
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

16

 Heuristic Event Filtering Methodology for Interval

based Temporal Semantics

V. Govindasamy
Research Scholar

 Department Of Computer Science and
Engineering

 Pondicherry Engineering College
Pondicherry, India

P. Thambidurai, PhD.

Principal and Professor, Computer Science and
Engineering

Perunthalaiver Kamarajar Institute of Technology ,
Karaikal, India

ABSTRACT

In this paper, a novel heuristic event filtering methodology

that exploits the temporal characteristics in the Complex

Event query is presented. Complex Event query is processed

in Complex Event Processing(CEP). CEP involves inferring

complex events from primitive events in real time. Massive

amount of primitive events arrive in real time from multiple

distributed sources in real time applications like E-business

applications, Business Intelligence systems, Stock Monitoring

Systems and Hazard Monitoring Systems. Removal of

irrelevant events or filtering will result in effective processing.

Thus, there is a need for effective filtering mechanism to filter

out the irrelevant events. Therefore, Event Filtering (EF) is

to be performed ahead of the event processing. A heuristic

event filtering methodology over Sliding Window to increase

the throughput of the system is proposed. The proposed

system has been validated using a prototype.

Keywords

Complex Event Processing, Event Filtering,

Publisher/subscriber model and Event Processing.

1. INTRODUCTION

CEP paradigm deals with inferring knowledge from

continuously arriving primitive events. The ultimate aim of

CEP is to identify meaningful events. These events may be

opportunities in some systems like Business Intelligence

systems or threats in hazard detection systems. CEP system is

to respond to these opportunities or threats with minimal

delay.

The CEP engine inspects the continuously arriving primitive

events from multiple sources and detects patterns of interest

and notifies to the end users. Patterns are detected by

amalgamation of primitive events to composite or complex

events. A primitive event is a set of attributes with timestamp.

A complex event is the inference derived from a set of

multiple primitive events. A complex event is an event of

interest to the end users or customers. A pattern or a complex

event query is represented in a SQL like query language.

The state of art sensor technology, business process using

internet and inexpensive storage has induced high prevalence

of primitive events. These primitive events are massive,

transient and continuous in nature. The characteristics [2] of

the primitive events include

 Enormous amount of events arrive in real time.

 Multiple sources for events exist.

 The events are processed in one pass.

 Bounded temporary storage is required for

processing.

These primitive events serve as input to CEP systems [1]. The

CEP system combines the primitive events together to detect

Fig. 1 The Functioning of CEP system

(Publishern)

(Publisher2)

(Publisher1)

Event Notification

Event Notification

Event Notification

Event Channel

Event Channel

Event Channel

Event

Queue

CEP

Engine

Event

Producer1

P

Event

Producer2

Event

Producern

Subscriber1

Subscriber2

Subscribern

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

17

patterns. The Fig. 1 highlights the functioning of the CEP

systems. The event producers produce the primitive events.

The event consumers consume primitive events from multiple

event producers that are distributed across a network. The

CEP systems can be modeled as a Publisher/subscriber

system. Herein, the publishers are event producers that

produce primitive events. The events are accumulated in an

event queue for further processing. The CEP engine collates

the primitive events to complex events. These complex events

are matched with the specific interests registered by the

subscribers. If a match occurs, then the corresponding

subscriber is notified.

2. RELATED WORK
 In this section, a literature appraisal of existing CEP
approaches for Event Filtering is presented.

2.1 Filtering
Gianpaolo Cugolaa et al. [1] have implemented an event
filtering technique based on static index and counting
algorithm. Subscription generalization is an optimization
method to decrease the load on the filter component [3]. It is
based on selectivity’s of subscription. By generalization, the
complexity of subscription is reduced and this results in less
number of predicates. The two methods of generalizations
proposed are generalization by pruning and generalization by
replacement. Fusheng Wang et al. [4] have proposed two
methods for RFID data filtering. They are i) Low level data
filtering ii) Semantic data filtering. Ehab Al-Shaer et al. [5]
presents a framework for generic event filtering based on
object oriented method. The system captures the common
components that may appear in the filtering system. This
framework promotes design pattern reuse and code reuse.
Ming Li et al. [6] has advocated for a cascade purge that relies
on window constraints in CEP based on time interval.

Sven Bittner [7] [10] has designed a Boolean based filtering

algorithm. Subscriptions are represented as tree with

predicates as leaf nodes and operators as inner nodes. The

subscriptions are analyzed and rewritten. Common predicates

among subscriptions are identified and indexed. Sven Bitter et

al. [8] have proposed a classification scheme for distributed

event filtering algorithms - i) Event Forwarding (EF): For

higher number of matching events, EF is efficient. ii) Profile

Forwarding(PF): For low proportion of matching events, PF is

efficient .Kostas Kontogiannis et al. [9] has introduced a new

technique - the Event Dependency Graph (EDG), formed by

a collection of relations, aims to denote structural and

behavioral associations between events in one or more log

files. Eight kinds of dependencies have been defined:

Coincidental Dependency, Logical Dependency, Topological

Dependency, Temporal Dependency, Procedural Dependency,

Transactional Dependency, Communicational Dependency

and Correlation Dependency.

2.2 Windowing and Sampling
Sven Bittner et al. [11] investigate the memory requirements

for the filtering algorithms. There are two classes of filtering

algorithms in Publisher/subscriber system - i) Filtering using

Boolean subscriptions ii) filtering in canonical forms. It has

been inferred that non-canonical approaches show better

scalability. If disjunctions are involved, then non-canonical

filtering is better. Graham Cormode et al. [12] have

generalized the classical reservoir sampling algorithms to

continuously maintain a random sample over multiple

distributed streams. A new communication efficient protocol

for sampling full streams in the Sliding Window has been

proposed. Kun-ta Chuang et al. [13] has introduced a new

sampling method called feature preserved sampling that

generates high quality sample over Sliding Windows. The

sampling quality refers to the degree of consistency between

the sample proportion and population proportion. Rainer

Gemulla et al. [14] has analyzed the various sampling

schemes that sample a Sliding Window over recent time and a

new method - bounded priority sampling has been

introduced in this paper.

The Literature Survey reveals that Uniform Sampling over

fixed Sliding Window is an approximation method in data

streaming systems. The applicability of which are more

relevant. The Sliding Window size is dependent on the time

interval mentioned in the query. A further optimization has

been proposed in this system by performing sampling of the

event records in the Sliding Window. This kind of

optimization is crucial because events arrive faster than it can

be processed. The events that match the pattern are also much

less in comparison to the number of incoming events. The

filtering of events can be done by sampling the event records

within a window. Thus the query is evaluated in samples of

the event stream rather on the stream itself. The efficient

filtering will automatically result in the improvement of the

systems scalability. Uniform Sampling over Sliding Window

in CEP has not been explored.

3. PROBLEM STATEMENT

An efficient scheme to reduce the number of events forwarded

to the Complex Event Processing Engine is necessary to

increase the throughput of the system. The performance of the

existing CEP approaches degrades with the increase in

number of primitive events. Thus, there is a need to provide

scalability for the CEP system. This is to be achieved by a

heuristic method based on the time context specified in the

complex query.

3.1 Heuristic Event Filtering for Interval

based Temporal Semantics
Subscriptions or queries in CEP systems are continuous in

nature. Continuous queries can be evaluated by sliding a

window over the recent events. Imposing Sliding Windows on

events is a natural method of approximation. Properties in

Sliding Window approximation include well definiteness,

easily understandable and clear semantics. Filtering

techniques based on Sliding Window provides a graceful

solution for CEP systems.

 Sliding Windows are the standards in interval queries where

the context is time. It is used to processes only recent data

which are more relevant. The Sliding Window size is

dependent on the time interval mentioned in the query. A

further optimization has been proposed in this system by

performing sampling of the event records in the Sliding

Window. This kind of optimization is crucial because events

arrive faster than it can be processed. The events that match

the pattern are also much less in comparison to the number of

incoming events. The filtering of events can be done by

sampling the event records within a window. Thus the query

is evaluated in samples of the event stream rather on the

stream itself. The efficient filtering will automatically result in

the improvement of the systems scalability.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

18

The Fig. 2 illustrates the high level conceptual framework of

the proposed system. The incoming events are stored in an

event queue of bounded size .The events are fed into the filter

component. The Sliding Window is used to process the most

recent events. The size of the Sliding Window depends on the

time interval. The sampler component in the filter partitions

the Sliding Window. An event record from each partition is

processed. The intermediate event records are kept in an

Instance Stack. The sampled event records are processed. If

they fail to meet the conjunction predicate, then the events in

the Instance Stack may be purged, or else they have to be

processed.

Fig. 2: High Level Conceptual Framework for Heuristic Event Filtering for Interval based Temporal Semantics

3.2 Algorithm for Heuristic Event Filtering

for Interval based on Temporal Semantics
 To implement this algorithm the infinite event stream E is of

the form E= (e1, e2,). Each item ei is of the form (tsi, datai)

where tsi denotes timestamp and datai denotes the data. The

Sliding Window is represented by Win∆ (t) = E (t) \ E (t +∆).

Window length is the time span covered by the window. The

time interval in the query is given by T. The Instance Stack is

represented by I.

Algorithm HEF

Begin
Initialize Win∆ (t) = E(t) \ E(t + ∆)

Sample et from Win∆ (t)

If constraint satisfies then

Begin
While (t<=(T/2)-1)

Store event et+1 from E in Instance Stack I

Sample event et where t=t+T/2

If constraint satisfies then

Examine events from Instance Stack I

Else
Purge the events from Instance Stack I

End

Else
Sample event et where t=t+T/2

End

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
The generic application methodology is structured as a

message oriented middleware with the set of software

components to perform an efficient event processing. These

software components communicate through a messaging

system called as Java Message Service (JMS) which takes

input as event instances from continuously arriving incoming

events. The experiment is executed on Windows XP PC with

3.2 GHz processor, 2 GB of RAM and 512 MB cache with the

maximum JAVA heap size of 800 Mbytes. It is implemented

in open source Java Enterprise

Edition/Netbean/Glassfish/JMS environment.

 The proposed prototype is to detect the presence of fire hazard

using multiple sensors simulating a manufacturing unit.. The

prototype uses three different sensors. These sensors act as

event sources of input streams. The event sources are

temperature sensor, smoke sensor and water sensors. Each

event is associated with a timestamp. There are four rules for

detection of presence of fire. All the rules have in them a time

context. The events are generated using different rates of

inputs such as 10 event/second, 20 events/second, 30 events

per second etc. The performance of the proposed prototype is

compared with a windowing filter using processing time and

throughput as parameters.

 The experiment is carried out to compare the performance of

the CEP approach with and without filtering. The proposed

approach achieves high efficiency and scalability compared to

the CEP without filtering. The proposed approach filters out

the irrelevant events before the event detection starts

according to the domain expert specified rules. The

performance of the proposed approach is evaluated based on

the throughput (number of events executed per second) and

FILTER

SLIDING
WINDOW

Enot

Enot+1

.

.

Enot+

SAMPLER

INSTANCE

STACK

COMPLEX

EVENT

PROCESSING

ENGINE

PATTERNS

DETECTED

Event Stream 1

Event Stream 2

Event Stream

n

.

.

.

EVENT

QUEUE

Enot

Enot+1

.

.

.

Enot+

.

.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

19

the average processing time (time taken to process the number

of events per second).

Fig. 3: Processing Time

The Fig. 3 shows the effect of Processing Time with respect

to the number of events. From the figure, it can be inferred

that for more number of events generated to the rate of 90

events per second, the Heuristic Event Filtering (HEF)

performs better when compared to Sliding Window (SW)

Filtering. For example, for 90 events per second, the

processing time of HEF is less than 2000 milliseconds,

whereas the processing time of SW is more than 14000

milliseconds.

Fig. 4: Throughput

The Fig. 4 compares the Throughput of the Heuristic Event

Filtering (HEF) and Sliding Window (SW) Filtering.

Throughput is defined as the number of complex events fired

per second. The graph records the complex events fired at

various arrival rates of events. The graph shows that the

number of complex events fired is more for HEF when

compared with SW Filtering. For example, when the arrival

rate of events is 70 events per second, the number of complex

events fired is 20 complex events for SW Filtering, But, HEF

achieves around 560 complex events.

5. CONCLUSION
In this paper, a high level conceptual framework for heuristic

event filtering for interval based temporal semantics is

presented. The system is designed to improve scalability of

the Complex Event Processing system. This sampling of

events within a Sliding Window is necessary to improve the

performance of the filter. The future work will be to

complement this filter with other canonical event filters and to

study the performance improvement.

6. REFERENCES
[1] Gianpaolo Cugola , Alessandro Margara, “Complex

event processing with T-REX”, Software, Volume,

August 2012,

[2] Georges HEBRAIL, “Data stream management and

mining”, Mining Massive Data Sets for Security, IOS

Press, 2008

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev

Motwani, JenniferWidom, “Models and Issues in Data

Stream Systems”, ACM PODS, pp.1-16, 2002

[4] Fusheng Wang, Shaorong Liu, Peiya Liu, “Complex

RFID event processing”, The VLDB Journal, pp.913–

931, 2009

[5] Ehab Al-Shaer, Mohamed Fayad, Hussein Abdel-Wahab,

Kurt Maly, “Adaptive Object-Oriented Filtering

Framework for Event Management Applications”, ACM

Computing Surveys, Volume 32 Issue 1, March 2000

[6] Ming Li, Murali Mani, Elke A. Rundensteiner, Tao Lin,

“Complex event pattern detection over streams with

interval-based temporal semantics”, DEBS

'11 Proceedings of the 5th ACM international conference

on Distributed event-based system, Pages 291-302 , 2011

[7] Sven Bittner, Annika Hinze, “Pruning Subscriptions In

Distributed Publish/Subscribe Systems”, Proceedings of

the 29th Australasian Computer Science Conference -

Volume 48, Pp. 197-206, 2006

[8] Sven Bittner, Annika Hinze, “Classification and Analysis

of Distributed Event Filtering Algorithms”, Lecture

Notes in Computer Science, Volume 3290, pp 301-318,

2004

[9] Kostas Kontogiannis, Ahmed Wasfy, Serge Mankovskii,

“Event clustering for log reduction and run time system

understanding”, Proceedings of the 2011 ACM

Symposium on Applied Computing, Pages 191-192 ,

2011

[10] Sven Bittner, “Supporting arbitrary Boolean

subscriptions in distributed publish/subscribe systems”,

Proceedings of the 3rd international Middleware doctoral

symposium, 2006

[11] Sven Bittner, Annika Hinze, “A Detailed Investigation

of Memory Requirements for Publish/Subscribe Filtering

Algorithms”, LNCS 3760, pp. 148–165, Springer-Verlag

Berlin Heidelberg 2005

[12] Graham Cormode, S. Muthukrishnan, Ke Yi,“

Continuous Sampling from Distributed Streams”, Journal

of the ACM, Vol. 59, No. 2, Article 10, April 2012

 [13] Sven Bittner, Annika Hinze, “The Arbitrary Boolean

Publish/Subscribe Model: Making the Case The arbitrary

Boolean publish/subscribe model: making the case”,

Proceedings of the 2007 inaugural international

conference on Distributed event-based systems, pp. 226 -

237, 2007

http://www.sciencedirect.com/science/article/pii/S0164121212000842
http://www.sciencedirect.com/science/article/pii/S0164121212000842
http://page/
http://page/
http://page/
http://page/
http://website/
http://website/
http://page/
http://page/
http://link.springer.com/search?facet-author=%22Sven+Bittner%22
http://link.springer.com/search?facet-author=%22Annika+Hinze%22
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://page/
http://page/
http://page/
http://page/
http://link.springer.com/search?facet-author=%22Sven+Bittner%22
http://link.springer.com/search?facet-author=%22Annika+Hinze%22

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

20

[14] Kun-Ta Chuang, Hung-Leng Chen,Ming-Syan, “Chen

Feature-Preserved Sampling over Streaming Data” ,

ACM Transactions on Knowledge Discovery from Data,

Vol. 2, No. 4, Article 15, January 2009

[15] Rainer Gemulla, Wolfgang Lehner, “Sampling Time-

Based Sliding Windows in Bounded Space Sampling

time-based Sliding Windows in bounded space”,

Proceedings of the 2008 ACM SIGMOD international

conference on Management of data,pp.379-392 ,2008.

http://page/
http://page/

