

3. PROPOSED ALGORITHM 

3.1 Data Preprocessing with PCA 
The data was preprocessed using PCA, enabling to conduct 

experiments using different number of PCs. A primary 

challenge after PCA is to decide on how many components 

(or factors) to retain, as there exists no theoretical reason for 

choosing any particular number of PCs to retain. One popular 

method used to decide on the number of PCs to retain is the 

scree test [13], which in our case suggested to retain the first 

two PCs giving 18 % cumulative proportion of variance. We 

experimented using different number of PCs to analyze 

scalability and speedup issues. Loadings and scores are used 

to extract patterns from the PCs. The loadings (rotation 

matrix) which define the new coordinate system, indicate the 

size of the contribution of each original variables to the PCs. 

The scores are formed by multiplying the loadings with the 

original data. Scores are obtained to see the original data in 

terms of PCs, after projecting the data to the new coordinate 

system represented by the eigenvectors.  

3.2 Initializing Master and Workers 
We experiment a parallel approach using the SNOW [5] 

parallel programming package available for R, which enables 

us to use multiple cores available in a desktop computer, to 

distribute the tasks and execute the job faster. The 

parallelization of K-Means in SNOW has been achieved by 

adapting the sequential K-Means to leverage multiple cores 

available in a desktop computer. The R functions are 

executed in parallel using variations of the standard lapply() 

function in R. The parallel function execution in SNOW 

starts with creating a cluster object using makeCluster(), 

which is used to interact with the cluster workers. The cluster 

object is created by specifying configuration options such as 

the number of workers and the transport mechanism between 

the workers and the master, which can be socket or MPI. The 

data can be distributed to each worker using functions such 

as clusterCall(), clusterExport(), among others. The 

clusterCall() method takes as arguments a SNOW cluster 

object, function to be executed in the workers, and arguments 

to pass to the function, which is then called on each of the 

workers. We distributed the data to workers using the 

clusterExport() function, and used MPI as the transport 

mechanism between the workers and the master. 

 

3.3 Parallel K-Means 
The aim of this paper is to study the load balancing and 

speedup of parallel K-Means via SNOW under different 

dimensions of data and different number of computing nodes. 

We implement the parallel K-Means by adapting the 

sequential K-Means for data pre-processed by PCA, 

leveraging multiple cores (hereafter also referred to as 

workers or nodes) available in a desktop computer. This 

approach is similar to the popular parallel programming style 

SPMD, where multiple workers simultaneously execute the 

same task with different inputs to obtain results faster. As the 

result of K-Means (and many other machine learning 

algorithms such as bootstrapping, cross validation, among 

others) depends upon the random starting centroid locations, 

it becomes necessary to experiment with several random 

starting points [5]. In the sequential K-Means, this is done by 

executing all the iterations in a single compute node, and as 

the number of iterations grow, the execution time gets slower. 

In our approach, the random starting points are distributed to 

several workers, aiming to gain speedup. The parallel K-

Means is based on a master/worker architecture [5], where 

the master send tasks to the workers, who execute the tasks, 

and returns the results to the master, which aggregates the 

results, and select the cluster with the smallest within-cluster 

sum of squares (WCSS) as the solution to the clustering 

problem.  

 

The SNOW parallel programming package enables us to use 

multiple cores available in a desktop computer, to distribute 

the tasks and execute the job faster. The workers generate 

different random starting numbers (nstart), and to prevent 

them replicate each others results, SNOW provides two ways 

to generate the random numbers [5]. First, seeding the 

workers differently in an ad-hoc scheme, and second, using 

parallel random number generation packages such as rspring 

and rlecuyer.  

 

The clusterApply function is used to parallelize the algorithm, 

which takes as parameters the division of nstart workload 

among workers, and the kmeans() parameters. The kmeans() 

parameters consists of the number of cluster centers k, and 

the nstart value. The algorithm randomely select k rows from 

the dataset as random starting centroid locations, assigns the 

n observations to the k clusters, such that each observation 

belongs to the cluster with the nearest mean, recalculate the 

centroid of each of the k clusters as the new mean, until 

convergence has been reached. This nstart argument in 

kmeans() specifies the number of times clustering solutions 

would be obtained using different random cluster centers. 

After nstart number of cluster solutions have been obtained 
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in the workers, the results are sent to the master, which 

combines the results and compute the smallest WCSS which 

is taken as the final solution of the K-Means clustering 

problem. The pseudocode of the parallel K-Means is shown 

in Algorithm 1.  

 

 

Algorithm 1. Parallel K-Means 

Input: set of data points n to be clusered, 

           number of clusters k, 

           number of maximum iterations maxIters, 

         task vector {nstart , w} where nstart is number of 

 times random centroids computed in each 

 worker, 

           number of available workers w, 

Output: set of c cluster centroids, set of cluster labels of n, 

Steps: 

PCA Data Pre-processing Steps: 

 1.   Input data n 

 2.   Normalize data by mean centering 

 3.   Compute covariance matrix 

 4.   Compute the eigenvectors and eigenvalues of the  

 covariance matrix 

 5.   Choose components and form the feature vector 

 6.   Derive the new data set n1 

Parallel K-Means Clustering Steps: 

 7.   Spawn w workers 

 8.   for each  i ∈ w do 

       9.   for each  j ∈ nstart 

 10. Decide the number of clusters k and the random  

 starting centroid locations in n1 

 11. Assign each data point to the cluster represented  

 by the mean it is nearest to 

 12. Move each mean to the actual mean of the data  

 points in its cluster 

 13. Stop when maxIters reached or the means stop  

 moving, otherwise go back to 12 

 14. Compute WCSS and append centroids and WCSS 

  in a variable 

       15. end for 

 16. end for 

 17. Workers send results to the master 

 18. Master aggregates the results and selects the  

 cluster with the smallest WCSS as the K-Means  

 solution 

  

 

 

 

 

 

 

 

 

 

 

4. EXPERIMENTAL  ANALYSIS 
Experiments have been performed using the SNOW package 

for R. The experimental tests were carried out on an Intel 

Core-i5 4-core processor computer with 4 GB of memory 

running on Ubuntu Linux. 

 

We began our experiments with the parallel K-Means 

algorithm using the clusterApply() function, which schedule 

the tasks in a round-robin fashion, or in other words, the 

master pushes the tasks to the workers [5]. Instead of using a 

single worker to execute all the nstart values, the parallel K-

Means algorithm distributes the nstart to different workers to 

obtain faster results. We used a smaller value of the nstart 

argument (for instance, a vector of four 2500s) in the 

kmeans() function call on each of the workers (for instance, 

four workers), which is equivalent to using nstart = 10000 in 

a single call to the sequential kmeans. The workers send all 

their cluster solutions to the master, which combine the 

results and select the result with the smallest WCSS as the 

solution to the clustering problem. A timer has been used to 

record the running time of the whole process. 

 

Next, we consider different situations, such as some workers 

may be slower than others, or some tasks may take longer 

time than others, or length of the (task) vector could be 

greater than the total number of worker nodes, in which cases 

the scheduling technique used becomes critical for 

performance. In this context, we experimented the utility a 

specific load balancing approach via the clusterApplyLB() 

function, which is aimed at reducing the time wasted due to 

overheads in round-robin scheduling. Instead of the master 

pushing the tasks to the workers as it is done in round-robin 

scheduling, the clusterApplyLB() lets the workers pull tasks 

from master as needed. The performance of load balancing is 

shown in Fig. 2, where we use Sys.sleep() function to 

compute the task lengths in each worker, and the snow.time() 

function to gather timing information about the overall 

execution. The performances of the parallel K-Means is 

evaluated on a gene expression dataset [14]. The 

computational speed of the parallel K-Means with load 

balancing as compared to sequential K-Means is shown in 

Table 1. The comparison of running time at different 

dimensions of data and different number of workers is shown 

graphically in Fig. 1(a-c), and comparison of speedup at 

different dimensions of data and different number of workers 

is shown in Fig. 1(d-f).   

 

In Fig. 1(a-c), it can be seen that when the number of workers 

are increased from one to two to three, the execution time 

decreases. In Fig. 1(d-f) it can be seen that speedup increases 

when the number of workers are increased from one to two to 

three. Surprisingly, when data dimension is two PCs (Fig. 1-

a), an increase in the number of workers from three to four 

results to an increase in execution time, which could be due 

to master-worker communication overhead.  
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Table 1: The execution time of serial K-Means vs parallel K-Means 

Data 

Size 

(No of 

PCs) 

Sequential 

KMeans 

Time (TS) 

(sec) 

No of 

Cores 

(C) 

Load Balancing 

Parallel 

KMeans Time 

(TC) (sec) 

Speedup  

(TS / TC)  

2 2.16 1 2.25 0.96 

2 1.53 1.41 

3 1.2 1.8 

4 1.34 1.61 

200 75 1 97.1 0.77 

2 66.1 1.13 

3 56.2 1.33 

4 47.3 1.59 

810 855 1 1024.2 0.83 

2 612.2 1.4 

3 450 1.9 

4 402 2.13 

     

 

 

Figure 1: (a-c) Running time of parallel K-Means at different data dimensions and different number of workers, (d-f) 

Speedup of parallel K-Means at different data dimensions and different number of workers 

Figure 2: (a) Performance with load balancing for ten tasks in four cores, (b) performance without load balancing for ten 

tasks in four cores 
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Visible in Fig. 2 is the performance with and without load 

balancing, where solid horizontal bars indicate the time 

workers (nodes in Fig. 2) are busy. Breaks in the solid 

horizontal bars indicate time wasted due to scheduling. In the 

experiment, the job was divided into ten tasks, which were 

solved by four workers. Each horizontal bar segment 

indicates completion of one of the ten tasks. Fig. 2-b shows 

the utilization of workers without load balancing, where gaps 

in the horizontal lines indicates idle time of workers due to 

round-robin scheduling, resulting to more total time (1.3 sec) 

in job execution. Fig. 2-a shows the utilization of workers 

with load balancing, where the idle time of workers are much 

less, resulting to faster job execution (0.8 sec). This indicates 

that load balancing is important in better utilization of 

available workers when the length of the task vector is 

greater than the total number of workers. However, it must be 

noted that communication between master and workers can 

reduce performance. Furthermore, the allocation of nodes by 

scheduler is done in a nondeterministic fashion, which 

complicates the reproducibility in simulations. 

 

To validate the obtained clusters, we used statistical 

validation using Silhouette Index (SI) [15]. Silhouette index 

is used to compare the similarity of various cluster solutions. 

A popular way to interpret the SI is as follows: for a well 

clustered observations the SI value is almost one, the SI 

values for observations which lies between two clusters is 

around zero, and the SI values for observations placed in the 

wrong cluster are negative. Using the first two PCs, we 

obtained an SI value of 0.47, indicating that some of the 

observations might lie between two clusters, which could be 

due to the use of only two PCs containing only 18% 

cumulative variance. 

 

 

5. CONCLUSIONS AND FUTURE 

DIRECTIONS 
Several conclusions can be made from this study. First, PCA 

can be used to reduce data dimensionality, and provide a 

more efficient data structure to the parallel formulation of the 

sequential K-Means algorithm. Second, the SNOW package 

could provide an intuitive way for biologists to parallelize 

algorithms which depends on random starting centroid 

locations such as K-Means, by utilizing multiple cores 

available in a desktop computer. Third, parallel K-Means 

with load balancing could speedup K-Means clustering jobs 

to some extent. Overall, we would recommend SNOW based 

parallel K-Means approach for clustering, leveraging 

multiple cores in a desktop computer to analyze large data. 

 

Although currently getting popularity, SNOW has several 

drawbacks. First, it lack advance mechanisms to handle large 

distribution to workers, a challenge while working with big 

data. Second, the master keeps all the task results in its 

memory until they are returned to the caller, putting a burden 

on the memory.  

 

In future, we would like to study the performance of parallel 

K-Means on SNOW using large clusters and large dataset. 

Also, we would like to perform more exhaustive cluster 

validation. 
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