
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

35

WARP: Workload Nature Adaptive Replacement Policy

Balaji S
Final Year (U.G)

Dept. of CSE, SVCE,
Sriperumbudur, Tamilnadu,

India

Gautham Shankar R
Final Year (U.G)

Dept. of CSE, SVCE,
Sriperumbudur, Tamilnadu,

India

Arvind Krishna P
Final Year (U.G)

Dept. of CSE, SVCE,
Sriperumbudur, Tamilnadu,

India

ABSTRACT

In the present universal scenario where the dependence on

heterogeneous multi-core processors is tremendous, dealing with

algorithms focusing on coherence between shared caches is

imperative.

WARP redesigns the replacement policy in the last level cache.

In this policy, the shared (clean) lines and the private exclusive

line are given the first two priorities dynamically followed by

private modified and shared lines. By this method a set of

victims are presented over which any replacement policy can be

chosen to select a viable victim.

Implementing the same, a significant performance improvement

is observed with the last level shared cache. This performance

improvement was solely from the policy implemented on the last

level cache and not from any other parameters.

General Terms

Computer Architecture, High Performance Computing.

Keywords

Last level, Shared cache, Replacement algorithm, Set dueling.

1. INTRODUCTION
In the current world where real time applications dominate the

world of computing, these applications are predominantly

multithreaded in nature. A multi-core architecture plays a major

role in the performance of these applications. A good

replacement policy focuses on reducing the miss-rate thereby

improving its overall performance.

1.1 Need for sharing aware algorithm
In an environment where a shared level cache is used, contention

for memory from more than one core occurs by which frequent

eviction of lines takes place. Care must be taken such that a line

evicted might not be used immediately by another core in the

next clock cycle. This can be achieved by taking the sharing

nature into consideration by which lines which are shared by

cores can be kept longer than the lines which are private to a

particular core.

All the existing protocols focuses on the multi-programmed

workloads where sharing of data is at its minimal.

The following changes are to be considered,

 Take sharing between the threads of the cores into

consideration before choosing a line for eviction and

 For certain workloads, private lines may be used

predominantly over shared lines, where the concept of

set dueling is used.

2. BACKGROUND

2.1 Set Dueling
Set dueling (Moinuddin K. Qureshi et al, 2008) is a policy in

which, two contradicting policies are made to compete against

each other, by exclusively assigning each policy to a certain

number of sets and depending upon the number of misses

encountered in these sets, a winner is selected at run time and it

is followed in the rest of the sets.

2.2 MESI Protocol:

The MESI protocol is a cache coherency protocol which

basically supports the write-back cache. M stands for Modified,

E for Exclusive, and S for Shared and I for Invalid.

Therefore, there are three types of lines namely Invalid, Shared

and Private. The Shared line can be further classified into Clean

and Dirty. The Private line can be subdivided into Exclusive and

Modified.

2.2.1 Modified
The data present in the cache is different from the main memory

value. This value is termed dirty and is invalid till the cache

writes the data to the main memory.

2.2.2 Exclusive
Writing the valid data onto the main memory replacing the dirty

block that was present there changes the line to Exclusive. In

this case, the cache line is present in the current cache and it is

clean, i.e. it‟s the same as the data in the main memory. It may

be changed to Modified if a new data is written to it.

2.2.3 Shared
When an Exclusive line gets a read request, it may be changed to

Shared. It indicates that this cache line may be present in other

caches as well and is clean.

2.2.4 Invalid
A line can be changed to Invalid at any time. It indicates that this

line is unused (invalid).

2.3 PARSEC Benchmarks

The Princeton Application Repository for Shared-Memory

Computers (C.Bienia et al, 2008) is a benchmark suite composed

of multithreaded programs. Figure 1 shows the amount of lines

which are reused and out of which what fraction of them are

shared and private. It is evident that, in normal replacement

policies, if sharing is taken into consideration and eviction of

lines are done based on the priority, then improvement in the

performance is viable but not at its zenith. Hence the notion of

both private and shared are considered so as to attain the

maximum performance possible. This may happen as a result of

the cache lines with a near reuse being retained by the LLC in

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

36

contrast to others with a distant reuse, when the replacement

policy adapts to the sharing nature of the workload.

3. MOTIVATION
WARP‟s motivation factor arises from that of CSHARP

(Biswabandan Panda and Shankar Balachandran, 2012), namely

the sharing and coherence nature of the cache lines. Although

CSHARP has been built on the concepts of sharing, not all

workloads perform better always, when evicting a shared line

over a private line. For a given set of cache lines the reuse nature

of the shared blocks are generally more compared to that of the

private lines but at times giving priority the other way round

may give an additional improvement in the performance.

Thus instead of giving preference to the shared (clean) lines

blindly, the concepts of set dueling can be taken into

consideration in dynamically choosing between private and

shared clean lines, the winner of which is allotted a higher

priority over the other.

4. SUGGESTED CHANGES

4.1 The 4 groups:
At a given instance, the blocks from a set from which victims

can be chosen can be split into 4 groups: Shared but clean,

Private and Exclusive, Private and Modified and other Shared

lines. The priority of the groups are also given as same as that of

the above order.

4.2 Norms of a replacement policy:
Any cache replacement policy follows the following steps:

eviction, insertion and promotion. On a cache miss, a line is

“chosen” for eviction. The new line is “inserted” into the set and

is assigned an appropriate reuse-register value. On subsequent

hits, the line gets “promoted” by reducing the reuse-register

value (higher the reuse-register value means distant reference

interval).

4.2.1 Eviction:
Initially, determine the cache lines having the highest reuse

register values. In case of a tie between two or more cache

blocks having the same reuse register values, consider their

sharing nature and order them based on the priority assigned to

each group, determined dynamically by set dueling and then

select a victim.

4.2.2 Insertion:
Keep track of history of that particular cache line, and based on

the previous nature of the same cache line, decide on the value

to be given to the block which is inserted, as to whether its value

lies near to the lower or the higher end of the reuse-register

value.

4.2.3 Promotion:
An access to a block in addition to an initial access gives the

block an extra probability as to whether it would be accessed in

the near future or not. The reuse-register value is assigned a

value ‟x‟ closer to max value if the block remains private, else

its assigned a value close to the min value namely „zero‟ if the

tendency of the block shifts from that of private to shared.

Figure 1: Reuse of a cache line for a 2 core system

5. IMPLEMENTATION
Initially sets are divided so as to perform set dueling. Lowest

priority is assigned to shared dirty lines, because their eviction is

considered to be costly, owing to the fact that its content should

be updated in the main memory, and its copy might exist in

higher levels of cache (L1 cache) of more than one core. If that

is the case, then the time spent on updating might result in

hindering the performance of the processor. The same goes for

private modified lines. But these are assigned a higher priority

when compared to shared dirty lines mainly because of the fact

that their copies can only be present in private cache of a single

core, hence the cost incurred on evicting them is much less when

compared to shared dirty lines.

Following the concept of set dueling, the highest priority is

assigned to shared clean lines in certain sets. Shared clean lines

will be evicted as victims in-case there is a tie among cache lines

having the same reuse-register values. A global counter variable

is maintained. In case of a miss in this particular type of set, the

counter variable is incremented by one. Similarly, the highest

priority is assigned to private exclusive lines in certain sets, with

the only exception that in case of a miss, the global counter

variable is decremented. When a miss is encountered in the

remaining sets, priorities are assigned based on the global

counter variable. If the value is >0 then private exclusive lines

are assigned the highest priority and vice versa and then eviction

is carried out in the normal way.

First time, when a block is accessed, it is in private mode. The

next time, when the same block encounters an access,

verification is done as to whether it‟s accessed by the same

thread. If so, then the block remains in the private mode. If it is

accessed by a different thread, other than its original owner, the

nature of the block is updated to shared. If a cache line is

selected as victim, in case of a miss, after insertion, status is

updated to private. During insertion, the sharing nature of cache

line is referred, which has to be changed to private after

insertion. If it is shared, insert the block with a lesser reuse

register value.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

37

Table 1: Parameters of Simulated Machine

 L1 Cache

(LRU)

L2 Shared Cache

(WARP)

Associativity 2 8

Block Size 64kb 64kb

Latency 1ns 10ns

mshr 10 20

tgts_per_mshr 20 12

During eviction, after selecting a victim, WARP checks if that

particular cache line has the maximum reuse register value. If

not, the reuse register value of all the blocks present in that set is

incremented by one. LRU is used as the replacement policy for

levels of cache closer to the processor and WARP is restricted

only to the last level of cache, so as to improve instructions per

clock cycle.

6. WORKING
The working of WARP can be explained by considering the

sequence of events after a cache miss at the last level cache. For

instance, when a miss is encountered, the target set is reached

and the counter is checked. If the counter is a positive integer,

higher priority is given to Private-Exclusive. If it is a negative

integer the priority is given to Shared-Clean.

Eviction of a line is done based on a value which is calculated

from a mathematical expression involving arguments from the

previous stage namely, the reuse-register value and the priority.

The block with the highest value is chosen for eviction. In case

of a tie, the first-best block is chosen for eviction. Finally, if the

evicted block‟s value is less than the maximum reuse-register

value, the reuse-register value of all the blocks‟ from the target

set are incremented by 1.

After eviction, the insertion by the requester thread follows

suite, where, in case a block is accessed by more than one

thread, it is inserted with the reuse-register value closer to the

lowest possible register value. Else if the block is private,

insertion is done with a value closer to the maximum allowed

register value. The process can now continue as required. The

promotion policy is brought to action whenever there are hits.

7. SIMULATOR
Gem5 (N.Binkert et al, 2011), a full system, open source

simulator provides the option to run a benchmark either in full

system mode or in syscall emulation (SE) mode. Full system

mode is used for booting an entire operating system and syscall

emulation mode is used for running one or more applications by

emulating syscalls. Gem5 also offers the provision to run the

benchmarks in different Instruction set architectures like

ALPHA, ARM, SPARC, MIPS and x86. As of now, gem5 can

be used to simulate SPEC, SPLASH and PARSEC benchmarks.

Furthermore, gem5 supports various cache coherence protocols

like MESI, MOESI, etc. In spite of having all these features,

gem5 is still evolving every day. Gem5, being purely open

source, has already attracted millions of users in a short span of

three years. Gem5 has an active mailing facility, by which a

newcomer can post his queries and the gem5 community will

respond to his queries. Further, Gem5 is also used by

programmers, to determine the execution time of their program

accurately.

8. PERFORMANCE
PARSEC benchmarks are used for characterizing the

performance of the algorithm. Metrics such as hit and miss rate

are calculated for measuring the performance improvement. For

comparison purposes the age old replacement algorithm, namely

LRU (Least Recently Used), which has been trusted to be the

best replacement algorithm for the various cache levels was

used.

At an average LRU showed a miss rate of 0.217 whereas WARP

performed even better with a miss rate of 0.216 in a scale of 0 to

1, with 0 meaning no misses and 1 meaning all the accesses

leads to a miss.

The results observed for the percentage of hits were even better.

In certain benchmarks WARP showed a 15% more increase in

the hits compared to LRU which is a significant improvement.

9. FUTURE WORK
Any improvement in performance observed in the field of

architecture is always a milestone attained. Even a small

improvement in the metrics, however minimal it may (even as

small as 0.1%), may lead to a greater overall performance of the

system.

14000000

14500000

15000000

15500000

16000000

16500000

17000000

17500000

18000000

Hits

LRU

WARP

Figure 2: Improvement in Hits when compared to LRU

This performance could be further enhanced by the

implementation of Bloom filters along with the policy indicated.

Bloom filters are probabilistic data structures used to track the

evicted cache lines and it also stores the historical details of the

lines such as their owners.

It is believed that implementing Bloom Filters can possibly

show an improvement of performance by 10%, in addition to the

existing performance.

The performance obtained is the result of implementing WARP

over 2 cores, because of which thread awareness was not used.

WARP could be implemented in a way such that threads are

aware of each other‟s priorities dynamically in the run time

environment. Such implementation could significantly improve

the performance metrics in a system of more than 2 cores.

In addition to the above mentioned implementation, a higher

Associativity and Block size could significantly show a higher

number of hits at the cache and a much lower miss rate, as the

notion of Capacity and Conflict misses are substantially reduced.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

38

0.2158

0.216

0.2162

0.2164

0.2166

0.2168

0.217

0.2172

Miss Rate

LRU

WARP

Figure 3: Reduction in Miss-rate observed compared to LRU

10. RELATED WORK
Biswabandan et al. presented CSHARP ,a framework to add

Coherence and Sharing awareness to replacement policies that

targeted parallel applications at the LLCs. CSHARP assigned

priorities to cache lines based on sharing and coherence

information and tried to retain high priority lines at LLC as

much as possible. The algorithm serves as a framework that

works over existing replacement policies.

11. CONCLUSION
WARP serves as a new policy for the LLC in which a line for

eviction is chosen dynamically depending on the workload‟s

nature. WARP can be used over other replacement policies

which have been proposed already such as the one used: RRIP

(A. Jaleel et al, 2010). This not only uses the sharing nature but

also takes the cases where private lines are reused more

compared to the shared blocks, by which additional performance

gain is achieved.

WARP shows significant improvements in the performance

namely miss rate and number of hits, a 15% improvement in its

hit rate compared to the age old replacement policy LRU; it also

showed a significant drop in the miss-rate which is an added

advantage.

12. ACKNOWLEDGEMENT
We would like to thank Mr. S. Muthukumar Associate Professor,

Computer Science & Engineering Department, SVCE, for his

everlasting support and motivation which helped us throughout

the paper.

13. REFERENCES
[1] A. Jaleel et al, “High Performance Cache Replacement

using Re-reference Interval Prediction (RRIP)”, in ISCA

2010, pp.60-71.

[2] Moinuddin K. Qureshi et al, “Set-Dueling-Controlled

Adaptive Insertion For High-Performance Caching” in

MICRO IEEE 2008.

[3] Biswabandan Panda, Shankar Balachandran, “CSHARP -

Coherence and SHaring Awareness Replacement Policies

for Parallel Applications”, in Proceedings of 24th IEEE

International Symposium on Computer Architecture and

High Performance Computing, New York, 2012.

[4] N. Binkert et al, “The gem5 simulator”, SIGARCH

Comput. Archit. News, Aug 2011.

[5] M. Gebhart et al, “Running PARSEC 2.1 on M5”, The

University of Texas at Austin, Department of Computer

Science, Technical Report #TR-09-32, October 2009.

[6] C.Bienia et al, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications” in PACT

2008.

[7] Major Bhadauria et al, “Understanding PARSEC

Performance on Contemporary CMPs”.

[8] Y. Chen, et al, “Efficient Shared Cache Management

through Sharing-Aware Replacement and Streaming-Aware

Insertion Policy”, in IPDPS 2009, pp. 1-8.

[9] A. Jaleel et al, “Adaptive Insertion Policies for Managing

Shared Caches”, in PACT 2008.

[10] L. A. Belady, “A study of replacement algorithms for

virtual storage computers”, in IBM Systems Journal 1966,

pp. 78-101.

