
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

49

Automated EJB2 to EJB3 Migration

Isha Mittal,
AMITY University

Noida, India

J.S. Sodhi, PhD

AMITY University
Noida, India

Abstract

Conversion from some old technology to new technology is

requirement for today’s world, our IT industry was started

growing up in late 90’s. At that time there were lots of

development comes in different industry, banking system had

changed drastically, it’s come online with online solutions,

ATM takes place for withdrawing money from the bank,

similarly manufacturing industry grows with IT etc.

We had used advance technology of that time for providing

solution to the respective industry. As the time changes there

are some advancement in each field so IT has also comes with

lots of new technology & configurations, so that we can solve

the real world problem more accurately with cheap prize.

We are providing a automate migration tool that will migrate

EJB2.1 (old) to EJB3.0 (new)[1], EJB2.1 have several

disadvantages like it’s do not have annotation where

annotations are server independent configurations.

Keywords

EJB2, EJB3, migration, business layer, Ejb2 to Ejb3

migration, time saving,

1 INTRODUCTION

Develop a tool to automate the generation of EJJB3.0 entity

(with JPA) and corresponding DAO objects using available

EJB2.1 artifacts such as XDoclet bean and the code (EJB2.1

files, Weblogic AS specific deployment descriptors, Data

Transfer Objects (DTOs)) generated using it.[2]

The artifacts generated by the tool should follow the listed

standards.

 EJB3.0 Entity

o Should list the files that were used to generate the

entity in class level comments.

o Should contain standard JPA annotations like

“@Entity”, “@Table”, “@NamedQueries”,

“@TransactionAttribute”, “@Column”, “@Id”,

“@SequenceGenerator”, “@GeneratedValue”, and “@Lob”

wherever applicable.

o Should list the EJB2.1 deployment descriptor

annotations that are not processed by the tool as “TODO” in

class level comments

o Should extend CLBaseEntity<PK Type> and

implement “getCompareables()” and “getPrimaryKey()”

methods.

o In case of composite primary key, a separate

primary key class should be generated annotated with

“@Embeddable” annotation.

o In case of composite primary key, entity should

have an instance variable of the primary key class with

“@EmbeddedId” annotation.

 DAO Interface

o Should extend CLBaseDao<EJB3.0-Entity, PK

Type>

o Should have declarations of all finder methods.

o Should have “TODO” comment that list all the

custom methods (not including getters/setters of entity fields

and “getData()” methods) with parameters.

 DAO Implementation Class

o Should extend CLBaseDaoImpl< EJB3.0-Entity, PK

Type> and implement <EJB3.0-Entity>Dao

o Should have implementations of all finder methods.

o Should have “TODO” comment that list all the

custom methods (not include getters/setters of entity fields

and “getData()” methods) with parameters

2.1 Analysis

2.1.1 Identification of Data

In this analysis all the data that would represent an entity

attributes was recognized. The following is the list of such

attributes.

 Entity name and fields

 Table name and columns

 Finder methods and queries

 Entity relationships

2.1.2 Identification of Artefacts

In this analysis all the artifacts that would be used to

aggregate entity attributes was recognized. The following is

the list of such artifacts.

 ejb-jar.xml

 weblogic-cmp-rdbms-jar.xml

 weblogic-ejb-jar.xml

 Local interface corresponding to each entity bean

 Data Transfer Objects corresponding to each entity

bean

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

50

 Patterns recognized

o In-case of deployment descriptors each module

contains these xml files in <path>\target\classes\META-INF\

o The corresponding jar file contain the DTOs and

local interfaces of the entity beans are accessible from

<path>\target\

2.1.3 Identification of Development

Methodologies

In this analysis development methodologies were identified

that would be used to generate EJB3.0 and DAO code. The

following is the list of such artifacts.

 XML Transformation using JAXP

 Saxon Processor (XSLT 2.0 compatible)

 Logging using log4j

 Directory scanning based on pattern

2.2 Design

The tool consists of 2 mains components as depicted in

Figure1

2.2.1 Data Artefacts Aggregation

This component searches a particular directory for certain set

of files by making use of Regular Expression and generates 2

files. Figure 2 depicts this process.

The file patterns used to scan the required directory are

 Pattern used to filter 3 types of files – “(^weblogic-

cmp-rdbms-jar.xml)|(^ejb-jar.xml)|(^ weblogic-ejb-jar.xm)”

 Pattern used to make sure that files come from

certain type of directory only – “.*classes\\\\META-INF.*”

 Pattern used to filter jar file that contains DTOs and

local interfaces – “\\D.*-SNAPSHOT.jar$”

The file crawler generates two files after scanning the depths

of the required directory.

 An xml file (filteredDDPaths.xml) that contains the

absolute paths of the deployment descriptor files for each

module.

 A file (jarPaths.txt) that lists the absolute paths of

the jar files that contain DTOs and local interfaces for each

module. This list would be used to set Java “classpath” and is

a pre-requisite for “Data Transformation”

Figure 2–Data Artifacts Aggregation

<project>

<module>

<ejb-dd-path>../work/../classes/META-INF/ejb-

jar.xml</ejb-dd-path>

<web-rdbms-dd-path>../work/../classes/META-

INF/weblogic-cmp-rdbms-jar.xml</web-rdbms-dd-

path>

<web-ejb-dd-path>../work/../classes/META-

INF/weblogic-ejb-jar.xml</web-ejb-dd-path>

</module>

<module>

<ejb-dd-path>……

</project>

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

51

2.2.2 Data Transform

The data transformation component provides the functionality

of meta-data generation and finally EJB3.0/DAO code

generation. The following Figure 3 depicts this process.

Figure 3–Data Transformation

2.3.1 Meta-data Generation

This component gathers all the information segregated in

different files for each entity and place it one xml file (entity-

data.xml). XSL transformation would be incorporated to work

with different xml files and access DTOs present in jar files to

aggregate the data. For each “module” element in

“filteredDDPaths.xml”, a separate “entity-data.xml” file

would be generated.

2.3.2 EJB3.0/DAO Code Generation

This component uses the meta-data file “entity-data.xml” and

performs an XSL transformation to generate the Java code.

The XSL transformation will generate EJB3.0 entity and it

corresponding DAO objects referencing the generic DAO.

3 IMPLEMENTATION

3.1 Development Modules

Eclipse IDE is used for tool development.

3.1.1 3rdParty

 Apache

o log4j-1.2.16.jar – Application logging

 Saxon-9.1B

o saxon9-dom.jar – XML document parsing

o saxon9.jar – XSLT processor

 J2EE

o j2ee-1.4.jar – Required because the tool loads

EJB2.1 files (local interfaces) using reflection for scanning

3.1.2 Common

3.1.2.1 Utilities

 ConfigReader.java – This class is used to load

base configuration file.

 ToolResourceBundle.java – This class maintains

resource bundle for given file.

 Constants.java – This interface holds application

constants values.

 ClassAnalyzer.java – This component loads a class

dynamically and retrieves its properties.

 DataInterpreter.java – This class is to analyse the

data for blank or empty values.

 FileUtility.java – This class provides various file

I/O functionality.

3.1.2.2 Resources

 ejb2-to-ejb3-config.properties – Tool

configuration file

 log4j.properties – Tool log4j configuration file

 CatalogManager.properties – This file tells the

resolver where to look for catalog files and sets configuration

options.

 Xml-catalog.xml – A catalog in XML provides a

mapping from generic addresses to specific local directories

on a given machine. A catalog can be used to locate the DTD,

system entity files, and stylesheet files during processing.

 ejb-jar_2_0.dtd – DTD used by “ejb-jar.xml”

 gcode-constants.xml – This XML file holds

constants that used by XSLT files.

3.1.3 EJB2 to EJB3

3.1.3.1 Data Artefacts Aggregation

 FileCrawler.java – This component searches a

particular directory for certain set of files by making use of

Regular Expression and generates 2 files. The first is an XML

file that contains the absolute paths of the deployment

descriptor files for each module. The second is a text file that

lists the absolute paths of the jar files that contain DTOs and

local interfaces for each module.

3.1.3.2 Data Transformation

 Meta-data Generator

o MetadataGenerator.java – This class gathers all

the information segregated in different files for each entity

and place it one xml file (entity-data-i.xml). XSL

transformation would be incorporated to work with different

xml files and access DTOs present in jar files to aggregate the

data. For each “module” element in “filteredDDPaths.xml”, a

separate “entity-data-i.xml” file would be generated.

o meta-data-builder.xsl – XSLT file used for meta-

data generation

 EJB3.0/DAO Code Generator

o CodeGenerator.java – This class uses the meta-

data file “entity-data-i.xml” and performs an XSL

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

52

transformation to generate the Java code. The XSL

transformation will generate EJB3.0 entity and it

corresponding DAO objects referencing the Generic DAO.

o code-generator.xsl – XSLT file used for

EJB3.0/DAO generation.

3.1.4 Build

3.1.4.1 Ant Build Process

The build process will package the common and EJB2 to

EJB3 java code in separate jar files. The resources would not

be packaged within the jar file. This would provide flexibility

to the user to modify configuration settings without worrying

about executing the build again. \

 ejb2-to-ejb3-tool-build.xml

 ejb2-to-ejb3-tool-build.properties

3.2 Execution Process

The EJB2 to EJB3 migration tool would be executed using a

batch process (ejb2_to_ejb3_tool.bat). The following would

be the various stages.

 Data artefacts aggregation

 Set java classpath using the jar file paths set in

"jarPaths.txt

 Data transformation

4 THINGS TO REMEMBER

The following should be considered while integrating the

generated code.

1. I has been noticed that in the EJB2.1 code, named

queries use reference to the entity attribute name that do not

match the actual declared variable. Wherever such instances

are encountered, rectify the named query.

2. If a "TODO" related to "The following table column

is mapped to an entity field as well as to an entity relationship

attribute" exists; however the related attributes are defined in

separate classes (e.g. Entity and PK class), ignore and remove

this TODO.

3. After applying fixes for a TODO, it should be

removed from the code.

4. If an entity exists more than once in the EJB jar, it

should be distinguished by custom entity name by setting the

“name” attribute of “@Entity” annotation.

4.1 Tool

4.2 Structure

The tool deliverable is in form of a zip archive file “ejb2-to-

ejb3-migration.zip”. Its structure is as follows.

Directory/File Description

formatter Contains Eclipse IDE

code formatting

preferences file.

Tool Base folder for

migration tool.

Lib Contains 3
rd

 party and

common project jar

files.

resources Contains

configuration files.

xslt-files Contains XSL

transformation file.

ejb2_to_ejb3_tool.bat Batch file to execute

the tool.

ejb2-to-ejb3-tool.jar Migration tool jar.

4.3 Configuration

The tool can be configured by using

“ejb2_to_ejb3\Utility\resources\ejb2-to-ejb3-

config.properties” file. It lists different keys that can be set as

per project requirements.

S.

No

.

Key Purpose

1.

data.lookup.dir

.path

Directory path for

searching the

artifacts.

e.g.

“//ip.address/c$/work

/flood”

2.

data.artifacts.di

r.name

Directory for listing

the filtered artifacts.

e.g.

“//ip.address/c$/ejb2_

to_ejb3/artifacts-list-

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

53

files”

3.

data.artifacts.d

d.paths

Name of the file that

lists the path to

filtered files.

e.g.

“filteredDDPaths.xml

”

4.

data.artifacts.ja

r.paths

Name of the file that

lists the jar file names

that are to be set in

Java classpath. These

jar files contain

DTO's and Local

interfaces that would

be interpreted for

EJB3 entity

properties.

e.g. “jarPaths.txt”

5.

data.meta.dir.n

ame

Directory path of the

generated meta-data

files

e.g.

“//ip.address/c$/ejb2_

to_ejb3/meta-data-

files”

6.

meta.data.file.n

ame

Name of the meta-

data file

e.g. “entity-data-”

7.

meta.data.file.e

xtension

File extension of

meta-data file

e.g. “.xml”

8.

filtered.data.fil

e.root

Artifacts xml file root

node name

e.g. “project”

9.

filtered.data.fil

e.element.mod

ule

Artifacts xml file

module node name

e.g. “module”

10.

filtered.file.ele

ment.ejb.dd.pat

h

Artifacts "ejb-

jar.xml" xml file

module child node

name

e.g. “ejb-dd-path”

11.

filtered.file.ele

ment.web.rdbm

s.dd.path

Artifacts “weblogic-

cmp-rdbms-jar.xml”

xml file module child

node name

e.g. “web-rdbms-dd-

path”

12.

filtered.file.ele

ment.web.ejb.d

d.path

Artifacts “weblogic-

ejb-jar.xml” xml file

module child node

name

e.g. “web-ejb-dd-

path”

13.

data.generated.

code.dir.option

Flag to switch

between custom

output directory

location. Valid values

are “CUSTOM” and

“LOOK_UP_DIR”

e.g. “CUSTOM”

14.

data.generated.

code.custom.di

r.name

Directory location

where the code is

generated. Applicable

if the directory option

is "CUSTOM"

e.g.

“//ip.address/c$/ejb2_

to_ejb3/output”

15.

data.generated.

code.sub.src.m

ain

Sub-directory name

where the EJB3 code

generated by the tool

would be placed

e.g. “src/main/java/”

16.

data.generated.

code.sub.src.te

st

Sub-directory name

where the EJB3 test

code generated by the

tool would be placed

e.g. “src/test/java/”

16.

dd.file.name.pa

ttern

Pattern of the files to

be filtered by the file

crawler

e.g. “(^weblogic-

cmp-rdbms-

jar.xml)|(^ejb-

jar.xml)|(^weblogic-

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

54

ejb-jar.xml)”

17.

dd.file.absolute

.path.pattern

Filtered deployment

descriptor files

absolute path pattern

e.g.

“.*classes\\\\META-

INF.*”

18.

jar.file.path.filt

er

Filter for jar file

location

e.g. “classes”

src.dir.filter Filter for source

directory location

path

e.g. “target/classes”

19.

entity.dao.pack

age.filter.val

Filter for establishing

the package for

entities and daos

e.g. “interfaces.”

20.

jar.file.name.pa

ttern

Pattern of the jar file

to be filtered

e.g. “\\D.*-

SNAPSHOT.jar$”

21.

meta.data.build

er

Location of the

transformation file

for entity meta-data

builder

e.g.

“//ip.address/c$/ejb2_

to_ejb3/utility/xslt-

files/meta-data-

builder.xsl”

22.

code.generator Location of the

transformation file

for entity code

generator

e.g.

“//ip.address/c$/ejb2_

to_ejb3/utility/xslt-

files/code-

generator.xsl”

23.
code.constants.

file

Location of the xml

file that holds

constants used in

code generation

e.g.

“//ip.address/c$/ejb2-

to-ejb3-

migration/tool/resour

ces/xsl-

constants.xml”

24.

xml.transform.f

actory

XML Transform

Factory

e.g.

“javax.xml.transform.

TransformerFactory”

25.

saxon.xml.tran

sform.factory

XML Transform

Factory

Implementation

e.g.

“net.sf.saxon.Transfo

rmerFactoryImpl”

4.4 Execution

The tool can the executed by running the

“ejb2_to_ejb3_tool.bat”. This batch process involves 5

different stages that are listed below.

S.No. Section

1. Data artifacts aggregation

2. Set Java classpath

3. Meta-data generation

4. Code generation

5. Generated code indentation using

Eclipse IDE.

Note: The user would need to modify

the script for section 5 of the batch file

as per the local machine.

6 CONCLUSION

This paper gives an intelligent solution for migration of old

ejb version ejb 2.1 to new ejb version 3.0. It can be used in the

IT industry, especially for those companies which are working

on migration domain. Ejb contains the business logic of our

code that needs more security & flexibility from other code;

hence we can say it’s a useful tool for migration your code to

new code.

7 REFERENCES

[1] Oracle Ejb Migration 2005

[2] EJB components Migration Service and Automatic

Deployment – HA

IJCATM : www.ijcaonline.org

