
International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.7, May 2013 

16 

  Heuristic Event Filtering Methodology for Interval 

based Temporal Semantics   

 
V. Govindasamy 
Research Scholar 

         Department Of Computer Science and 
Engineering 

           Pondicherry Engineering College 
Pondicherry, India 

 

 

P. Thambidurai, PhD. 

Principal and Professor, Computer Science and 
Engineering 

Perunthalaiver Kamarajar Institute of Technology ,      
Karaikal, India 

 
 

 

ABSTRACT 

In this paper, a novel heuristic event filtering methodology 

that exploits the temporal characteristics in the Complex 

Event query is presented. Complex Event query is processed 

in Complex Event Processing(CEP). CEP involves inferring 

complex events from primitive events in real time. Massive 

amount of primitive events arrive in real time from multiple 

distributed sources in real time applications like E-business 

applications, Business Intelligence systems, Stock Monitoring 

Systems and Hazard Monitoring Systems. Removal of 

irrelevant events or filtering will result in effective processing. 

Thus, there is a need for effective filtering mechanism to filter 

out the irrelevant events.   Therefore, Event Filtering (EF) is 

to be performed ahead of the event processing. A heuristic 

event filtering methodology over Sliding Window to increase 

the throughput of the system is proposed. The proposed 

system has been validated using a prototype. 
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1. INTRODUCTION 

CEP paradigm deals with inferring knowledge from 

continuously arriving primitive events. The  ultimate aim  of 

CEP is to identify meaningful events. These events may be 

opportunities in some systems like Business Intelligence 

systems or threats in hazard detection systems. CEP  system is 

to  respond to these opportunities or threats  with minimal 

delay.  

The CEP engine inspects the continuously arriving primitive 

events from multiple sources and detects patterns of interest 

and notifies to the end users. Patterns are detected by 

amalgamation of primitive events to composite or complex 

events. A primitive event is a set of attributes with timestamp. 

A complex event is the inference derived from a set of 

multiple primitive events. A complex event is an event of 

interest to the end users or customers. A pattern or a complex 

event query is represented in a SQL like query language. 

 

The state of art sensor technology, business process using 

internet and inexpensive storage has induced high prevalence 

of primitive events. These primitive events are massive, 

transient and continuous in nature. The characteristics [2] of 

the primitive events include 

 

 Enormous amount of events arrive in real time. 

 Multiple sources for events exist. 

 The events are processed in one pass.  

 Bounded temporary storage is required for 

processing. 

These primitive events serve as input to CEP systems [1]. The 

CEP system combines the primitive events together to detect 

 

 

 

 

 

 

 

 

Fig. 1 The Functioning of CEP system 
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patterns. The Fig. 1 highlights the functioning of the CEP 

systems. The event producers produce the primitive events. 

The event consumers consume primitive events from multiple 

event producers that are distributed across a network. The 

CEP systems can be modeled as a Publisher/subscriber 

system. Herein, the publishers are event producers that 

produce primitive events. The events are accumulated in an 

event queue for further processing. The CEP engine collates 

the primitive events to complex events. These complex events 

are matched with the specific interests registered by the 

subscribers. If a match occurs, then the corresponding 

subscriber is notified. 

 

2. RELATED WORK 
 In this section, a literature appraisal of existing CEP 
approaches for Event Filtering is presented.  

2.1 Filtering 
Gianpaolo Cugolaa et al. [1] have implemented an event 
filtering technique based on static index and counting 
algorithm. Subscription generalization is an optimization 
method to decrease the load on the filter component [3]. It is 
based on selectivity’s of subscription. By generalization, the 
complexity of subscription is reduced and this results in less 
number of predicates. The two methods of generalizations 
proposed are generalization by pruning and generalization by 
replacement. Fusheng Wang et al. [4] have proposed two 
methods for RFID data filtering. They are i) Low level data 
filtering ii) Semantic data filtering. Ehab Al-Shaer et al. [5] 
presents a framework for generic event filtering based on 
object oriented method. The system captures the common 
components that may appear in the filtering system. This 
framework promotes design pattern reuse and code reuse. 
Ming Li et al. [6] has advocated for a cascade purge that relies 
on window constraints in CEP based on time interval.  

Sven Bittner [7] [10] has designed a Boolean based filtering 

algorithm. Subscriptions are represented as tree with 

predicates as leaf nodes and operators as inner nodes. The 

subscriptions are analyzed and rewritten. Common predicates 

among subscriptions are identified and indexed. Sven Bitter et 

al. [8] have proposed a classification scheme for distributed 

event filtering algorithms - i) Event Forwarding (EF): For 

higher number of matching events, EF is efficient. ii) Profile 

Forwarding(PF): For low proportion of matching events, PF is 

efficient .Kostas Kontogiannis et al. [9] has introduced a new 

technique - the Event Dependency Graph (EDG),  formed by 

a collection of relations,  aims to denote structural and 

behavioral associations between events in one or more log 

files. Eight kinds of dependencies have been defined: 

Coincidental Dependency, Logical Dependency, Topological 

Dependency, Temporal Dependency, Procedural Dependency, 

Transactional Dependency, Communicational Dependency 

and Correlation Dependency. 

 

2.2 Windowing and Sampling 
Sven Bittner et al. [11] investigate the memory requirements 

for the filtering algorithms. There are two classes of filtering 

algorithms in Publisher/subscriber system - i) Filtering using 

Boolean subscriptions ii) filtering in canonical forms. It has 

been inferred that non-canonical approaches show better 

scalability. If disjunctions are involved, then non-canonical 

filtering is better. Graham Cormode et al. [12] have 

generalized the classical reservoir sampling algorithms to 

continuously maintain a random sample over multiple 

distributed streams. A new communication efficient protocol 

for sampling full streams in the Sliding Window has been 

proposed. Kun-ta Chuang et al. [13] has introduced a new 

sampling method called feature preserved sampling that 

generates high quality sample over Sliding Windows. The 

sampling quality refers to the degree of consistency between 

the sample proportion and population proportion. Rainer 

Gemulla et al. [14] has analyzed the various sampling 

schemes that sample a Sliding Window over recent time and a 

new method -   bounded priority sampling has been 

introduced in this paper. 

  

The Literature Survey reveals that Uniform Sampling over 

fixed Sliding Window is an approximation method in data 

streaming systems. The applicability of which are   more 

relevant. The Sliding Window size is dependent on the time 

interval mentioned in the query. A further optimization has 

been proposed in this system by performing sampling of the 

event records in the Sliding Window. This kind of 

optimization is crucial because events arrive faster than it can 

be processed. The events that match the pattern are also much 

less in comparison to the number of incoming events. The 

filtering of events can be done by sampling the event records 

within a window. Thus the query is evaluated in samples of 

the event stream rather on the stream itself. The efficient 

filtering will automatically result in the   improvement of the 

systems scalability. Uniform Sampling over Sliding Window 

in CEP has not been explored. 

 

3. PROBLEM STATEMENT 

An efficient scheme to reduce the number of events forwarded 

to the Complex Event Processing Engine is necessary to 

increase the throughput of the system. The performance of the 

existing CEP approaches degrades with the increase in 

number of primitive events. Thus, there is a need to provide 

scalability for the CEP system. This is to be achieved by a 

heuristic method based on the time context specified in the 

complex query.  

 

3.1 Heuristic Event Filtering for Interval 

based Temporal Semantics 
Subscriptions or queries in CEP systems are continuous in 

nature. Continuous queries can be evaluated by sliding a 

window over the recent events. Imposing Sliding Windows on 

events is a natural method of approximation. Properties in 

Sliding Window approximation include well definiteness, 

easily understandable and clear semantics. Filtering 

techniques based on Sliding Window provides a graceful 

solution for CEP systems. 

 

  Sliding Windows are the standards in interval queries where 

the context is time. It is used to processes only recent data 

which are   more relevant. The Sliding Window size is 

dependent on the time interval mentioned in the query. A 

further optimization has been proposed in this system by 

performing sampling of the event records in the Sliding 

Window. This kind of optimization is crucial because events 

arrive faster than it can be processed. The events that match 

the pattern are also much less in comparison to the number of 

incoming events. The filtering of events can be done by 

sampling the event records within a window. Thus the query 

is evaluated in samples of the event stream rather on the 

stream itself. The efficient filtering will automatically result in 

the   improvement of the systems scalability. 
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The Fig. 2 illustrates the high level conceptual framework of 

the proposed system. The incoming events are stored in an 

event queue of bounded size .The events are fed into the filter 

component. The Sliding Window is used to process the most 

recent events. The size of the Sliding Window depends on the 

time interval. The sampler component in the filter partitions 

the Sliding Window. An event record from each partition is 

processed. The intermediate event records are kept in an 

Instance Stack. The sampled event records are processed. If 

they fail to meet the conjunction predicate, then the events in 

the Instance Stack may be purged, or else they have to be 

processed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2:  High Level Conceptual Framework for Heuristic Event Filtering for Interval based Temporal Semantics 

 

3.2 Algorithm for Heuristic Event Filtering 

for Interval based on Temporal Semantics 
 To implement this algorithm the infinite event stream E is of 

the form E= (e1, e2,). Each item ei is of the form (tsi, datai) 

where tsi denotes timestamp and datai denotes the data. The 

Sliding Window is represented by  Win∆ (t) = E (t) \ E (t +∆). 

Window length is the time span covered by the window. The 

time interval in the query is given by T. The Instance Stack is 

represented by I. 

Algorithm HEF 

Begin 
Initialize Win∆ (t) = E(t) \ E(t + ∆)  

Sample et  from Win∆ (t) 

If constraint satisfies then  

Begin 
While (t<=(T/2)-1) 

Store event et+1 from E in Instance Stack I 

Sample event et where t=t+T/2 

If  constraint satisfies then  

Examine events from Instance Stack I 

Else 
Purge the events from Instance Stack I 

End 

Else 
Sample event et where t=t+T/2 

End 

 

4. PERFORMANCE EVALUATION  

4.1 Experimental Setup 
The generic application methodology is structured as a 

message oriented middleware with the set of software 

components to perform an efficient event processing. These 

software components communicate through a messaging 

system called as Java Message Service (JMS) which takes 

input as event instances from continuously arriving incoming 

events. The experiment is executed on Windows XP PC with 

3.2 GHz processor, 2 GB of RAM and 512 MB cache with the 

maximum JAVA heap size of 800 Mbytes. It is implemented 

in open source Java Enterprise 

Edition/Netbean/Glassfish/JMS environment.  

 

  The proposed prototype is to detect the presence of fire hazard  

using multiple sensors simulating a manufacturing unit.. The 

prototype uses three different sensors. These sensors act as 

event sources of input streams. The event sources are 

temperature sensor, smoke sensor and water sensors. Each 

event is associated with a timestamp. There are four rules for 

detection of presence of fire. All the rules have in them a time 

context. The events are generated using different rates of 

inputs such as 10 event/second, 20 events/second, 30 events 

per second etc. The performance of the proposed prototype is 

compared with a windowing filter using processing time and 

throughput as parameters. 

      

  The experiment is carried out to compare the performance of 

the CEP approach with and without filtering. The proposed 

approach achieves high efficiency and scalability compared to 

the CEP without filtering. The proposed approach filters out 

the irrelevant events before the event detection starts 

according to the domain expert specified rules. The 

performance of the proposed approach is evaluated based on 

the throughput (number of events executed per second) and 
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the average processing time (time taken to process the number 

of events per second). 

 

 
 

Fig. 3: Processing Time 

 

The Fig. 3 shows  the effect of Processing Time with respect 

to the number of events. From the figure, it can be inferred 

that for more number of events generated to the rate of 90 

events per second, the Heuristic Event Filtering (HEF) 

performs better when compared to Sliding Window (SW) 

Filtering. For example, for 90 events per second, the 

processing time of HEF is less than 2000 milliseconds, 

whereas the processing time of SW is more than 14000 

milliseconds. 

 

 
 

Fig. 4: Throughput  

 

The Fig. 4 compares the Throughput of the Heuristic Event 

Filtering (HEF) and Sliding Window (SW) Filtering. 

Throughput is defined as the number of complex events fired 

per second. The graph records the complex events fired at 

various arrival rates of events. The graph shows that the 

number of complex events fired is more for HEF when 

compared with SW Filtering. For example, when the arrival 

rate of events is 70 events per second, the number of complex 

events fired is 20 complex events for SW Filtering,  But, HEF 

achieves around 560 complex events.  

 

5. CONCLUSION 
In this paper, a high level conceptual framework for heuristic 

event filtering for interval based temporal semantics is 

presented. The system is designed to improve scalability of 

the Complex Event Processing system. This sampling of 

events within a Sliding Window is necessary to improve the 

performance of the filter. The future work will be to 

complement this filter with other canonical event filters and to 

study the performance improvement. 
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