Pair Sum Labeling of some Special Graphs

K.Manimekalai Department of Mathematics, Bharathi Women's College (Autonomous), Chennai -600106, India.

ABSTRACT

Let G be a (p, q) graph. A one-one map $f: V(G) \rightarrow \{\pm 1, \pm 2, ..., \pm p\}$ is said to be a pair sum labeling if the induced edge function, $f_e: E(G) \rightarrow Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, ..., \pm k_{q/2}\}$ or $\{\pm k_1, \pm k_2, ..., \pm k_{(q-1)/2}\} \cup \{k_{(q+1)/2}\}$ according as q is even or odd. Recently, the pair sum labeling was introduced by R.Ponraj, J. V. X. Parthipan [3]. In this paper we study about the pair sum labeling of the coconut tree CT(m, n), the Y-tree Y_{n+1}, the Jelly fish graph J(m, n), the (m, 2)-kite, (m, 1)-kite, the theta graph $\Theta(l^{[m]})$, for m even and complete binary tree.

Keywords

pair sum labeling, pair sum graph. **AMS Classification:** 05C78.

1. INTRODUCTION

The graph considered here are all finite, undirected and simple. V(G) and E(G) denote the vertex set and edge set of a graph G. The pair sum labeling is introduced in [3] by R. Ponraj and et al. In [3],[4] [5] and [6] they study the pair sum labeling of cycle, path, star and some of their related graphs like $B_{m,n}, K_{1,n} \cup K_{1,m}, P_m \cup K_{1,n}, C_n \cup C_n$ etc. In this paper we prove that the pair sum labeling of coconut tree CT(m, n), the Y-tree Y_{n+1} , Jelly fish J(m, n), (m, 2)-kite, (m, 1)-kite and the theta graph $\Theta(l^{[m]})$, for m even and complete binary tree. Let x be any real number, then [x] denotes the largest integer less than or equal to x. Terms and terminology as in Harary [2].

Definition 1.1[3]: Let G(V, E) be a (p, q) graph. A oneone function $f : V(G) \rightarrow \{\pm 1, \pm 2, ..., \pm p\}$ is said to be a pair sum labeling if the induced edge function $f_e : E(G) \rightarrow Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, ..., \pm k_{q/2}\}$ or $\{\pm k_1, \pm k_2, ..., \pm k_{(q-1)/2}\} \cup \{k_{(q+1)/2}\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph.

Definition 1.2: A coconut Tree CT(m,n) is the graph obtained from the path P_m by appending n new pendent edges at an end vertex of P_m .

Definition 1.3: A Y -tree Y_{n+1} is a graph obtained from the path P_n by appending an edge to a vertex of the path P_m adjacent to an end point.

Definition 1.4: An (n, t)-kite is a cycle of length n with a t-edge path (the tail) attached to one vertex. In particular, the (n, 1)-kite is a cycle of length n with an edge attached to one vertex. (n, 1)-kite is also known as flag $F\ell_n$.

K.Thirusangu

Department of Mathematics, S.I.V.E.T.College, Gowrivakkam, Chennai -600073, India.

Definition 1.5: The Jelly fish graph J(m, n) is obtained from a 4- cycle v_1 , v_2 , v_3 , v_4 by joining v_1 and v_3 with an edge and appending m pendent edges to v_2 and n pendent edges to v_4 .

Definition 1.6: Take k paths of length $l_1, l_2, l_3, \ldots, l_k$, where $k \ge 3$ and $l_i = 1$ for at most one i. Identify their end points to form a new graph. The new graph is called a generalized theta graph, and is denoted by $\Theta(l_1, l_2, l_3, \ldots, l_k)$. In other words, $\Theta(l_1, l_2, l_3, \ldots, l_k)$ consists $k \ge 3$ pair wise internally disjoint paths of length $l_1, l_2, l_3, \ldots, l_k$ that share a pair of common end points u and v. If each l_i ($i = 1, 2, \ldots, k$) is equal to l, we will write $\Theta(l^{[k]})$.

Definition 1.7: A binary tree is defined as a tree in which there is exactly one vertex (root vertex) of degree two and each of the remaining vertices is of degree one or three. A d-level complete binary tree (complete binary tree of depth d) is a binary tree in which each internal vertex (non-pendent vertex) other than the root is of degree three and all the pendent vertices are at level d. (In a binary tree a vertex v is said to be at level *l*, if v is at a distance of *l* from the root).

In [3] and [2] R. Ponraj, J. V. X. Parthipan have proved the following results which we will use in the proof of our theorems.

Theorem 1.1[3]: (3, 1) - kite is not a pair sum graph.

Theorem 1.2[2]: The complete bipartite graphs $K_{1,n}$ and $K_{2,n}$ are pair sum graphs.

2. MAIN RESULTS

Theorem 2.1: The (m, 2)-kite is a pair sum graph for all $m \ge 3$.

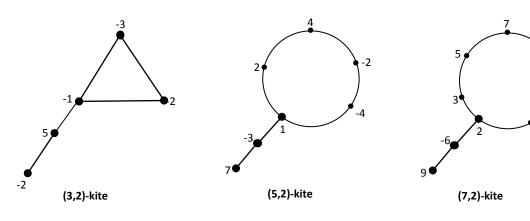
Proof: Let V be the vertex set and E be the edge set of (m, 2)-kite. Then |V| = |E| = m + 2. Consider the following two cases.

 $\begin{array}{l} \textit{Case 1:} m \text{ is even. Let } m = 2r. \\ \textit{Let } V = \{u_i, v_i / 1 \leq i \leq r\} \cup \{w_1, w_2\} \text{ and} \\ E = \{u_i u_{i+1}, v_i v_{i+1} / 1 \leq i \leq r-1\} \cup \{u_r v_1, v_r u_1, u_r \, w_1, w_1 w_2\}. \\ \textit{Define a map } f: V \rightarrow \{\pm 1, \pm 2, \ldots, \pm (2r+2)\} \text{ as follows:} \\ f(u_i) = 2i \ ; \ 1 \leq i \leq r-1 \\ f(v_i) = -f(u_i) \ ; \ 1 \leq i \leq r-1 \\ f(u_r) = 1, \ f(v_r) = -1, \ f(w_1) = -(r+1), \ f(w_2) = (2r+1). \\ \textit{Then } f \ is a pair sum labeling. \\ \textit{Case2:} m \ is odd. \\ \textit{Subcase 2.1:} m \geq 9 \\ \textit{Let } m = 2r+1, r \geq 4. \\ \textit{Let } V = \{u_i / 1 \leq i \leq r\} \cup \{v_i / 1 \leq i \leq r+1\} \cup \{w_1, w_2\} \text{ and} \\ E = \{u_i u_{i+1} / 1 \leq i \leq r\} \cup \{v_i v_{i+1} / 1 \leq i \leq r\} \cup \{u_r v_1, v_{r+1} u_1, v_r w_1, w_1 w_2\}. \end{array}$

Define $f: V \to \{\pm 1, \pm 2, ..., \pm (2r+3)\}$ as follows: $f(u_i) = 2i \ ; \ 1 \le i \le r-1$ $f(v_i) = -f(u_i) \ ; \ 1 \le i \le r-2$ $f(u_r) = 2r-1, \ f(v_{r-1}) = 2r-3, \ f(v_r) = -(2r-2), \ f(v_{r+1}) = -(2r-1)$ $f(w_1) = -(2r-5), \ f(w_2) = 2r+3.$ Then f is a pair sum labeling. $Subcase\ 2.2:$ for $m=\ 3$, 5 and 7, a pair sum labeling of

Subcase 2.2: for m = 3, 5 and 7, a pair sum labeling of (m,2)-kite is given in Figure 1.

 $\begin{array}{l} Subcase \ 1.1: \ m \ is \ even. \ Let \ m = 2r. Then \ V(G) = \{u_i, v_i \ / \ 1 \leq i \leq r\} \cup \{w_i \ / \ 1 \leq i \leq n\} \ and \\ E(G) = \{u_r v_1, u_i u_{i+1}, v_i v_{i+1} \ / \ 1 \leq i \leq r-1\} \cup \{w_i \ / \ 1 \leq i \leq n\}. \\ Define \ f: \ V \to \{\pm 1, \pm 2, \ \dots, \pm (2r+n) \ \} \ as \ follows: \\ f(u_1) = -3, \ f(u_r) = 1, \ f(v_r) = -1 \\ f(u_i) = 2i \ ; \ 2 \leq i \leq r-1 \\ f(v_i) = -f(u_i) \ ; \ 1 \leq i \leq r-1 \end{array}$



Hence the (m, 2)-kite is a pair sum graph for all $m \ge 3$.

Corollary 2.2: By deleting the pendant vertex in the (m,2)-kite of the proof of the Theorem 2.1 and by Theorem 1.1, the (m, 1)-kite is a pair sum graph except for m = 3.

Example 2.1: In Figure 2, pair sum labeling of (16,2)-kite and (17,2)-kite are illustrated.

 $f(w_i) = \begin{cases} 7 & ; i = 1 \\ -(2i+3) & ; 2 \le i \le n \& i \text{ even} \\ (2i+3) & ; 3 \le i \le n \& i \text{ odd} \end{cases}$

 $\begin{array}{l} \label{eq:subcase 1.2: m is odd. Let $m=2r+1$.} \\ \mbox{Then $V(G)=\{u_{r+1},\,u_i,\,v_i/1\leq i\leq r\}\cup\{w_i/1\leq i\leq n\}$ and} \\ \mbox{E}(G)=\{u_iu_{i+1},\,u_rv_1,\,v_rv_{r+1}\,,\,v_iv_{i+1}/1\leq i\leq r-1\}\cup\{v_{r+1}w_i/1\leq i\leq n\}. \end{array}$

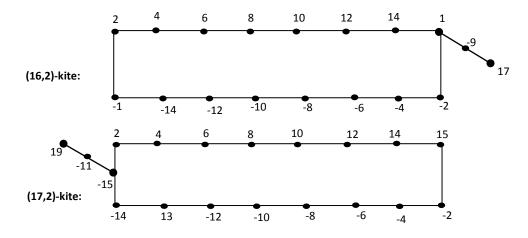


Figure 2: Pair sum labeling of (16,2)-kite and (17,2)-kite

Theorem 2.3: The coconut tree CT(m, n) is a pair sum graph.

Proof: Let G(V,E) = CT(m, n). then |V(G)| = m + n and |E(G)| = m + n-1*Case 1:* $m \ge 5$
$$f(v_i) = \begin{cases} -2i & ; \ 1 \le i \le r \\ -1 & ; \ i = r+1 \end{cases}$$
$$f(w_i) = \begin{cases} 2 & ; \ i = 1 \\ 7 & ; \ i = 2 \\ -(2i+1) & ; \ 3 \le i \le n \end{cases}$$

Case 2: $m \le 4$.

Subcase 2.1: m = 1, then G = CT(1,n) is the star $K_{1,n}$. By Theorem 1.2 [2], G is a pair sum graph.

Subcase 2.2: m = 2, then G = CT(2,n) is the star $K_{1,n+1}$. By Theorem 1.2 [2], it is a pair sum graph.

Subcase 2.3: m = 3, then G = CT(3,n).

Let $V(G) = \{v_{i\, \prime}\, 1 \leq i \leq 3\} \cup \{w_i \, \prime \, 1 \leq i \leq n\}$ and $E(G) = \{v_1 v_2 \, , \ v_2 v_3\} \cup \{v_3 w_i \, \prime \, 1 \leq i \leq n\}.$

Label the vertices v_1 , v_2 and v_3 by -3, 2 and -1 respectively.

For
$$1 \le i \le n$$
, define $f(\mathbf{w}_i) = \begin{cases} -(i+1) & ; i \text{ odd} \\ (i+2) & ; i \text{ even} \end{cases}$

Subcase 2.4: m = 4 then G = CT(4,n).

 $\begin{array}{l} V(G) = \{v_i \ / 1 \leq i \leq 4\} \cup \{w_i \ / \ 1 \leq i \leq n\} \text{ and } E(G) = \{v_1v_2, v_2v_3, v_3v_4\} \cup \{v_4w_i \ / \ 1 \leq i \leq n\}. \text{ Label the vertices } v_1, v_2, v_3 \text{ and } v_4 \text{ by -2,-4, 1 and 2 respectively.} \end{array}$

$$f(w_i) = \begin{cases} 4 & ; i = 1 \\ -1 & ; i = 2 \\ -3 & ; i = 3 \\ i - 1 & ; 4 \le i \le n \& i \text{ even} \\ -(i+2); 5 \le i \le n \& i \text{ odd} \end{cases}$$

Then f is a pair sum labeling. Hence the coconut tree CT(m, n) is a pair sum graph.

Example 2.2: In Figure 3, the pair sum labeling for CT(4,7) is exhibited.

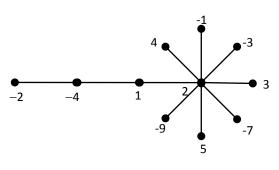


Figure. 3: Pair sum labeling CT(4,7)

Corollary 2. 4: For $r \ge 3$, the Y –tree Y_{r+1} is a pair sum graph.

Proof: It is easily observed that $Y_{r+1} \cong CT(r-1,2)$ for $r \ge 3$. Hence by Theorem 2.1, Y_{r+1} is a pair sum graph.

Example 2.3: In Figure 4 a pair sum labeling of Y_{4+1} and Y_{5+1} are illustrated.

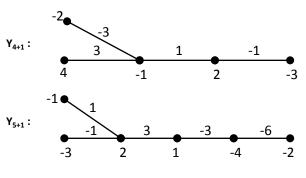


Figure 4: pair sum labeling of Y₆₊₁, Y₄₊₁ and Y₅₊₁

Theorem 2.5: For m, $n \ge 1$, Jelly fish graph J(m, n) is a pair sum graph.

 $\begin{array}{l} \textbf{Proof:} \ Let \ G(V,E) = J(m, \ n). \ Then \ G \ has \ (m+n+4) \ vertices \\ and \ (m+n+5) \ edges. \ Let \ n \geq m. \ Let \ V(G) = \ V_1 \cup V_2 \ where \\ V_1 = \{x, \ u, \ y, \ v\}, V_2 = \{ \ u_i, \ v_j \ ; \ 1 \leq i \leq m \ , \ 1 \leq i \leq n \ \} \ and \ E = \\ E_1 \cup E_2 \ , where \ E_1 = \{xu, \ uy, \ yv, \ vx, \ xy \ \} \ , \ E_2 = \{ \ uu_i, \ vv_j \ ; \ 1 \leq i \leq m \ , \ 1 \leq j \leq n \ \}. \end{array}$

Define f: V \rightarrow {±1, ±2, ..., ±(m+n+4) } as follows: Label the vertices x, u, y, v by -5, -1, 3 and 1 respectively. Define

$$f(v_i) = \begin{cases} 5 & ; i = 1\\ 2(i-1) & ; 2 \le i \le 4\\ (i+2) & ; 5 \le i \le m+1 \end{cases}$$

For $2 \le j \le n-m$

 $f(v_{m+j}) = \begin{cases} m+3+(j/2) & ; & 2 \le j \le m-n \text{ \& j even} \\ -(m+5+(j-1)/2) & ; & 3 \le j \le m-n \text{ \& j odd} \end{cases}$ $f(u_i) = -f(v_{i+1}); & 1 \le i \le m.$

Then f is a pair sum labeling. Hence the Jelly fish graph J(m, n) is a pair sum graph.

Example 2.4: In Figure 5, the pair sum labeling for the Jelly fish graph J(4, 7) is exhibited.

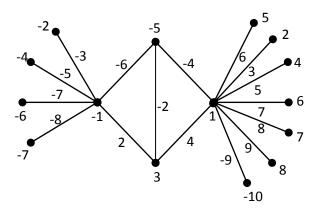


Figure 5: pair sum labeling for the Jelly fish J(4, 7)

Next we will prove that the theta graph $\Theta(\ell^{[m]})$ is a pair sum graph, for m even.

Theorem 2.6: For m even, the theta graph $\Theta(\ell^{[m]})$ is a pair sum graph.

Proof: Let $G(V,E) = \Theta(\ell^{[m]})$. Then $|V(G)| = m(\ell - 1) + 2$ and $|E(G)| = m \ell$. Let $V(G) = V_1 \cup V_2$ where $\mathbf{V}_{1} = \{\mathbf{u}_{i,j}, \mathbf{v}_{i,j} \mid 1 \le i \le m/2 \text{ and } 1 \le j \le \ell - 1\}$ $\mathbf{V}_2 = \{\mathbf{u}, \mathbf{v}\}$ and $\mathbf{E}(\mathbf{G}) = \mathbf{E}_1 \cup \mathbf{E}_2$ where $\mathbf{E}_{1} = \left\{ \mathbf{u}_{i,i} \, \mathbf{u}_{i,i+1} \,, \, \mathbf{v}_{i,i} \, \mathbf{v}_{i,i+1} / 1 \le i \le m/2 \,, \, 1 \le j \le \ell - 2 \right\},\$ $\mathbf{E}_{2} = \left\{ \mathbf{u}\mathbf{u}_{i,1}, \mathbf{u} \ \mathbf{v}_{i,\ell-1}, \mathbf{v}\mathbf{v}_{i,1}, \mathbf{v} \ \mathbf{u}_{i,\ell-1} / 1 \le i \le m/2 \right\}$

Define a map f : V(G) \rightarrow {±1, ±2, ..., ± m(ℓ - 1) +2} as follows: f(u) = 1, f(v) = -1,

 $f(u_{i,i}) = 2(\ell i - i + j - \ell + 1); 1 \le i \le m/2 \& 1 \le j \le \ell - 1$

 $f(v_{i,j}) = f(u_{i,j})$) ; $1 \le i \le m/2$ & $1 \le j \le \ell$ -1

Clearly f is a pair sum labeling. Hence the theta graph $\Theta(\ell^{[m]})$ is a pair sum graph for m even.

Example 2.5: In Figure 6, a pair sum labeling for the theta graph $\Theta(7^{[6]})$ is exhibited.

Proof: Construct the m-level complete binary tree as shown in figure 2.6. Let the vertex set V and the edge set E be defined as $V = \{x_0\} \cup \{x_{i,j} \mid 1 \le i \le m, 1 \le j \le 2^i\}$ and E = $\begin{aligned} & \{x_0x_{1,1}, \, x_0x_{1,2}\} \cup \{x_{i,j}x_{i+1,2j-1}, \ x_{i,j}x_{i+1,2j} \ / \ 1 \leq i \leq m-1, \ 1 \leq j \leq 2^i \\ & \}. Then \ |V| = 2^{m+1} - 1 \ and \ |E| = 2^{m+1} - 2. \end{aligned}$ Consider the following two cases. Case 1: $m \ge 2$. Define $f: V \rightarrow \{\pm 1, \pm 2, \dots, \pm (2^{m+1}-1)\}$ as follows: $f(x_0) = 1$, $f(x_{1,1}) = 3$, $f(x_{1,2}) = -3$, $f(x_{2,1}) = -2$, $f(x_{2,2}) = -7$, $f(x_{2,3}) = 2, f(x_{2,4}) = 5.$ For $1 \le i \le m$, $1 \le j \le 2^i$

Subcase 1.1: i is odd.

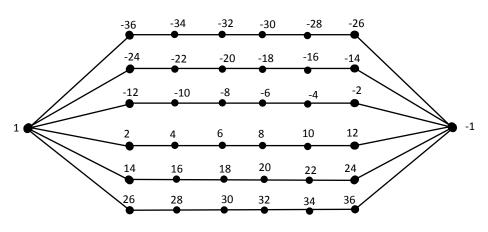


Figure 6: pair sum labeling for the theta graph $\Theta(7^{[6]})$

Next we will prove that a complete binary tree is a pair sum graph. In a binary tree a vertex v is said to be at level d, if v is at a distance of d from the root. The number of vertices at levels $0, 1, 2, \dots, m$ in a m-level complete binary tree are $2^0, 2^1$ $2^{2}, \dots, 2^{m}$ respectively. Thus the total number of vertices in mlevel complete binary tree is $2^{m+1} - 1$.

Example 2.6: A 3-level complete binary tree is shown in Figure 7.

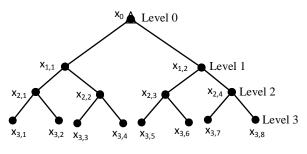


Figure 7 : 3-level complete binary tree

Theorem 2.7: For all $m \ge 1$, the m-level complete binary tree is a pair sum graph.

$$\mathbf{f}(\mathbf{x}_{i,j}) = \begin{cases} -2^{i} - j + 1 & ; & 1 \le j \le \frac{1}{2}2^{i} \\ 2^{i-1} + j - 1 & ; & \frac{1}{2}2^{i} + 1 \le j \le \frac{3}{4}2^{i} \\ 2^{i-1} + j + 1 & ; & \frac{3}{4}2^{i} + 1 \le j \le 2^{i} \end{cases}$$

Subcase 1.2: i is even.

$$f(\mathbf{x}_{i,j}) = \begin{cases} -2^{i} - j + 1 & ; \quad 1 \le j \le \frac{1}{4}2^{i} \\ -(2^{i} + j + 1) & ; \quad \frac{1}{4}2^{i} + 1 \le j \le \frac{1}{2}2^{i} \\ 2^{i-1} + j - 1 & ; \quad \frac{1}{2}2^{i} + 1 \le j \le 2^{i} \end{cases}$$

Then it is clearly observed that f is a pair sum labeling.

Case 2: Let m = 1. Then $V = \{x_0, x_{1,1}, x_{1,2}\}$ and $E = \{x_0x_{1,1}, x_{1,2}\}$ $x_0x_{1,2}$. Define $f: V \to \{\pm 1, \pm 2, \pm 3\}$ by $f(x_0) = -2$, $f(x_{1,1}) = -2$ 3, $f(x_{1,2}) = 1$. Clearly f is a pair sum labeling. Hence for all $m \ge 1$, the m-level complete binary tree admits a pair sum labeling.

Example 2.7: In Figure 8, pair sum labeling of fourlevel complete binary tree is illustrated.

International Journal of Computer Applications (0975 – 8887) Volume 69– No.8, May 2013

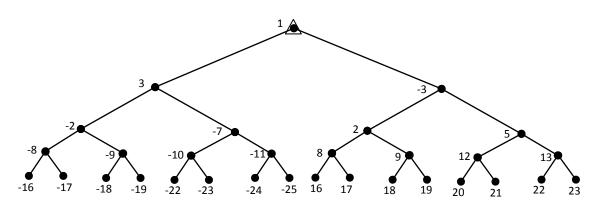


Figure 8: pair sum labeling of four level complete binary tree

3. CONCLUSION

In this paper we investigated some graphs like the coconut tree CT(m, n), the Y-tree Yn+1, Jelly fish graph J(m, n), the (m,2)-kite, (m,1)-kite, the theta graph $\Theta(l[m])$, for m even and complete binary tree are pair sum graphs. For the graphs like trees, (m, n)-kites for all n >2 this labeling can be verified.

4. ACKNOWLEDGEMENTS

Authors are thankful to the referee for the valuable comments which improve the standard of the paper.

5. REFERENCES

- [1] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics,14 (2009), DS6.
- [2] F.Harary, "Graph Theory", Narosa Publishing House, New Delhi, (1998).
- [3] R.Ponraj, J. V. X. Parthipan, "Pair Sum Labeling of Graphs", The Journal of Indian Academy of Mathematics, Vol. 32, No. 2, 2010, pp. 587-595.
- [4] R.Ponraj, J. V. X. Parthipan and R. Kala, "Some Results on Pair Sum Labeling", International Journal of Mathematical Combinatorics, Vol. 4, 2010, pp. 55-61.
- [5] R.Ponraj, J. V. X. Parthipan and R. Kala, "A Note on Pair Sum Graphs", Journal of Scientific Research, Vol. 3, No. 2, 2011, pp. 321-329.
- [6] R.Ponraj, J. V. X. Parthipan, Further Results on Pair Sum Labeling of Trees, Applied Mathematics, 2011, 2, 1270-1278.
- [7] B. West, Introduction to Graph Theory, Prentice-Hall, India, 2001.