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ABSTRACT 
Locality Sensitive Hashing (LSH) is an index-based data 

structure that allows spatial item retrieval over a large dataset.  

The performance measure, ρ, has significant effect on the 

computational complexity and memory space requirement to 

create and store items in this data structure respectively. The 

minimization of ρ at a specific approximation factor c, is 

dependent on the load factor, α.  Over the years,𝛼 = 4has 

been used by researchers.  In this paper, we demonstratethat 

the choice of𝛼 = 4does not guarantee low computational 

complexity and low memory space of the data structure under 

the LSH scheme.  To guarantee low computational 

complexity and low memory space, we propose𝛼 = 5.  

Experiments on the Defense Meteorological Satellite Program 

imagery datasethave shown that𝛼 = 5saves more than 75%on 

memory space; cuts the computational complexity by more 

than 70%andanswers query two times faster on the average 

compared to that of𝛼 = 4. 

General Terms 

Nearest Neighbor, Search Algorithm, Locality Sensitive 

Hashing 

Keywords 
Approximate Nearest Neighbor, Exact Nearest Neighbor, 

ApproximationFactor, Performance Measure,Optimal Load 

Factor 

1. INTRODUCTION 

1.1 Nearest Neighbor Search 
A nearest neighbor (NN) search is composed as follows: 

given a setP of n data pointsin a metric space, X, the task is to 

preprocess these points sothat, given any query point𝒒 ∈ Pthe 

data point nearest to qcan be reported quickly. This is also 

referred to as the closest-pointproblem or the post office 

problem[1]. Even though linear search (LS) algorithm 

guarantees the retrieval of the exact nearest data point to a 

given query point correctly, it becomes computationally 

exhaustive and queryruntime complexity can be exponential 

when dealing with a large datasetwithhigh dimensionality.  

The reason being,LS literally iterates through the entire 

dataset and computes some metric distance between each data 

point and the query point and then returns the data point 

closest to the query point. 

In practice, the NN search problem involves a collection of 

large number of items characterized by high dimensionality.  

In reality, the dataset for most applications is dynamic.  In 

other words, the dataset is updated as when new data is 

collected.  Consequently, similarity search algorithm should 

scale to produce an output within a reasonable timespan 

irrespective of the growth of the dataset. Thus, building a data 

structure that can be used to index and store these items in 

such a manner that given any query item, the search algorithm 

is able to find the most similar itemin sublinearquery runtime 

is vital. This problem is of major importance including but not 

limited to image and video database retrieval, data 

compression, information retrieval, database and data mining, 

pattern recognition, statistics and data analysis[2, 3]. 

Over the years, intensive research has been done either to use 

trees, K-means clustering/classification or hashes to develop a 

space-partitioned data structure that would have a 

sublinearquery runtime[4-8].  For uniformly distributed data 

points, expected query runtime is achievable by algorithms 

that decompose the search space into regular grids [9, 10]. In 

[11], the authors generalized these results and reported that 

𝑂(𝑛) space and 𝑂(log 𝑛) query time are possible using kd-

trees.  However, even these methods suffer as dimension (i.e. 

d) of the data points increases because the constant factors 

hidden in the asymptotic query runtime of the kd- trees grows 

as fast as 2𝑑 .  In [12], the author experimentally measured the 

query runtime of kd-trees and observed that it increases quite 

rapidly with the dimension.  Also in[13], it is shown that if n 

is not substantially larger than 2𝑑  (which arises in some real-

world applications), boundary effects decrease this 

exponential dimensional dependency.  Thus, perfect solution 

would be to preprocess the points in 𝑂(𝑛 log 𝑛) time, into a 

data structure that requires 𝑂(𝑛)space so that queries can be 

answered in 𝑂(log 𝑛) time.  For one-dimensional data points, 

sorting the points, and then using binary search to answer 

queries achieves this goal.  For two-dimensional data points, it 

is possible to compute the Voronoi diagram for the data points 

and then use any fast planar point location algorithm to locate 

the cell containing the query point [14-16].  However, for 

higher dimensional data points, the worst-case complexity of 

the Voronoi diagram grows as quickly as 𝑂(𝑛 𝑑 2  ). In[17], 

the authors provided higher-dimensional solutions with 

sublinear worst-case performance. In [18], it is reported that 

for some arbitrary constant𝛿 > 0, queries could be answered 
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in 𝑂(log 𝑛) time with 𝑂(𝑛 𝑑 2  +𝛿)space with hidden constant 

factors that are exponential in d. In [19], the authors 

generalized this by providing a trade-off between space and 

query runtime.  Later in[20], it is reported that exponential 

factors in query runtime could be eliminated with an 

algorithm having 𝑂(𝑑5 log 𝑛) query time and 𝑂(𝑛𝑑+𝛿) space. 

Unfortunately, it is shown both theoretically and 

empiricallythat these solutions provide little or no 

improvement over the LS algorithm for highly dimensional 

large dataset[21, 22].  Consequently, several researchers have 

become proponents of the use of approximation similarity 

search algorithms[23-27].  The fundamental principle being, 

in practice, approximate nearest neighbor is almost as good as 

the exact nearest neighbor in most cases.  Since a distance 

measure is what is often used for similarity estimation, a small 

difference in the distance should not adversely influence the 

similarity estimation unless the nearest neighbor problem 

itself is unstable[28, 29].  This notion of approximation forms 

the basis of a novel similarity search algorithm known as the 

Locality Sensitive Hashing (LSH) which was first introduced 

in[25].  This technique drastically reduces the query runtime 

at the expense of a small probability of failure to find the 

absolute closest match. The concept of the approximate 

nearest neighbor (ANN) in some ls norm space is formulated 

as follows: suppose q is a query whose exact NN is q*.  For a 

given 𝑐 > 1, p is said to be a c-NN of q if  𝒑 − 𝒒 𝑠 ≤
𝑐 𝒑 − 𝒒∗ 𝑠. 

The performance of LSH depends on the minimization ofthe 

performance measure,ρ that is associated with an optimal load 

factor α.This guides the memory requirement, the 

computational complexity and the query runtime of the data 

structure under the LSH scheme. Over the years, many 

researchers haveused 𝛼 = 4[25, 21, 30, 31].  In this paper, it 

is demonstrated that the choice of 𝛼 = 4 does not guarantee 

low memory requirement and low computational complexity 

of the data structure under the LSH scheme. In addition, the 

query runtime is slow.  We show that under the LSH scheme, 

a load factor of𝛼 = 5guarantees a lower memory requirement, 

lowercomputational complexity and faster query runtime 

compared to the conventional choiceof 𝛼 = 4. 

The remainder of this paper is organized as follows: Section 

1.2 formulates the problem; section 2 offers the background of 

LSH in general; section 3 explains theorems and parametric 

constraintsof our proposed technique; section 4 talks about the 

complexity of the LSH; section 5 offers an empirical 

implementation of LSH on real data; and section 6draws the 

conclusions and proposes a future improvement. 

1.2 Notations and Problem Definition 
Unless otherwise stated the following parameter notations are 

used throughout this paper.  P is a set of n data points in d-

dimensional space (ℜ𝑑).  A query data point and any other 

point are denoted q and p respectively such that 𝒑 ≠ 𝒒 ∈ P.  

A sphere of radius R centered at q is denoted by 𝛽(𝒒, 𝑅).  For 

any 𝜀 > 0, 𝑐 = 1 + 𝜀 is the approximation factor such that 

𝑐𝑅 > 𝑅.  The l2 norm of p is denotedby 𝑝 2.  The expected 

number of data points per bucket (i.e. load factor) is denoted 

byα.  Our goal is to build a data structure forP under the LSH 

scheme by choosing an optimal value forαthat guarantees 

lower memory, lowercomputational complexityand faster 

query runtime than that of the existing load factor,𝛼 = 4.This 

data structure is to solve the (R, c)-nearest neighbor problem 

in the l2 norm space defined as follows: if ∃ 𝒒∗:  𝒒 − 𝒒∗ 2 ≤

𝑅 then in sublinearquery runtime, report any point 𝒑:  𝒒 −
𝒑 2 ≤ 𝑐𝑅 if it such a point exists. 

2. LSH BACKGROUND 
LSH is an index-based data structure that allows spatial item 

retrieval over a large database.  The basic idea underlying the 

operation and the effectiveness of the LSH is that if two data 

points 𝒑, 𝒒 ∈ ℜ𝑑  (i.e. 𝑑 ∈ 𝑍+) are close, then after a scalar 

projection of these points onto a hyper-plane, the two points 

should remain close to each other.  On the other hand, if the 

points are far apart, they should remain far apart from each 

other after a scalar projection onto that same hyper-plane.  

This assertion is true in most cases[25, 32].However, with 

small failure probability,δ, some points that are far apart 

might become closer after projection onto a lower dimension.  

For a dynamic dataset (i.e. dataset grows from time to time), 

the major advantage of LSH over tree-data structures is its 

ability to support deletion and insertion [30] operations.  

Suppose the real number line is "chopped" into slots (i.e. 

bucket)numbered 0, 1, … , 𝑚 − 1 to form a table.  If integer 

values are assigned to the data points based on which slots 

they project to, then intuitively, making several projections 

certainly increases the probability,P1 of nearby points 

projecting to the same slot and decrease the probability, P2 of 

far points from projecting to same slot.  To make further 

guarantee this, several families of hash functions are used to 

perform the scalar projections.  To achieve this goal, the 

functions must be locality sensitive and universal[33]. 

Definition #1: A family of hash functions, ℋ = {𝒉𝒊𝒋:P → 𝑈} 

each hij mapping one point from domainPto domain U, is said 

to be 𝑃1 > 𝑃2, 𝑐𝑅 > 𝑅locality-sensitive if for any 𝒑, 𝒒 ∈ P,  

 if 𝒑 ∈ 𝛽(𝒒, 𝑅) then Pr⁡[𝑕𝑖𝑗  𝒑 = 𝑕𝑖𝑗 (𝒒)] ≥ 𝑃1(′𝑕𝑖𝑔𝑕′) 

 if 𝒑 ∉ 𝛽(𝒒, 𝑐𝑅) then Pr⁡[𝑕𝑖𝑗  𝒑 = 𝑕𝑖𝑗 (𝒒)] ≤ 𝑃2(′𝑙𝑜𝑤′) 

Definition #2:  Suppose P is a universe of keys, and ℋis a 

family of a finite collection of hash functions, each mapping 

Uto 0,1, … , 𝑚 − 1,  ℋ is said to be universal if  ∀ 𝒑, 𝒒 ∈

Pand 𝑝 ≠ 𝑞, then  Pr 𝑕𝑖𝑗 ∈ ℋ: 𝑕𝑖𝑗  𝒑 = 𝑕𝑖𝑗  𝒒  = ℋ/m. 

A well-developed hash function tries to amplify the gap 

between the two probabilities, 1P and 2P .  To guarantee this 

amplification 𝑃1/𝑃2, k hash functions are chosen identically 

and independently from ℋ.  To further amplify the gap 

between P1 and P2, Ltables are created.  Whenever two or 

more items hash into the same bucket on any table, collision, 

is said to have occurred and this is sometimes resolved using 

double hashing, linked-list, or chaining.  Normally, the 

number of buckets is large.  As a result, it is only the non-

empty buckets that are retained after all the data points in 

Pare projected into the buckets on the various tables.  

Creation of hash tables is normally fast and simple if the 

objects in the dataset are binary strings, i.e.  0 1 𝑑[21, 25]—

the biggest drawback of LSH.  In spite of this limitation, LSH 

algorithm has been used in a number of applications involving 

non-binary data set[34-40].  To handle non-binary dataset, the 

algorithm has to be extended to the l2 norm, by embedding l2 

space into l1 space, and then l1 space into the binary Hamming 

space.  This however increases the complexity of the search 

algorithm but the advantages achieved outweigh this 

drawback. 

Once the hash table is created and stored, for any query 

point 𝒒 ∈ P, the  𝑅, 𝑐 -NNs can be found by hashing qand 

retrieving data points stored in the buckets 

𝑕1 𝒑 , 𝑕2 𝒑 , . . . , 𝑕𝐿(𝒑) in which the query point hashes into. 

Therefore, when the load factor, varies, there is a trade-off 
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between a larger table with a smaller final linear search or a 

more compact table with more data points to consider in the 

final search.  The  𝑅, 𝑐 -NNs search is terminated after 

finding the first 2L data points (including duplicates) closet to 

q[30].  The parameters k and L are chosen such that the 

following two conditions hold with constant probabilities: 

 Condition #1: if 𝒒∗ ∈ 𝛽(𝒒, 𝑅), then𝑕𝑗  𝒒
∗ = 𝑕𝑗 (𝒒)for 

some 𝑗 = 1,2, … , 𝐿 

 Condition #2: the expected number of collision of 𝒒 with 

any point 𝒑 ∈ P such  that 𝒑 ∈ 𝛽(𝒒, 𝑐𝑅) is less than 2L 

3. THEORY AND CONSTRAINTS 

3.1 S-stable Distribution 
Stable distributions are defined as limits of normalized sums 

of independent identically distributed variables [41].  A 

distribution Dis said to be s-stable if there exists 𝑠 ≥ 0, such 

that for any N real numbers 𝑢1 , 𝑢2 , … , 𝑢𝑁 and independent 

identically distributed random variables, 𝑋1 , 𝑋2, … , 𝑋𝑁 with 

distribution D, the random variable,  𝑢𝑖𝑋𝑖
𝑁
𝑖=1  has the same 

distribution as the variable    𝑢𝑖 
𝑠𝑁

𝑖=1  
1/𝑠

𝑋, where X is a 

random variable with distribution D .  For 𝑠 ∈ [0, 2], there 

exist stable distributions[41].  However, the focus is shifted to 

the case, 𝑠 = 2 since the similarity measure which is normally 

used is the l2 norm (the Euclidean space).  Under this, the 

normal Gaussian distribution denoted, 𝒩(0, 1) with a 

probability distribution function, 𝑓 𝑥 =
1

 2𝜋
𝑒−𝑥2/2 is 2-

stable.  Stable distributions have applications in many fields 

[34].  In computer science, stable distributions are used for 

"sketching" high dimensional vectors[25]. 

Suppose a random vector 𝒉𝒊𝒋 ∈ ℜ𝑑  is chosen from the 

standard Gaussian distribution, 𝒉𝒊𝒋~𝒩(0, 1) and 𝒑is any 

vector such that 𝒑 ∈ ℜ𝑑 → 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑑].  Then the 

scalar dot product 𝒉𝒊𝒋 • 𝒑  is a random variable which tends to 

be distributed as 𝒑 2𝒉𝒊𝒋, where hij is a random variable with 

2-stable distribution and  𝑝 2 is the l2 norm of vector p given 

as  𝑝 2 =   𝑝𝑧
2𝑑

𝑧=1  
1/2

.  In other words, the difference,𝒉𝒊𝒋 •

𝒑 − 𝒉𝒊𝒋 • 𝒒 tends to be distributed as  𝒒 − 𝒑 2𝒉𝒊𝒋.  Small 

collections of such dot products corresponding to different 

hijcan be used to estimate  𝒒 − 𝒑 2,the l2 norm between the 

two data points 𝒑, 𝒒 ∈ P. Hence the data structure under the 

LSH scheme is said to be l2-embedding and the l2 norm forms 

the similarity metric for finding the NN to a given query data 

point. 

3.2 Evaluation of P1 and P2 
Suppose 𝑐 =  𝒒 − 𝒑 2 and bij is an offset drawn uniformly 

from [0, 𝛼] at random.  Also assume that hj is a family of k 

hash functions drawn randomly and independently from 

𝒩(0, 1) such that, 𝑕𝑗 = [𝒉𝟏𝒋, 𝒉𝟐𝒋, … , 𝒉𝒌𝒋].  The hash value of 

𝒑 can be computed 

as,𝑕𝑗  𝒑 =   
𝒉𝟏𝒋•𝒑+𝑏1𝑗

𝛼
 ,  

𝒉𝟐𝒋•𝒑+𝑏2𝑗

𝛼
 , … ,  

𝒉𝒌𝒋•𝒑+𝑏𝑘𝑗

𝛼
  .From the 

2-stable distribution, 𝒉𝒊𝒋 • 𝒑 − 𝒉𝒊𝒋 • 𝒒 for any ith hash function 

such 𝒉𝒊𝒋 ∈ 𝑕𝑗 has the same distribution as𝑐𝒉𝒊𝒋.  The probability 

that 𝒑 and 𝒒collides is given by Equation (1).  The 𝐹(•) in 

Equation(1) represents the probability density function of the 

absolute value of the Gaussian distribution. 

  Pr 𝑐 = Pr 𝑕𝑗  𝒑 = 𝑕𝑗  𝒒  =  
1

𝑐
𝐹  

𝑡

𝑐
  1 −

𝑡

𝛼
 

𝛼

0
 𝑑𝑡(1) 

 

It should be noted that for a given α, the probability of 

collision decreases monotonically with c. This means that the 

probability of collision is high if  𝒑 − 𝒒 2 is small and low if 

 𝒑 − 𝒒 2 is large.  Thus, as per Definition#1, for this to be 

𝑃1 > 𝑃2, 𝑐𝑅 > 𝑅sensitive 𝑃1 = Pr 𝑐 = 1 and 𝑃2 = Pr 𝑐 >
1 .  Solving these yieldEquations (2) and (3) with 𝐹𝑐𝑑𝑓 (•) 

being the cumulative distribution function of the Gaussian 

random variable. 

 

𝑃1 = 1 − 2𝐹𝑐𝑑𝑓  −𝛼 −
2

 2𝜋𝛼
 1 − 𝑒

−𝛼2

2  

 (2) 

 

𝑃2 = 1 − 2𝐹𝑐𝑑𝑓  −𝛼/𝑐  −
2

 2𝜋𝛼/𝑐
 1 − 𝑒−𝛼2/2𝑐2

  (3) 

 

These prior probabilities influence the performance measure, 

ρ as shown in Equation (4). 

𝜌 =
ln 𝑃1

ln 𝑃2
  

 (4) 

3.3 Computing the performance measure, ρ 
The two prior probabilities P1and P2are needed to compute ρ.  

From Equation(2), once α is known P1can be computed.  To 

compute P2 from Equation(3), both α and c must be known.  

Theρ directly affects the memory space required to store items 

in the hash table.  As a result, the goal is to find α that 

minimizes ρ at a specific c.  In other words, the aim is to solve 

Equation(5). 

min∀𝛼∈𝑍+  
ln 𝑃1

ln 𝑃2
   

 (5) 

There exists no closed-form solution for Equation(5). In [25], 

the authors provided an approximate solution as 𝜌(𝑐) ≈ 1/𝑐.  

A minimization tool such as Matlab could be used to find the 

optimal value for ρ.  Later in[30], the authors conducted a 

minimization experiment in Matlab to solve Equation(5).  The 

experiment was conducted for𝑐 = (1 10]in increment of 0.05.  

For each value of c, the minimum value of𝜌(𝑐)is computed 

over the range of α.  They concluded that their approach gave 

a minimum value of ρ slightly below the approximate solution 

by[25]. Furthermore, they observed thatρ is not very sensitive 

to α beyond a certain point; and as long α is chosen 

“sufficiently” away from 0, the value ofρ would be close to 

optimal.  They added that, if α is too large, both P1 and P2 

approach unity and this increases memory space and the query 

runtime.  

3.4 Proposed Optimal Load Factor 
Over the years, researchers use 𝛼 = 4proposed by [30]as the 

optimal load factor. This however, raises two major concerns.  

First, does the choice of𝛼 = 4guarantee low computational 

complexityand low memory space to create and store a data 

structure for n data points under the LSH scheme?  Second, 

assuming𝛼 = 4 is indeed the optimal load factor, what is the 

„best‟ optimal performance measure,ρ to choose if 𝛼 = 4gives 

multiple distinct values forρat different values of c? We 

address these concerns by repeating the same experiment 

by[30] after which a multi-objective optimization is used to 

find the actual optimalαandρ. 

In our experiment over the same specified range for c, there is 

a statistical frequency count of the number of times a specific 

optimal load factor, 𝛼𝑜𝑝𝑡 minimizes Equation(5) at different 

values of c to give different optimal values ofρ denoted 

𝜌𝑜𝑝𝑡 .Let this frequency be denotedby𝑓𝛼𝑜𝑝𝑡 .Let Cαopt be a set 

of the distinct values of c for that 𝛼𝑜𝑝𝑡 such that𝑓𝛼𝑜𝑝𝑡 >

1.Since the increment of c is uniform, the𝛼𝑜𝑝𝑡  withthe 
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highest𝑓𝛼𝑜𝑝𝑡 has the widest span of c in its corresponding set, 

Cαopt. This means that the choice of such𝛼𝑜𝑝𝑡 would support a 

wider range of approximation factors.  As per Definition #1, 

P1must be „high‟ and P2 must be „low‟.  Thus, the final choice 

of a specific 𝛼𝑜𝑝𝑡  depends not only on it having the highest 

𝑓𝛼𝑜𝑝𝑡  but also on the corresponding c that maximizes P1, and 

minimizes both P2and𝜌𝑜𝑝𝑡 .The problem then becomes a 

multi-objective optimization.  Let P1opt and P2opt be the 

optimal values of P1 and P2respectively.  Also let ραopt be the 

optimal value of𝜌𝑜𝑝𝑡 .Suppose𝛼𝑜𝑝𝑡𝑀𝑎𝑥  is the optimal load 

factor with the highest frequency.  Then,P1opt and ραopt can be 

obtained using Equations (6) and (7) respectively. 

𝑃1𝑜𝑝𝑡 = 1 − 2𝐹𝑐𝑑𝑓  𝛼𝑜𝑝𝑡𝑀𝑎𝑥  −
2

 2𝜋𝛼𝑜𝑝𝑡𝑀𝑎𝑥
 1 −

𝑒
−𝛼𝑜𝑝𝑡𝑀𝑎𝑥

2

2
 

(6) 

𝜌𝛼𝑜𝑝𝑡 = min
∀𝛼∈𝐶𝛼𝑜𝑝𝑡

 
 

 
ln 𝑃1𝑜𝑝𝑡

ln 𝑃2 𝑐 |𝛼=𝛼𝑜𝑝𝑡𝑀𝑎𝑥

 

 
 

 
 (7) 

 

Suppose ραopt is obtained at optopt Ccc  .  Then, P2opt can 

be computed either using Equation(8) or (9). 

 

𝑃2𝑜𝑝𝑡 = 1 − 2𝐹𝑐𝑑𝑓  −
𝛼𝑜𝑝𝑡

𝑐𝑜𝑝𝑡
 −

2

 2𝜋
𝛼𝑜𝑝𝑡

𝑐𝑜𝑝𝑡  

 1 − 𝑒−𝛼2/2𝑐𝑜𝑝𝑡
2

 

 (8) 

 

𝑃2𝑜𝑝𝑡 = 𝑒
ln 𝑃1𝑜𝑝𝑡

𝜌𝛼𝑜𝑝𝑡
 

 

 (9) 

Figure1 shows the optimal load factor, opt from the 

minimization of )(c  in Equation (5) and its approximate 

solution, c/1 provided in[25].  In Figure 1, it is observed that 

the𝜌𝑜𝑝𝑡  curve lies slightly below that of1/𝑐. 

 

Figure1:The optimal performance parameter (ρopt) and its 

corresponding approximate solution (1/c) 

Figure2 shows the frequency distributions of𝛼𝑜𝑝𝑡  for the 

minimization ofρ inEquation(5).  In Figure 2, it is observed 

that at𝛼𝑜𝑝𝑡 = 4 and𝛼𝑜𝑝𝑡 = 5 tied at the same highest 

frequency (specifically, 16).  We now shift the focus of our 

discussion to these critical optimal load factors. 

 

Figure2:The frequency distributions of the optimal load 

factors 

Table 1 summarizes the corresponding optimal parameters 

obtained from Equations (6) through (9) for these critical 

optimal load factors obtained in Figure 2. 

 

Table 1. Values of the optimal parameters corresponding 

to the critical optimal load factors 

αoptMax copt P1opt P2opt ραopt 

4 2.50 0.8005 0.5304 0.3508 

5 3.30 0.8404 0.5108 0.2588 

 

In what follows, we examine the effect ofραopton the choice of 

the number of independent projections, k;the number of 

tables, L; the computational complexity to create the data 

structure; the memory requirementfor the data structure;and 

the query runtime.For simplicity, we use α, c, P1, P2, and ρ to 

mean αoptMax, copt, P1opt, P2opt, and ραopt respectively. 

3.5 Choosing Parameters k and L 
From Equation(2), the probability of collision for a single 

scalar projection is 1P . Let   be the probability of false 

negatives, i.e. the probability of failure to return a true nearest 

neighbor as an output to a given query data point.  A typical 

choice of   is 0.1[30].Now, for k1 independent projections 

the probability of collision becomes 𝑃1
𝑘  thus, making the ratio 

𝑃1/𝑃2 larger.  Consequently, the probability of no collision 

under all k projections is given by 1 − 𝑃1
𝑘 .  To further 

increase the chance of close data points hashing to the same 

bucket with a high probability, a family of these hash 

functions is chosen independently for a number of L tables.  

This means that the probability of no collision under all L1 

tablesis 1 − 𝑃1
𝑘 

𝐿
.  Requiring that this probability is bounded 

below by  i.e.  1 − 𝑃1
𝑘 

𝐿
≥ 𝛿, yields Equation(10). 

𝐿 ≥
ln 𝛿

ln 1−𝑃1
𝑘 

  (10) 

This becomes a one-degree of freedom design.  Thus, the 

remaining parameter, k is chosen using Johnson-Lindenstrauss 

Lemma as shown in Equation(11). Once k is known, L can be 
computed. 

𝑘 =
ln 𝑛

ln 1/𝑃2 
  (11) 

For a fixed value of P2, k increases monotonically with n and 

L increases monotonically with k respectively.  The L can be 

expressed in terms of ρ as shown in Equation (12). 
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𝐿 ≥
ln 𝛿

ln 1−𝑃1
𝑘 

 

 (12) 

To make the computational complexity and memory analyses 

easier, the lower bound of L is approximated using Newton‟s 
Binomial Theorem as shown in Equation (13). 

𝐿 ≈ 𝑛𝜌 ln(1/δ) 
 (13) 

Figure3 and Figure4show variations ofk and L with 

nrespectively. 

 

Figure3:Variation of k with n for α = 4 and α = 5 

From Figure3, it should be noted that the value of k is not 

significantly affected by the choice of 𝛼 = 4or𝛼 = 5. 

 

Figure4:Variation of L with n for α = 4 and α = 5 

4. Complexity Analyses 
The main goal of selecting optimal parameters for LSH is to 

enable fast computations of the hash values; and to use as 

little memory space as possible to store the computed hash 

values.  These are necessary in order to guarantee fast query 

runtime.  In what follows we analyze the computational 

complexity, the memory requirement and the query runtime 

for LSH in general and more specifically for the load 

factors𝛼 = 4 (mostly used) and𝛼 = 5. 

4.1 Computational Complexity 
This is the total number of computations required to compute 

the hash values for the n data points using k hash functions to 

create L tables.  Suppose hij is the ith hash function for the jth 

table.  Assuming that it takes one computational operation to 

project a data point 𝒑 in the direction of hij (i.e. 𝒉𝒊𝒋 • 𝒑).  To 

make k projections, requires k operations.  To project p onto 

all the L tables requires 𝑘𝐿operations.  Thus, to project all n 

data points requires 𝑛𝑘𝐿 operations.  As a result, the 

computational complexityis 𝑂(𝑛𝑘𝐿).  The hidden constant in 

𝑂(𝑛𝑘𝐿) depends on the dimensionality of 𝒑.  For a fixed n, 

the computational complexity grows as a function of k and 

L.This implies that both k and L must be at their best 

minimum in order to ensure low computational complexity.  

From Equation(10),kmonotonically decreases as P2 decreases.  

To ensure that k is small, P2 must be chosen as small as 

possible.  From Equation(11), L decreases with decreasingk. 

From Equation(4), ρdecreases asP1 increases and P2 

decreases.  Thus,P1 must be chosen as large as possible.Table 

2 shows the computational complexitiesfor using the existing 

optimal load factor used by researchers over a decade; and 

using our proposed optimal load factor. 

 

Table 2.Computational complexities for α = 4 and α = 5 

α  Computational Complexity 

4 𝑂(𝑛1.3508 ln 1/𝛿 ln 𝑛) 

5 𝑂(𝑛1.2588 ln 1/𝛿 ln 𝑛) 

 

The computational complexities grow logarithmically as n 

increasesfor 𝛼 = 4 and 𝛼 = 5 as shown in Figure5. 

 

Figure5:Thecomputational complexityfor α = 4 andα = 5 

The unit for the computational complexity is number of 

operations. In an actual implementation of the hash tables, this 

is expressed in seconds.  The computational complexity 

saving denoted CCS, for using 𝛼 = 5over 𝛼 = 4can be 

approximatedbyEquation (14). 

 

CCS ≈  1 −
1

𝑛0.1 ∗ 100% 

 (14) 

 

Figure6 shows the computational complexity saving of the 

proposed optimal load factor over the existing one. 

 

Figure6: Computational complexity saving forα=5 over 

α=4 

From Figure6, for just a million data points (i.e. 𝑛 = 106) 
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there is approximately 75% less computations for using 𝛼 = 5 

compared to using𝛼 = 4. 

4.2 Memory Requirement 
This is the memory space required to store the n data points 

themselves along with their respective hash values.  To store 

each data point (i.e. 𝒑 ∈ ℜ𝑑 ) along with its k concatenated 

hash values on all L tables requires 𝐿(𝑑 + 𝑘) memory.  If the 

k-concatenated values are hashed to produce a single integer, 

then the memory requirement reduces to 𝐿(𝑑 + 1) per data 

point.  For all n data points, the memory requirement becomes 

𝑂(𝑑𝑛𝐿 + 𝑛𝐿).  For a large data set this can be huge.  In our 

implementation however, two optimization techniques are 

used to reduce the memory requirement further.  First, all the 

n data points in P are indexed from 1 through n.  The 

indexing is the same across all the L hash tables.  This means 

that each data point is stored once instead of L times.  This 

reduces the memory to 𝑂(𝑑𝑛 + 𝑛𝐿).  Second, the single 

integer produced from hashing the k-concatenated values is 

not stored but rather used to point to a bucket.  The index of 

the data point is then stored in that bucket.  Thus, each data 

point can be referred to by an index.  The hidden constant in 

𝑂(𝑑𝑛) depends on the data type of the data points in the 

dataset.  Henceforth, the memory analysis concentrates on the 

hash tables of the data structure.  Thus the memory 

requirement to store the hash tables for all the n data point 

becomes 𝑂(𝑛𝐿).  Once again, L has to be kept at its best 

minimum to achieve the best memory space.  The hidden 

constant in 𝑂(𝑛𝐿) is the number of bytes required to point to 

each bucket and  0.125 log2 𝑛  bytes to store each index of 

the data point on each table.  For example, for a billion data 

points (𝑖. 𝑒. 𝑛 ≈ 230) the hidden constant becomes eight bytes.  

Table 3 shows the memory requirement for using the existing 

optimal load factor and our proposed optimal load factor. 

 

Table 3.  Memory requirements for α = 4 and α = 5 

α  Memory Requirement 

4 𝑂 𝑛1.3508 ln 1/𝛿   

5 𝑂 𝑛1.2588 ln 1/𝛿   

 

The memory requirementsgrow with n.  No graph is provided 

since the expressions on Table 3 are similar to those obtained 

in Table 2.  It is however worth mentioning that he memory 

saving denoted as MS, for using 𝛼 = 5over𝛼 = 4can be 

approximatedby Equation (15). 

 

MS ≈  1 −
1

n0.1 ∗ 100% 

 (15) 

 

From Equation (15), for just a million data points (i.e. 

𝑛 = 106) the memory saving for using𝛼 = 5instead of𝛼 =
4isapproximately 75% and this increases as n increases.  

4.3 Query Runtime 
When running a query 𝒒, two time complexities are involved.  

First, the time required to hash the query to a bucket on each 

of the L tables to retrieve the candidate set.  Second, the time 

required to compute the distance between the query and the 

entries in the candidate set.  Let 𝜏𝑕  and 𝜏𝑐  denote these 

respectively. Computing the hash value 𝑕𝑗 (𝒑 ) for all the 

tables is 𝑂(𝑘𝐿).  The second level hash value computation is 

𝑂(𝐿) and it is relatively insignificant compared to that of the 

first.  Thus, 𝜏𝑕 is 𝑂(𝑘𝐿).  Suppose it takes one computational 

operation to compute the l2 norm between 𝒒 and an entry in 

the candidate set.  The expected number of entries in the 

candidate set is 𝛼𝐿.  Thus, 𝜏𝑐becomes𝑂(𝛼𝐿).  As a result, the 

total query runtime is 𝑂(𝑘𝐿 + 𝛼𝐿). 

If the (𝑅, 𝑐)-NNs are to be sorted then, the computed l2 norms 

have to be sorted using a sorting algorithm such as a quick 

sort.  Let this be denoted by𝜏𝑠 .  The quick sort average 

computational complexityis 𝑂(𝛼𝐿 log2 𝛼𝐿).  Thus, the total 

query runtime becomes τh+τc+τs.  The hidden constants in 

these analyses depend on the dimensionality and the 

complexity of the data points.   

Neglecting the complexities due to computing the distances 

between the query point and the items in the retrieved buckets 

and neglecting the complexity due to sorting these distances, 

the query time complexity is dependent only on the table 

lookup.  Thus, the query time complexity becomes O(𝑛𝜌 ln 1/
𝛿 ln n) with a hidden constant factor of −𝜌/ ln 𝑃1 (usually 

less than 2).The theoretical query runtime gain, G for 

using𝛼 = 5over𝛼 = 4canthen be approximated by 

Equation(16). 

 

𝐺 ≈ 𝑛0.1    (16) 
 

The G, is the ratio of the query runtime for using𝛼 = 5to that 

of using𝛼 = 4.  From Equation (16),for just a million data 

points (i.e.𝑛 = 106), the query runtime gain for 𝛼 = 5is 

approximatelyfour times relative to𝛼 = 4. 

5. PRACTICALLSH 

IMPLEMENTATION 
We present a real-world problem and solve it using LSH 

parameterization based on existing optimal load factor of 

𝛼 = 4and our proposed optimal load factor,𝛼 = 5.  It must be 

emphatically stated that the performance of the LSH 

algorithm is not dependent on the dataset used. This was 

evident in all the comparative analyses thathave been 

conducted in the previous sections.  This experiment is to 

onlyprovide a sample test of the LSH under the proposed load 

factor compared to the existing load factor. Consequently, 

there is no need to test the new parameterization of the LSH 

with several datasets in order to justify that LSH using the 

proposed load factor always outperforms that of the existing 

load factor. 

5.1 Dataset 
The algorithm is tested on real texture features extracted from 

Defense Meteorological Satellite Program (DMSP) satellite 

images.  The DMSP began in 1991. The visible and infrared 

sensors collect images across a 3000 km swath, providing 

global coverage twice per day.  Currently, the National 

Geophysical Data Center (NGDC) receives and processes 

approximately 8.5 GB of satellite imagery data per day from 

four DMSP satellites.  Each image is downsized 

to363 x 293.The texture featuresare extracted for 1.6 million 

images. The dimension for each texture feature vector is 

1 x 10 (i.e. 𝑑 = 10) and consists floating point numbers.  

These features are based on normalized central moments of 

wavelet edges after multi-resolution decomposition of each 

image. A detailed discussion of the texture feature extraction 

approach could be found in[42]. 

The LSH parameterization we formulate is to help quickly 

find the similar images to a given query image based on 

Euclidean metric space.  The similar images may assist 

scientists, meteorologists, and data analysts to integrate these 
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into their scientific predictive models to make real-time 

predictions such as when and where a hurricane may strike. 

5.2 Parameterization 
Table 4 lists the input parameters and their computed values 

required to build the hash tables for the dataset using the 

traditional optimal load factor of 𝛼 = 4 and our proposed 

optimal load factor of 𝛼 = 5. 

 

Table 4  Corresponding inputs to existing load factor and 

proposed load factor for n = 1.6 x 106 

Inputs α c ρ m k L 

Existing 4 2.5 0.3508 400009 23 383 

Proposed 5 3.3 0.2588 320009 22 105 

 

On Table 4, m is the size of each hash table. That is the 

number of buckets on each table and this is computed as a 

prime approximation of  𝑛/𝛼 . The ceiling operator  •  must 

be applied to both k and L since both have to be positive 

integers ( 𝑘, 𝐿 ∈ 𝑍+). 

5.3 Hash Table Creation 
Below are the steps for building the hash tables for the n data 

points in the dataset. The creation of the hash tables takes 

time.  As a result, they are created only once and stored along 

with their families of hash functions.  The tables are then used 

to answer different queries in sublinearqueryruntime. 

(1) Generate L families of hash functions, 𝑕1 , 𝑕2 , … , 𝑕𝐿 

randomly and independently from 𝒩(0, 1) such that 

each 𝑕𝑗 = [𝒉𝟏𝒋, 𝒉𝟐𝒋, … , 𝒉𝒌𝒋] and each hash function, 

𝒉𝒊𝒋 ∈ ℜ𝑑∀ 𝑗 ∈ [1, 2, … , 𝐿] and  ∀ 𝑖 ∈ [1, 2, … , 𝑘] 

(2) Generate an offset, bij randomly, independently and 

uniformly from [0, 𝛼] for each ith hash function in each 

jth family 

(3) Generate L set, 𝐻1, 𝐻2, … , 𝐻𝐿 of random integers from 

the range [1  𝑚], independently such that each  𝐻𝑗 ∈ ℜ𝑘  

(4) Index all the n data points in P from 1 through n 

(5) For each feature vector 𝒑 ∈ P, normalized 𝒑 as 

𝒑 = 𝒑/ 𝒑 2 

(6) Compute the hash value for 𝒑  for the  jth family as 

𝑕𝑗  𝒑  =   
𝒉𝟏𝒋•𝒑 +𝑏1𝑗

𝛼
 ,  

𝒉𝟐𝒋•𝒑 +𝑏2𝑗

𝛼
 , … ,  

𝒉𝒌𝒋•𝒑 +𝑏𝑘𝑗

𝛼
   

(7) Compute the second level hash value for the 𝒑  as 

𝑕𝑗
∗ 𝒑  =  (𝑕𝑗  𝒑  • 𝐻𝑗 )mod 𝑀 mod 𝑚 

(8) Store the index of 𝒑 in the bucket 𝑕𝑗
∗ 𝒑   on the jth table 

The M is a large prime integer close to 2𝑊  where, W is the 

word width of the microprocessor being used.  For a 64-bit 

computer, 𝑀 = 264 − 5.  In [43, 44],we offered more details 

regarding the formulation of the equation for computing the 

hash values. 

5.4 Bucket Hashing 
Below are the steps to find the (𝑅, 𝑐)-NNs to a query point. 

(1) For a given query feature vector, 𝒒 ∈ P normalized 

𝒒(i.e. 𝒒 = 𝒒/ 𝒒 2) 

(2) Compute the hash values for 𝒒  as 

𝑕1 𝒒  , 𝑕2 𝒒  , … , 𝑕𝐿 𝒒   

(3)  Compute the second level hash values as   

𝑕1
∗ 𝒒  , 𝑕2

∗ 𝒒  , … , 𝑕𝐿
∗ 𝒒   

(4) Use the indices in these buckets to collect their 

corresponding feature vectors (let us call this the 

candidate set) 

(5) Compute the l2 norm between 𝒒 and the entries in the 

candidate set 

(6) Retrieve the top K,  (𝑅, 𝑐)-NNs to 𝒒 or terminate the 

search once 2𝐿 (including duplicates) items are 

retrieved  

In our implementation, the number of nearest neighbors to be 

found closest to 𝒒is 𝐾 = 50 (must be less than 2L).  The 

choice of R is better controlled if the data points are 

normalized.  In the l2 normalized space, the l2 norm between 

any two data points, 𝒑  and 𝒒  can be computed using Equation 

(17) 

 𝒑 − 𝒒  2 =  2(1 − 𝒑 • 𝒒 ) 

 (17) 

From Equation (17),0 ≤  𝒑 − 𝒒  2 ≤ 2.  Let λ be the fraction 

of the maximum distance within which each (𝑅, 𝑐)-NNs must 

lie.  This means that cR  is bounded below by 2λ.  

Consequently, the upper bound of R can be computed as in 

Equation (18) for any approximation factor, c. 

𝑅 =
2λ

𝑐
   (18) 

It should be noted that if λ is large, the search domain 

becomes bigger.  On the other hand, if λ is too small, the 

search domain becomes small and only few nearest neighbors 

could be found.  For a highly sparse dataset, λ has to be kept 

relatively high while for highly dense dataset, λ has to be kept 

relatively small.  We keep λ at 5% (retrieved data points are 

within 95 percentile of the maximum distance).  Thus R 

becomes 0.0303 units.  

5.5 Result and Discussion 

Two sets of hash tables are createdusing a 64-bit Intel (R) 

core (TM) 880 i7 CPU at 3.07/3.20 GHz with 16 GB RAM.  

The firstset has383 hash tables, each having 400009buckets. 

This set corresponds to𝛼 = 4.The second set which 

corresponds to𝛼 = 5, has105 hash tables, each having 320009 

buckets. The two sets of hash tables are stored together with 

their respective families of hash functions.  Table 5 

summarizes the computational complexities and the memory 

requirements of the two sets of hash tables. 

 

Table 5  The computational complexities (CC) and 

memory requirements (MR) for α = 4 and α = 5 

α CC (s) CCS (%) MR 

(MB) 

MS (%) 

4 13676 - 3092 - 

5 3740
 

73 606 80 

 

From Table 5, under the proposed load factor of 5 , the 

hash tables are created in much smaller time compared to the 

time taken to create the hash tables under the existing load 

factor of𝛼 = 4.In other words, there is 73% less computations 

to create the hash tables using𝛼 = 5compared to using𝛼 =
4.This is due to the fact our proposed technique creates fewer 

hash tables that are just sufficient enough to report the NNs 
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correctly.  In fact, our proposed choice of𝛼 = 5reduces the L 

to more than a third compared to that of𝛼 = 4(see Table 4). In 

addition, the memory required to store the hash tables is much 

smaller under the proposed load factor.  To store the hash 

tables, approximately 80% memory space is saved for 

using𝛼 = 5 compared to using𝛼 = 4.The theoretical CCS and 

MS are approximately 75% each (see Equations 15 and 16). 

Once the tables are created and stored, they can be used to 

answer queries.  Since the data points are indexed, a query is 

simply referred to by its index.  The two sets of hash tables 

are presented with same ten queries chosen randomly from the 

dataset and the goal is to report the top 50(𝑅, 𝑐)-NNs to each.  

Each query is run through a Linear Search (LS) to find the top 

50 exact NNs („gold standard‟).  Two comparisons are made.  

First, the 50(𝑅, 𝑐)-NNs for each query reported by each 

choice for 𝛼 are compared to that of the LS to compute the 

retrieval percentage accuracy.  Second, the query runtimes 

(𝜏𝐿𝑆𝐻4 and 𝜏𝐿𝑆𝐻5 for 𝛼 = 4 and  𝛼 = 5 respectively) are 

compared to the query runtime (𝜏𝐿𝑆) of the LS.These ratios 

are denoted as G4 and G5 (gains). 𝐺4 = 𝜏𝐿𝑆𝐻4/𝜏𝐿𝑆and𝐺5 =
𝜏𝐿𝑆𝐻5/𝜏𝐿𝑆for 𝛼 = 4 and 𝛼 = 5 respectively.  The query 

runtime gain of using 𝛼 = 5over  𝛼 = 4 is given by 𝐺 =
𝜏𝐿𝑆𝐻4/𝜏𝐿𝑆𝐻5.  The sizes of the candidate sets are expressed as 

fraction of the number of data points, n and are denoted by 

CSs4 and CSs5 respectively.  

Table6 summarizes these results for the ten queries, which are 

represented by their indices.   

For visual purposes, Figure 7 and Figure 8 show one sample 

query image (the 970997th image) and its top five similar 

visual and thermal images respectively.  The images are 

ranked; „1‟ being the best similar image and „5‟ being the 

worst similar image found respectively. 

 

Figure 7:  Visual query image and its top five matches 

 

Figure 8:  Thermal query image and its top five matches

 
Table6.Summarized results for ten random queries reference by their indices 

Query 

index 

Retrieval Accuracy (%) 
 

Query Runtime (ms) Gain Candidate Set size (%) 

4
 

5
 LS  4LSH  5LSH  G4 G5 G CSs4 CSs5 

412014 100 100 2824.30 52.87 27.10 53 104 2.0 0.28 0.41 

497945 100 100 2600.94 26.88 12.69 97 205 2.1 0.28 0.25 

783624 100 100 2678.10 35.34 12.17 76 220 2.9 0.28 0.28 

970997 100 100 2558.26 37.87 10.82 68 236 3.5 0.27 0.23 

1011775 100 100 2677.33 20.16 11.35 133 236 1.8 0.18 0.22 

1084917 100 100 2767.25 26.04 16.33 106 169 1.6 0.35 0.38 

1191509 100 100 2727.99 19.52 12.29 140 222 1.6 0.19 0.27 

1211521 100 100 2653.87 27.85 16.36 95 162 1.7 0.32 0.4 

1285384 100 100 3121.96 27.99 20.54 112 152 1.4 0.33 0.57 

1507281 100 100 2621.44 23.07 14.55 114 180 1.6 0.25 0.36 

Average 100 100 2723.14 29.76 15.42 99 189 2.1 0.27 0.34 

From Table 6 the average query runtime gain of using 𝛼 = 5 

over using 𝛼 = 4 is approximately 2.It should be noted that both 

schemes reported the top 50 NNs correctly compared to those 

reported by the LS.  These similar images are same as those 

reported by the LS.   

For the results shown in Figure 7 and Figure 8, the LSH scheme 

corresponding to 𝛼 = 5 searched only 0.23% whiles that 

corresponding to 𝛼 = 4searched0.27% of the dataset.  Usually 

we expect 𝐶𝑆𝑠5 < 𝐶𝑆𝑠4 but this is not necessarily the case 

because the candidate set is the union of the entries in all the 

buckets collected.  If the union operator is not applied then 

indeed CSs5 would always be less than CSs4.   

6. CONCLUSION 
In a large dataset retrieval application in which an approximate 

match is as good and acceptable as an exact match, LSH is very 

effective.  Unlike the LS, hash tables need to be created when 

using LSH and this takes time. But once this is done and 

stored,the benefit of the LSH outweighs that of LS in terms of 

the query runtime complexity. The goal of the LSH is to search a 

fraction of the dataset to find the(𝑅, 𝑐)-NNs for any given query 

data point.This makes LSH scalable for searching large dataset.  

The number of tables created and the number of projections used 

have a significant effect on the performance of the LSH.  We 

have shown both theoretically and practically that for𝛼 = 5, the 

LSH achieves lower computational complexity, lower memory 

requirement and faster query runtime than usingthe traditional 

Query (thermal) 1 2 

3 4 5 

Query (visual) 1 2 

3 4 5 
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optimal load factor of 𝛼 = 4.  We therefore propose the use 

of𝛼 = 5 as an optimal load factor under the LSH scheme. 

The parameterization discussed based on the l2norm is 

extendable to all fractional norms as well. In general, LSH is not 

effective for small dataset. 
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