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ABSTRACT 

 K Maps are generally and ideally , thought to be simplest 

form for obtaining solution of Boolean equations.Cubical 

Representation of Boolean equations is an alternate pick to 

incur a solution, otherwise to be meted out with Truth Tables, 

Boolean Laws and different traits of Karnaugh Maps. Largest 

possible k- cubes that exist for a given function are equivalent 

to its prime implicants. A technique of minimization of Logic 

functions is tried to be achieved through cubical methods.  

The main purpose is to make aware and utilise the advantages 

of cubical techniques in minimization of Logic functions. All 

this is done with an aim to achieve minimal cost solution. 
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1. INTRODUCTION 
 Karnaugh maps can be used to good effect for illustrating and 

explaining concepts, if functions have only few variables and 

in finding optimal implementation of logic functions. Logic 

functions can be represented through four different forms – 

truth table, algebraic expressions, venn diagrams and 

karnaugh maps. Algebraic rather than graphical techniques 

can be applied to deal with larger functions of any number of 

variables. Karnaugh map scheme for representing logic 

functions is not appropriate for use in CAD tools, so we will 

be focusing on an alternative representation (cubical) of logic 

functions which is suitable for use in CAD algorithms. 

Cubical representation of logic function is the approach to 

algebraic optimization technique; we will be putting forward 

and contemplating in this paper, mapping   a function of n 

variables onto n dimensional cube. 

Two dimensional cube having four corners are called vertices, 

which correspond to the four rows of a truth table. Each 

vertex is identified by two co-ordinates. Horizontal coordinate 

is assumed to correspond to variable a and vertical coordinate 

to b. Thus vertex 00 is bottom left corner, which corresponds 

to row 0 in the truth table. Vertex 01 is top left corner where 

a=0 and  b=1, which corresponds to row 1 in the truth table 

and so on for the other two vertices. 
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1.1   Representation of  f(a,b)=  ∑m(1,2,3)  

 Mapping a function onto the cube by indicating with circles 

those vertices for which f =1.    

           f=1 for vertices   01,10 and 11. 

Expressing the function as a set of vertices using the notation 

f= {01, 10, 11}. Function f is also shown in the form of a truth 

table in the figure 1.1.  

An edge joins two vertices for which the label differs in the 

value of only one variable. Therefore, if two vertices for 

which f=1 are joined by an edge, then this edge represents that 

portion of the function, as two individual vertices. For 

example, f=1 for vertices 10 and 11. They are joined by the 

edge that is labeled 1x.  x denotes the fact that corresponding 

variables can be either 0 or 1 so 1x means that a=1, while b 

can be either 0 or 1. Similarly, vertices 01 and 11 are joined 

by the edges labeled x1, indicating that a can be either 0 or 1, 

but b=1. Two vertices being represented by a single edge is 

embodiment of combining property. Edge 1x is the logical 

sum of vertices 10 and 11. It defines the term a, which is sum 

of minterms     

             1x = 10 +11 = 1 

             aabba    
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 Finding edges for which f=1 is equivalent to applying the 

combining property , 

     so f={01,10,11} can be represented as f={1x,x1}.  

        This corresponds to logic expression f=a+b  

             

 

                                  

 

 

 

 

 

  In three dimensional cube, each vertex is identified by a 

specific valuation of three variables function. Function  

f(a,b,c)=∑m(0,2,4,5,6) is mapped onto the cube.  There are 

five vertices for which f=1 namely 000, 010, 100, 101 and 

110. These vertices are joined by five edges, namely x00, 0x0, 

x10, 1x0, and 10x. Because the vertices 000, 010, 100, &110 

include all valuation of a and b when c is zero, they can be 

specified by term xx0. 

So     f=1 if  c=0 regardless of the values of a and b. 

  xx0 represent front side of the cube, f can be represented in 

several ways so  

 

f={000,010,100,101,110} 

f={0x0,1x0,101} 

f={x00, x10, 101} 

f={x00, x10,10x} 

f={xx0,10x} 

 

f={xx0,10x} is equivalent to logic expression  

  

   
bacf 
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 f(a,b,c)=∑m(0,2,4,5,6) 
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1.2   Representation of f(a,b,c)=∑m(0,2,4,5,6) 

Picking up another example 

f(a,b,c)=∑m(2,3,7)+d(6) 

 

 

  

 

 

 

 

 

 

Representation of f(a,b,c)=∑m(2,3,7)+d(6) 

f=1         for  011, 010, 111 and 110 

f={010,011,110,111} 

f={01x,11x} 

f={x1x}          

  This corresponds to logic expression       

     
bf 
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Graphical images of two and three dimensional cubes are easy 

to draw.  A four dimensional cube is more difficult. It consists 

of 2 three dimensional cubes with their corners connected. 

Simplest way 2 visualize a four dimensional cube is to have 

one cube placed inside the other cube. Assuming that a, b and 

c coordinates are same as in three dimensional cubes while 

d=0 defines outer cube and d=1 defines the inner cube. 

   

 

Considering the case 

 

f=(a,b,c,d)=∑m(0,2,3,6,7,8,10,15) 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
Representation of function   

f=(a,b,c,d)=∑m(0,2,3,6,7,8,10,15) 

 

There are two groups of four adjacent vertices for which f=1, 

that can be represented as planes  

ABCD   and BLIG. 

Group comprising 0000,0010,1000 and 1010 is represented by 

x0x0. 

Group 0010, 0011, 0110 & 0111 is represented by 0x1x . 

function f can be represented in several ways 

f={0000,0010,0011,0110,0111,1000,1010,1111}. 

f={00x0,10x0,0x10,0x11,x111}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f={x0x0,0x1x,x111}. 

Simplest circuit is obtained if f={x0x0,0x1x,x111} which is 

equivalent to the expression  

       

bcdcadbf 
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bcdcadbf 
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f(a,b,c,d)=∑m{0,2,3,5,6,7,13,14}+d{10,11,15} 

Taking up another example f (a,b,c,d ) = ∑m 

(0,2,3,5,6,7,13,14) + d (10,11,15) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Two groups, one with eight adjacent vertices 

0010,0011,1011,1010,0110,0111,1110,1111 and others with 

four adjacent vertices 0101, 01111, 1101, 1111 and further 

left with 0000 and 0010. 

First group represented by xx10 and second group represented 

by x1x1. 

Function f can be represented in several ways 

f={0000,0010,0011,0101,0110,0111,1010,1011,1101,1110,11

11} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f={(0000,0010),0011,(0101,0111,1101,1111),(0110,1110)(10

10,1011)} 

f={00x0,0011,x1x1,x110,101x} 

f={00x0,x1x1,0011,x110,101x} 

f={00x0,x1x1,xx1x} 

simplest circuit is obtained if f={00x0,x1x1,xx1x} , 
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cbddbaf 

 

a b 

which is equivalent to expression  

cbddbaf 
 

 
 
 

 

 

 

      

 

 

n-dimensional cube 

A function that has n variables can be mapped onto n-

dimensional cube. Although it is impractical to draw 

graphical images of cubes that have more than more 

variables, it is not difficult to extent the ideas to general 

n variable case. 

 

2. CONCLUSION 
This paper presents an efficient manual method   

( cubical ) for obtaining the most compact form of the 

subsumptive general solution of a system of Boolean 

equations. The method utilizes  effective  combination of 

mapping and algebraic methods  and employs a minimum 

number of constructions . 

Throughout its work, the method keeps track  of one and 

many variable representation that leads to an immediate 

construction of the minimal sum-of-product expressions for 

the Boolean functions. The concepts and method developed 

herein can be utilized in various application areas of Boolean 

equations. The proposed  outlook is based on the looping of 

Boolean terms. Therefore in order to take a closer look at how 

to loop two, four or eight 1’s to get the least possible number 

of groups in a K-map table setting. Boolean algebra, 

Karnaugh maps, and CAD (Computer Aided Design) are 

methods of logic simplification. The goal of logic 

simplification is a minimal cost solution. A minimal cost 

solution is a valid logic reduction with the minimum number 

of gates with the minimum number of inputs. This paper 

utilized and focused on cubical representation of Boolean 

functions to achieve minimal cost solution. 

 

 

3. REFERENCES 
[1]  Fundamental of Digital Logic with Verilog Design by 

Stephen Brown and Zvonko Vranesic, tata mcgraw,2007,  

[2]  Mano, Morris M. (1991), Digital Design, Second 

Edition, Prentice-Hall of India Private Limited. 

[3]  Rajaraman, V., Radhakrishnan, T. (2001), An 

Introduction to Digital Computer Design, Fourth Edition, 

Prentice-Hall of India Private Limited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4]  Tanenbaum, A. S. (2004), Structured Computer 

Organization, Fourth Edition, Prentice-Hall of India 

Private Limited. 

[5]  Leach, D. P, Malvino, A. P. and Saha, G. (2006), Digital 

Principles and Applications, Second Edition, Tata 

McGraw-Hill. 

[6]  Wakerly, John F. (2005), Digital Design, Principles and 

Practices, Third Edition Updated, Ninth Indian Reprint, 

Pearson Education Inc. 

[7]  Crenshaw, Jack W. (2003), A primer on Karnaugh maps, 

Embedded Systems Design, Retrieved from 

http://www.embedded.com/columns/programmerstoolbo

x/16100908?_requestid=264392 

[8]  Kuphaldt, Tony R. (2007), Lessons in Electric Circuits, 

Volume IV – Digital, Fourth Edition, Available as part of 

the Open Book Project collection retrieved from: 

www.ibiblio.org/obp/electricCircuits 

 [9] E. J. McCluskey, “Minimization of Boolean Functions,” 

Bell System Technical Journal, vol. 35, no. 5, pp. 1417-

1444, 1956.  

[10] Quine, W.V. (1952). “The Problem of Simplifying Truth 

Functions”. The American Mathematical Monthly, Vol. 

59, No. 8. 

[11]  T. Sasao, “Worst and Best Irredundant Sum-of–Product 

Expressions”, IEEE Transactions on Computers, 50(9) 

(2001),pp. 935–947 

[12]  A. Mishchenco and T. Sasao, “Large-Scale SOP 

minimization Using Decomposition and Functional 

Properties”, DAC 2003, June 2-6, pp. 149–154. 

[13]  P.P. Tirumalai and J.T. Butler, “Minimization 

Algorithms for Multiple-Valued Programmable Logic 

Arrays”, IEEE Transactions on Computers, (1991), pp. 

167–177. 

[14]  Y. Saad and M.H. Schultz, “Topological Properties of 

Hypercubes”, IEEE Trans. on Comput.,  (1988), pp. 867–

872. 

[15]  E.W. Veitch, “A Chart Method for Simplifying Truth 

Functions”, Proc. of the ACM, 1952, pp. 127–133. 

 
1 
 

 
0 

 
1 

 
1 

0 1 1 1 

0 1 x 1 

0 0   x x 

c d c  d c d c d 

a b 

ab 

a b 



International Journal of Computer Applications (0975 – 8887) 

Volume 70– No.23, May 2013 

6 

[16]  M. Karnaugh, “A Map Method for Synthesis of 

Combinational Logic Circuits”, Trans. AIEE, Comm. 

and Electronics, (1953), pp. 593–599. 

 [17] M.R. Dagenais, V. K. Agarwal, and N. C. Rumin, 

“McBoole: A New Procedure for Exact Logic 

Minimization”, IEEE Trans. on Computer-Aided Design, 

(1986), pp. 229–238. 

[18] R.L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-

Valued Minimization for PLA Optimization”, IEEE 

Trans. On Computer-Aided Design, (1987), pp. 727–750. 

[19] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and 

A.R. Wang, “MIS: A Multiple-Level Logic Optimization 

Systems”, IEEE Trans. on Computer-Aided Design,  

(1987), pp. 1062–1081. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[20]  K.A. Bartlett et al., “Multilevel Logic Minimization 

Using Implicit Don’t Cares”, IEEE Trans. on Computer-

Aided Design,  (1988), pp.723–740. Şirzat Kahramanli, 

Salih Güneş, Seral Şahan, and Fatih Başçiftçi, The 

Arabian Journal for Science and Engineering, Volume 

32, Number 1B April 2007 114 

[21]  H. Savoj, A.A. Malik, and R.K. Brayton, “Fast Two-

Level logic Minimizers for Multi-Level Logic 

Synthesis”, IEEE Int. Conf. on Computer Aided Design, 

1989, pp. 426–429. 

[22] R.K. Brayton and F. Somenzi, “Minimization of Boolean 

Relations”, IEEE Int. Symp. on 

 

 

 

 

 

 

 

 

 

 

 

 

 

IJCATM : www.ijcaonline.org 


