
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

37

A Review on Software Development Security
Engineering using Dynamic System Method (DSDM)

ABSTRACT
Agile methodology such as Scrum, Extreme Programming

(XP), Feature Driven Development (FDD) and the Dynamic

System Development Method (DSDM) have gained enough

recognition as efficient development process by delivering

software fast even under the time constrains. However, like

other agile methods DSDM has been criticized because of

unavailability of security element in its four phases. In order

to have a deeper look into the matter and discover more about

the reality, we conducted a literature review. Our findings

highlight that, in its current form, the DSDM does not support

developing secure software. Although, there are a few

researches on this topic about Scrum, XP and FDD but, based

on our findings, there is no research on developing secure

software using DSDM. Thus, in our future work we intend to

propose enhanced DSDM that will cater the security aspects

in software development.

Keywords
Agile Development; Software Security; Software

Engineering; Dynamic System Development Method; DSDM

1. INTRODUCTION
The DSDM software development approach that provides a

framework for building and maintaining systems, meets tight

time schedule through the use of incremental and iterative

prototyping in a controlled project environment [1]. On the

other hand, According to the computer Emergency Response

Team (CERT) statistics[3].There had been a considerable

increase in security related software vulnerabilities reported

over the last few years. However, like other agile methods, the

existing DSDM does not provide any phase or sub-phase to

address security issue in software development. In general,

one of the most important reasons why the agile methods

ignore security issue of software may come from the

misconception that security delays development process

[2].Despite this misconception, security remains one of the

most important non-functional requirements of

a software system. Though, recently, a few efforts have made

in order to address the security in software development, such

efforts using agile models like Scrum, XP. Some of such

efforts have been published [6][9][30][31][32][33].

However, based on the literature review, we found that there

is a small amount of research conducted on developing secure

software using DSDM. In order to have a deeper look into the

fact, this paper presents the concepts of DSDM, its principles,

techniques, practices, general security principles, limitations

of DSDM in terms of addressing security, and the analysis of

literature review. Thus, it is appropriate to commence with the

concept of DSDM.

2. DSDM AND PRINCIPLES
The basic concept of DSDM is that the time and resource are

adjusted, so that the agility feature of DSDM is satisfied.

Basically, DSDM has four main phases (Figure 1). The four

main phases are feasibility, functional model iteration, design

and build iteration and implementation. Then each phase has

several sub-phases as mentioned below.

Fig 1:DSDM phases and sub-phases

Abdullahi Sani, Adila Firdaus
Faculty of Computing

Universiti Teknologi Malaysia

Imran Ghani
Faculty of Computing

Universiti Teknologi Malaysia

Seung Ryul Jeong
School of Management

Information Systems (MIS),
Kookmin University, Korea.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

38

Basically, the DSDM is mainly divided into two major

phases, Pre-project phase and Post-project phase.

•Pre-project: This phase concerns the decision to set up the

project in the first place that is business/Board decision. There

are several sub-phases in this phase.

• Feasibility Study: This sub-phase is a short study of a

few days or a few weeks. In this phase fairly conventional

questions are asked such as ―is this project worth

doing?‖,and ―is this technically possible?‖

• Business Study: This sub-phase identifies business

processes to be automated; high level functions and non-

functional requirements; prioritises functions; outlines

system architecture; produces outline plan for

development, feasibility and business studies are same as

Inception in the Unified Process.

• Functional Model Iteration –In this sub-phase analysis

models and software components are built, which are

based on the high-level models defined in the Business

Study phase, equivalent to Elaboration.

• System Design and Build Iteration: This sub-phase is the

system engineering phase; the main product here is the

tested system, equal to Construction

• Implementation: This phase is the cutover from the

development environment to the operational environment,

including training the users and handing over the system

to them is equal to Transition.

• Post-project: This phase maintains the post-

implementation review to assess success of project.

Question like ―has it delivered intended benefits?‖ are

answered.

The DSDM is based on a few agile principles. Most of these

principles are common in other agile methods i.e., Scrum, XP,

and FDD also. The DSDM principles are divided into nine

where each principle works hand in hand with the other. The

principles of DSDM are as follows.

1. Active user involvement is unavoidable.

2. Always DSDM teams must be empowered to make

decisions.

3. The main concern is on frequent delivery of

products.

4. Suitability for business purpose is the essential

criteria for acceptance of deliverable.

5. In order to converge on accurate business solution,

iterative and incremental development is necessary.

6. During development process all changes are

reversible.

7. The baseline of requirements is at a high level.

8. Testing is integrated throughout the life-cycle.

9. The collaborative and cooperative approach

between all stakeholders is essential.

Since, the focus of this paper is to study strengths and

limitations of existing DSDM, thus it is appropriate to discuss

that ―what actually is important while developing secure

software?‖ In order to answer this question, we need to look

into the principles of developing software security (Section 3)

recommended by [4].

2.1 DSDM Techniques

DSDM rely heavily on techniques to develop an application.

However, various techniques can work together to addressed

the gap among different aspects (requirements prioritization,

stakeholders’ concerns, project management and so on) of

development. Below are some of the techniques used in

DSDM development.

 MoSCoW Prioritization [13].Prioritization is essential

because things that are important must be considered

before things that are less, because there is no enough

time to do everything. The functionality is categorized

according to its importance:

o Must Have – The consideration is given to the most

important things and that are fundamental to the system.

o Should Have–The important things for the business

solution.

o Could Have – The things that are useful but system can

be developed without them for a while.

 Won't Have -The things that can easily wait until later.

 Prototyping: DSDM uses prototypes heavily to make sure

that all interested parties have a clear picture of the

various aspects of the system.

 Facilitated Workshops: Workshops facilitation allow for

the following benefits:

 The environment must be ideal for the formation of ideas

and those ideas are quick and balance growth.

 Awareness of decisions made by all interested parties by

other interested parties.

 Wider range of stakeholders can make decisions.

 Quick and accurate decisions are made.

 Time-Boxing: Project management which traditionally,

uses milestones to harmonize on a deliverables to a given

point in time. Whereas milestones work well enough, the

much powerful tool to achieve the same result is time-

box[8].A time-box is an interval, usually no longer then 6

weeks, where a given set of tasks should be achieved. The

reason for the relatively low duration of time-boxes is the

based on the fact, that humans give much more accurate

estimates in the near-future involving a small set of tasks,

while estimates into the distant future involving large sets

of tasks turn out to have hefty errors. Time-boxes can

contain several tasks, and at the end need to deliver a

product. Milestones also suffer from having a fixed

deliverable, while time-boxes are subject to change, since

the tasks are defined, not the necessarily the deliverable,

which can change if prioritization shifts during the time-

box iteration, allowing for rapid response to business

needs. In short DSDM rather drops functionality in favour

of delivering in time [8].

Rather than being just a process model, DSDM is a

framework for software development, which includes project

management, estimating, prototyping, time boxing,

configuration management, prioritized requirements,

implementing, testing, quality assurance, roles and

responsibilities of users and IT staff, team structures and tool

environments. Thus, the software security is not the concern

of existing DSDM. The following section briefly describes the

limitations of DSDM to develop secure software.

2.2 DSDM and Limitations in Secure

Software Development
As mentioned above in the introduction section that the

typical focus of DSDM and its phases is to manage change in

requirements during the different phases of the software

development and frequent delivery of software. Thus, the

existing DSDM does not offer any guidelines to develop

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

39

secure software. The absence of security guidelines is due to

the main focus on the followings

1. Agile process models are known to believe working

software as the primary measure of success, and do not

pay attention to security features.

2. Users’ involvement in the project is essential in DSDM

process model. However, in its current form, DSDM does

not include any particular role of security stakeholders.

3. In DSDM, there is absence of any phase or phase in order

to cater the security issues while collecting/analysing

requirements, designing, or implementing of software.

In general the following are well-known security principles

for developing secure software, using a traditional software

development lifecycle (SDLC) or agile model.

3. Software Security Principles
The backbone of any software security is the security

principles that are the domain in this context. For a full

understanding and treatment of the security, we considered

the following security principles [4], which have been ignored

in most of the traditional and agile software development

methods.

 The Principle of Failing Securely – Whenever there

is a system failure, it should do so securely. This

characteristic feature typically includes various

elements: the secure defaults that deny access [5].

Security activities that can be implement here are

Grant Access when not Explicitly forbidden, Ease

of use, In case of mistake, access denied, No default

passwords, No sample users, Files are write

protected, owned by root, Error message generic,

Error message information in log files.

 The Principle of Defence in Depth – In this case

layering security defences in an application can

reduce the chance of a successful attack. Integrating

security mechanisms such as redundant security 415

mechanisms needs an attacker to bypass each

requires mechanism to get access to a digital asset.

For instance, we need to use multiple layered

protection software.

 The Principle of Separation of Privilege – Before

granting permissions to an object, the system should

make sure that multiple conditions are met.

Checking access on only one condition may not be

enough for enforcing strong security. To prevent

attacker from taking over an entire system, software

development process should be divided into

components that require multiple checks for access.

 The Principle of Least Privilege –The right should

be assigned only to the minimum subject that

request access to a resource and should be within

shortest possible time. Other security activities that

can be implement here is Minimize the damage,

minimize interaction between privileged programs,

password management, restrict the access time and

limit the access to database.

 The Principle of Securing the Weakest Link – It is

more likely for attackers to attack weak part than to

penetrate a strong component. For example, some

strong cryptographic algorithms are very difficult to

break, it takes year before you do so, encrypted

information are unlikely to attack communicated in

a network.

 The Principle of Complete Mediation – In this case,

a software system that requires access checks to an

object each time an object requests access,

especially for security critical objects, decreases the

chances that the system will mistakenly give

elevated permissions to that subject. For example

we need to make identification of source action.

Make sure user is talking to authentication program,

Email sender can be forged, Window

―control+alt+delete‖, Secure interface, Input

validation. Do not authenticate based on IP source,

safe load, Hidden fields Safe login.

 The Principle of Least Common Mechanism –

Granting access to a resources having multiple

objects that share those mechanisms should be

avoided. For example security activities can be add

here to reduce potentially dangerous information

flow, reduce possible interaction and make it more

flexible.

 Principle of Economy of Mechanism - Complexity

is one of the factor of evaluating a system’s

security. The likelihood that security vulnerabilities

will exist within the system increases, if the design,

implementation, or security mechanisms are highly

complex. For example, for 39nalysing the source

code that is responsible for normal execution of a

functionality is a difficult task, but alternative

behaviours checking in the remaining code may

prove even more difficult in achieving the same

functionality. Simplifying design or code is not

always easy, but, when possible developers should

strive for implementing simpler systems.

 The Principle of Reluctance to Trust – Assumption

should be made by developers that the environment

in which their system resides is insecure. Trust—

whether it is extended to external systems, code, or

people—should always be closely held and never

loosely given. Software engineers should anticipate

malformed input from unknown users when

building an application. They are susceptible to

social engineering attacks, even if users are known

making them potential threats to a system.

Similarly, no system is ever 100 percent secure, so

the interface between two systems should be

secured. The security of your application can be

increase by minimizing the trust in other systems.

 The Principle of Never Assuming That Your Secrets

Are Safe – Before an attacker launch an attack you

should assume that attacker obtain enough

information about your system. For instance, tools

such as disassemblers and decompilers may allow

attackers to obtain sensitive information that may be

stored in binary files. Also, insider attacks, which

may be accidental or malicious, can lead to security

exploits. Sensitive information can be protected

using real protection mechanisms as a means of

protecting your secrets.

 The Principle of Psychological Acceptability –

Security mechanisms should not be inhibited by

accessible resources. If the usability or accessibility

of resources is hinder by security mechanisms then

users may opt to turn off those mechanisms.

Security mechanisms should be transparent to the

users of the system where possible or, at most,

introduce minimal obstruction. In a software

application security mechanisms should be user

friendly to facilitate their use and understanding.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

40

 The Principle of Promoting Privacy – Software

systems can be protected from attackers who may

obtain private information in an important part of

software security. Customer may lose their

confidence in the software if an attacker breaks into

a software system and steals private information

about a vendor’s customers. This can be protected

by preventing attackers from accessing private

information or obscuring that information can

alleviate the risk of information leakage.

3.1 Conventional Security Attacks

There are several attacks and software weaknesses that can

cause damages to some important part of software. Below is

the description of a few attacks that how these attacks happen.

 Cross site scripting (XSS): This is a form of injection

vulnerabilities wherein, a malicious script is injected into

a website. That script is injected into the dynamic content

of the web site. It is then sent to the web user without any

validation. Almost every technology or language used for

website generation, like ASP.NET, ASP, CGI, JSP, Perl,

C# and PHP, may encounter this vulnerability.

 SQL injection: When a dynamic SQL statement is built

with user input, it allows an attacker to refine the

statement’s meaning and execute arbitrary SQL

commands.

 Format string problem: With respect to this problem

programming language C/C++ is the most vulnerable. It

occurs when the user is able to control or write completely

the format string used in printf() style family functions.

 Illegal Pointer Value: This problem is caused by a pointer

pointing a location outside the buffer boundaries.

Subsequent operations on this pointer could lead up to

unpredicted results. This can be addressed at the

implementation level, by addressing arrays instead of

manipulating pointers should be used.

 Command injection: on behalf of an attacker, executing

commands from an untrusted source cause an application

to execute malicious commands. By command execution,

the application gives an attacker a privilege or capability

that the attacker would not otherwise have.

 Log forging: Attacker can hide their activities and disable

tracking because of unauthorized modification of log files

[6]. To avoid this problem at design level, an important

point is to exclude untrusted source from logging.

 Path traversal: The best solution to this form of attack is

input validation, if attacker can track, control the paths

used in system file, he will be able to access protected

system resources.

 Weak cryptography: One of the important software

vulnerabilities is lack of data encryption especially

sensitive information like authentication. Consideration of

some guidelines like complex passwords during design

phase may be useful. To prevent occurrences of this

vulnerability select a proper encryption method which is

one of the important decisions in implementation phase.

After knowing the importance of security principles and

presence of several attacks, it is appropriate to look into

the literature and find out “what are approaches, or

applications that address these security concerns using

DSDM?”

The table 1 presents the approaches, their limitation, and

our observations about security concerns in those

approaches.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

41

Table 1. Presence of Software Security Concerns in Existing Agile Practices Including DSDM

Author

Issues Observations Software

Security

Principle

Bryan Sullivan,

2010

Traditional security development life cycle is

suit for Agile. Proposes a new security

development life cycle for agile[10].

Risk management activities

unavailable. Security should be

included in every phase, not from

the beginning.

Unavailable

 Kim, Y.-G. and

Cha, S, 2012

Majority of system engineers do not have the

relevant security knowledge about issues like

security risk analysis, and security

mechanisms and services[11].

Most of the system engineers lack

the security knowledge.

Unavailable

Xioacheng

Ge,2007

The security should be considered from the

beginning of development process [30].

Integrate security process from

the beginning.

Unavailable

DSDM public

version 4.2

2006

The combination of people knowledge with

tools and techniques such as prototyping and

MoSCoW rules to achieve tight project

delivery within the timeframe DSDM

provides a flexible yet controlled process that

can be used to deliver new systems[12].

The premise that most software

project fail due to people concern

rather than technology concern.

Unavailable

Addison

Wesley,2003

The method of DSDM can be successful if all

the core principles of DSDM is applied in

project. Absence of any principle will

endanger the whole basis of DSDM [13].

All the security requirement

should be added to each phase.

Unavailable

 Stevens, J.L.B.,

2011

 Majority of security engineers lack the

systems-engineering background required to

approach a security problem in general [14].

The security Engineers does not

have Technical know about the

security concern.

Unavailable

VTT Technical

Research Centre

of Finland,2003

 In DSDM all changes during development

should be reversible and development team

members must have authority to make

decisions in software development[15].

Every change can take place at

any point and can be reverted.

Unavailable

H. Schmidt,

2010

Security requirements gathering allow putting

together information about malicious part of

the environment and subsequently facilitate

decision on how security breaches can be

nullified[16].

Security awareness must be put in

place.

Mentioned

DSDM

Consortium

2002-2006

 The security activities is created and

maintained and updated throughout the

project life cycle [17].

Lifecycle includes security

requirement in every phase, not at

the beginning

Mentioned

Sipponen et al

2005

To integrate security into agile software

development techniques , security methods

should be adaptable and agile to operate in

changing conditions[18].

Security techniques should be

adaptable.

Unavailable

 C. Alberts, J.

Allen, R.

Stoddard, 2011

There are some models that provide the

needed support across the life cycle to

measure software security[19].

Models are provided that support

the security at all level.

Mentioned

DianxiangXu

and Kendall

Nygard2005

The most important part of the system must

be considered in order to secure a complex

system,other techniques that are formal may

consider the threats with high security

risks[20].

Threat analysis is the issue of

discussion here.

 Mentioned

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

42

 E. Dubois and

H. Mouratidis,

2010

The consideration of security since from the beginning

of software development is recognised by

Requirements Engineering community[21].

Early consideration of

security from the

scratch.

Mentioned

Mustafa k. et al

2008

The mathematical modelling of Security policies is one

of the forefront research in the field of security.

However, security policies are mostly considered at the

SLDC[22].

At the first stage of

software development.

Mentioned

Gunnar

Peterson,

Arctec Group

2006

The architecture of Software security architecture is an

iterative process that decompose complex problem

spaces , drilling down on granular details to gain

traction in a domain; and then synthesizing across

domains, building up design views, identifying

relationship vectors that illustrate the system’s security

design goals[23].

Security to be split into

smaller problem and

dealt with accordingly.

Mentioned

P.Abrahamsson

,et al 2010
The incremental architecture and DSDM is effective in

managing security requirement changes[24].

Security change can be

managed in

incremental

architecture.

Unavailable

D. Mellado, E.

Fernandez-

Medina, and M.

Piattini, 2010.

The iterative and incremental process can be integrated

in organization’s Software Product Lines development

process model so that it provides security requirement

engineering approach[25].

Security in agile is also

iterative and

incremental in nature.

Mentioned

H. Mouratidis,

and J. Jurjens,

2010

 Security can be implemented within system code

either as security controls or as security attributes that

need to be enforced on the application’s operations

[26].

Security should be

enforce at the

application stage.

 Unavailable

 B. Morin, T.

Mouelhi, F.

Fleurey, et

al.2010

Majority of software security are limited in

expressiveness, flexibility and software engineering

process and tool support. However, adaptation

approaches integrate less run time security

configuration of components [27].

It lacks configuration

of security component.

Unavailable.

 A. Fuchs,

S.G¨urgens, and

C. Rudolph,

2011

Security modelling can be fulfilled by the system

without modelling of attacker capabilities, but rather

through security guarantees [28].

No security

guaranteed.

Unavailable

M. Waterman,

J. Noble, and

G. Allan,

2012

Agile practitioners has found that developers use five

broad strategies to determine their level of up-front

architecture .However, the remaining four vary in their

levels of upfront architecture [29].

The architecture of

agile is mentioned

here.

Unavailable

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

43

4. ANALYSIS
Based on our literature (Table 1), eight (8) articles mentioned

the security principles in relation to agile development,

whereas thirteen (13) articles did not mention the

implementation of security principles. However, only one (1)

forum [17] mentioned the security principles in relation to

DSDM. On the other hand, we could find only 5 articles

mentioned DSDM with/without security issues (Figure 2). We

can analyse that there are many suggestions on integrating

security aspects in agile methods, in general. There are

perceptions from investigations that security aspect should be

incorporated at the beginning of software development life

cycle. This shows that there is a tremendous need for

integrating security phases, sub-phases or practices into

DSDM so
that this method could be used to develop secure software.

Fig 2. Security Principles in Agile Literature

From this analysis we can deduce that in DSDM security

principles have not been considered.In Table 2, we provide

our analysis about the techniques that implemented DSDM, in

general with/without security.

Table 2.Limitations of Existing DSDM based Techniques

in Relation to Security

Approaches Security

Phases

Security-

Focused

Roles

Security

Attacks

Prototyping √ X x

Timeboxing x X x

MoSCow

prioritization

x X x

Facilitate

workshops

x X x

Table 2 presents existing approaches that have adopted

DSDM. However, only one (1) technique called Prototyping

used additional security phases. While, most of other

approaches did not include any security phases, security focus

roles or security attacks in the DSDM. From this, we can see

the gap that existing approaches do not significantly address

the security issues of software while implementing DSDM.

5. CONCLUSION AND FUTURE WORK
Similar to other agile methods, DSDM is also gaining

popularity because of its incremental and iterative features for

software development. However, most of the researches focus

to improve the general efficiency of DSDM. Based on our

literature review, only one research discusses about

integrating security into DSDM. Thus, there is a need for

intensive research to study the suitability and adaptability of

DSDM to cater the security problems of software. In this

review paper, we analysed literature aboutDSDM whether it

addresses software security or not. Based on our own analysis

about the DSDM, we found that in its current form DSDM

does not support secure software development. It means that if

software is developed using DSDM then that software may

not be secure software. The foremost reason is that, in the

fundamental structure (life cycle) of DSDM security aspect of

software development was ignored. Thus, we intend to

enhance the existing DSDM structure so that the security

problem can be reduced to minimum. Therefore, our future

research plan is underway to refine existing DSDM into a

secure DSDM. The results of our effort will be shared with

the agile community and published in the coming events soon.

6. ACKNOWLEDGMENTS
We would like to express our gratitude to Ministry of Science,

Technology and Innovation (MOSTI) Malaysia for funding

this research project under Vot: 4S028.

7. REFERENCES

[1] Aydal E.G. 2005. Extreme programming and

Refactoring for Building Secure Web based Applications

and Web Services, MSc Project, University of York.

[2] M. E. Zurko and R. T. Simon 1996. User-

centered security. In Proceedings of the 1996 workshop

on New security paradigms, 1996, pp.27–33.

[3] CERT Statistics, [Online].Available:

http://www.cert.org/stats/. [Accessed: 30- 04-2013]

[4] Saltzer, Jerome H. & Schroeder, Michael D.1975. The

Protection of Information in Computer Systems, 1278-

1308. In Proceedings of the IEEE

[5] Viega, John & McGraw, Gary. 2002. Building

Secure Software: How to Avoid Security

Problems the Right Way.Boston,MA:Addison-wesley.

[6] AntiVaha-Sipila. 2013. Marrying Scrum and

Security blog, 19 May 2009.

http://blog.safecode.org/?p=45.ht [Access on 30-04-

2013]

[7] http://www.DSDM.org - the home site for the DSDM

consortium.[Access on 30-04-2012].

[8] R.C.Martin. 2002 . AgileSoftwareDevelopment:

Principles, Patterns and Practices’, Prentice Hall

(October 2002).

[9] Chivers H., Paige R.F., and Ge X. 2007. Agile

Security Using an Incremental Security

Architecture. Department of Computer Science,

University of York.

[10] Bryan Sullivan 2010. Bryan Sullivan,

Streamline Security Practices For Agile

Development. MSDN Magazine.

[11] Kim, Y.-G. and Cha, S. 2012. Threat Scenario-

based Security Risk Analysis using Use Case Modelling

0

5

10

15

Security
principles not

mentioned

Security
principles

mentioned

DSDM
with/without

security

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

44

in Information Systems. Security and Communication

Networks, 5(3), pp.293-300.

[12] DSDM PublicVersion 4.2.

http://www.dsdm.com/products/dsdm_version_4_2.asp

Access [30.04.2013].

[13] Stapleton J. 2003. DSDM Business FocusDevelopment,

Second Edition,Addison Wesley.

[14] Stevens, J.L.B. 2011. Systems Security

Engineering. IEEE Security & Privacy, pp.72-74.

[15] Koskela, J. 2003. Software configuration

management in agile methods. VTT

Technical Research Centre of Finland.

[16] H. Schmidt, McDermott, J. & Fox, C. 1999.

Using abuse case models for security requirements. In

Proceedings of the 15th Annual Computer Security

Applications Conference (ACSAC). IEEE Computer

Society.2010, pp.188 –195.

[17] DSDM Consortium 2002-2006

www.DSM.com.[Access on 30-04-2013]

[18] Sipponen, M., Baskerville, R. &Kuivalainen, T.

2005. Integrating security into agile development

methods. In Proceedings of the38th Hawaii International

Conference on System Sciences.

[19] C.Alberts,J.Allen,R.Stoddard. 2011. Risk-based

measurement and analysis: Application to software

security. Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, Technical note

CMU/SEI-2011-TN-032.

[20] DianxiangXu and Kendall Nygard. 2005. A Threat

Driven Approach to Modelling and Verifying Secure

Software. In the Proceeding of the 20thIEEE International

Conference on Automated Software Engineering,

2005.

[21] E. Dubois and H. Mouratidis. 2010. Guest Editorial:

Security Requirements Engineering: Past, Present and

Future. Requirements Engineering, vol.15, no. 1, pp. 1–5.

[22] Mustafa k. et al. 2008. Development of Security

Assessment Framework for Object Oriented Software.

Project Report, Submitted to DIT, Ministry of

Communication and IT, Govt. of India.

[23] Security Architecture Service Oriented,

Gunnar,Arctec Group 2006.

[24] P.Abrahamsson, M.Ali Babar, and P.kruchten,

Agility.2010. Architecture :Can They coexist?.

IEEE, Software.vol 27,no 2.

[25] D. Mellado, E. Fernández-Medina, and M. Piattini. 2010.

Security requirements engineering framework for

software product lines. Information and Software

Technology vol 52:p.1094-1117.

[26] H. Schmidt. 2010. Threat- and risk-analysis during early

security requirements engineering. In the Proc. of

Availability, Reliability, and Security,ARES’10

International Conference, IEEE Computer Society.

[27] B. Morin, T. Mouelhi, F. Fleurey, et al. 2010.

Security-driven model-based dynamic

adaptation. In Proc of 25th IEEE/ACM Int.Conf.on

Automated software engineering, Belgium, pp. 205-214.

[28] A. Fuchs, S. Gürgens, and C. Rudolph. 2011. A formal

notion of trust and confidentiality – Enabling reasoning

about system security. In Journal of Information

Processing, vol. 19, pp. 274–291.

[29] M. Waterman, J. Noble, and G. Allan. 2012. How Much

Architecture? Reducing the Up-Front Effort. In Agile

India 2012, pp. 56–59.

[30] Xiaocheng Ge, Richard F. Paige, Fiona Polack 2007.

Extreme Programming Security Practices. G.Concas et

al. (Eds.): XP 207, LNCS 4536, pp. 226-230,

2007. Springer-Verlag Berlin Heidelberg 2007.

[31] Azham, Z., Ghani, I., Ithnin, N. 2011. Security Backlog.

In Scrum Security Practices, 5th MySEC (Malaysian

Conference in Software Engineering), 2011.

[32] Imran Ghani, Izzaty Yasin. 2013. Software Security

Engineering in Extreme Programming Methodology: A

Systematic Literature Review.

Sci.Int.(Lahore),25(2),215-221.

[33] Adila Firdaus, Imran Ghani, Nor Izzaty Mohd Yasin.

2013. Developing Websites using Feature Driven

Development: A Case Study. Journal of Clean Energy

Technologies, Vol 1, No 4.

IJCATM : www.ijcaonline.org

