
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

22

Optimal Load Factor for Approximate Nearest

Neighbor Search under Exact Euclidean Locality

Sensitive Hashing

Ruben Buaba

Autonomous Control and
Information Technology Center,

Department of Electrical and
Computer Engineering

North Carolina Agricultural and
Technical State University

Greensboro, NC 27411

Abdollah Homaifar
Autonomous Control and

Information Technology Center,
Department of Electrical and

Computer Engineering
North Carolina Agricultural and

Technical State University
Greensboro, NC

Eric Kihn
NOAA /NGDC

325 Broadway Boulder,CO
80305

ABSTRACT
Locality Sensitive Hashing (LSH) is an index-based data

structure that allows spatial item retrieval over a large dataset.

The performance measure, ρ, has significant effect on the

computational complexity and memory space requirement to

create and store items in this data structure respectively. The

minimization of ρ at a specific approximation factor c, is

dependent on the load factor, α. Over the years,𝛼 = 4has

been used by researchers. In this paper, we demonstratethat

the choice of𝛼 = 4does not guarantee low computational

complexity and low memory space of the data structure under

the LSH scheme. To guarantee low computational

complexity and low memory space, we propose𝛼 = 5.

Experiments on the Defense Meteorological Satellite Program

imagery datasethave shown that𝛼 = 5saves more than 75%on

memory space; cuts the computational complexity by more

than 70%andanswers query two times faster on the average

compared to that of𝛼 = 4.

General Terms

Nearest Neighbor, Search Algorithm, Locality Sensitive

Hashing

Keywords
Approximate Nearest Neighbor, Exact Nearest Neighbor,

ApproximationFactor, Performance Measure,Optimal Load

Factor

1. INTRODUCTION

1.1 Nearest Neighbor Search
A nearest neighbor (NN) search is composed as follows:

given a setP of n data pointsin a metric space, X, the task is to

preprocess these points sothat, given any query point𝒒 ∈ Pthe

data point nearest to qcan be reported quickly. This is also

referred to as the closest-pointproblem or the post office

problem[1]. Even though linear search (LS) algorithm

guarantees the retrieval of the exact nearest data point to a

given query point correctly, it becomes computationally

exhaustive and queryruntime complexity can be exponential

when dealing with a large datasetwithhigh dimensionality.

The reason being,LS literally iterates through the entire

dataset and computes some metric distance between each data

point and the query point and then returns the data point

closest to the query point.

In practice, the NN search problem involves a collection of

large number of items characterized by high dimensionality.

In reality, the dataset for most applications is dynamic. In

other words, the dataset is updated as when new data is

collected. Consequently, similarity search algorithm should

scale to produce an output within a reasonable timespan

irrespective of the growth of the dataset. Thus, building a data

structure that can be used to index and store these items in

such a manner that given any query item, the search algorithm

is able to find the most similar itemin sublinearquery runtime

is vital. This problem is of major importance including but not

limited to image and video database retrieval, data

compression, information retrieval, database and data mining,

pattern recognition, statistics and data analysis[2, 3].

Over the years, intensive research has been done either to use

trees, K-means clustering/classification or hashes to develop a

space-partitioned data structure that would have a

sublinearquery runtime[4-8]. For uniformly distributed data

points, expected query runtime is achievable by algorithms

that decompose the search space into regular grids [9, 10]. In

[11], the authors generalized these results and reported that

𝑂(𝑛) space and 𝑂(log 𝑛) query time are possible using kd-

trees. However, even these methods suffer as dimension (i.e.

d) of the data points increases because the constant factors

hidden in the asymptotic query runtime of the kd- trees grows

as fast as 2𝑑 . In [12], the author experimentally measured the

query runtime of kd-trees and observed that it increases quite

rapidly with the dimension. Also in[13], it is shown that if n

is not substantially larger than 2𝑑 (which arises in some real-

world applications), boundary effects decrease this

exponential dimensional dependency. Thus, perfect solution

would be to preprocess the points in 𝑂(𝑛 log 𝑛) time, into a

data structure that requires 𝑂(𝑛)space so that queries can be

answered in 𝑂(log 𝑛) time. For one-dimensional data points,

sorting the points, and then using binary search to answer

queries achieves this goal. For two-dimensional data points, it

is possible to compute the Voronoi diagram for the data points

and then use any fast planar point location algorithm to locate

the cell containing the query point [14-16]. However, for

higher dimensional data points, the worst-case complexity of

the Voronoi diagram grows as quickly as 𝑂(𝑛 𝑑 2). In[17],

the authors provided higher-dimensional solutions with

sublinear worst-case performance. In [18], it is reported that

for some arbitrary constant𝛿 > 0, queries could be answered

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

23

in 𝑂(log 𝑛) time with 𝑂(𝑛 𝑑 2 +𝛿)space with hidden constant

factors that are exponential in d. In [19], the authors

generalized this by providing a trade-off between space and

query runtime. Later in[20], it is reported that exponential

factors in query runtime could be eliminated with an

algorithm having 𝑂(𝑑5 log 𝑛) query time and 𝑂(𝑛𝑑+𝛿) space.

Unfortunately, it is shown both theoretically and

empiricallythat these solutions provide little or no

improvement over the LS algorithm for highly dimensional

large dataset[21, 22]. Consequently, several researchers have

become proponents of the use of approximation similarity

search algorithms[23-27]. The fundamental principle being,

in practice, approximate nearest neighbor is almost as good as

the exact nearest neighbor in most cases. Since a distance

measure is what is often used for similarity estimation, a small

difference in the distance should not adversely influence the

similarity estimation unless the nearest neighbor problem

itself is unstable[28, 29]. This notion of approximation forms

the basis of a novel similarity search algorithm known as the

Locality Sensitive Hashing (LSH) which was first introduced

in[25]. This technique drastically reduces the query runtime

at the expense of a small probability of failure to find the

absolute closest match. The concept of the approximate

nearest neighbor (ANN) in some ls norm space is formulated

as follows: suppose q is a query whose exact NN is q*. For a

given 𝑐 > 1, p is said to be a c-NN of q if 𝒑 − 𝒒 𝑠 ≤
𝑐 𝒑 − 𝒒∗ 𝑠.

The performance of LSH depends on the minimization ofthe

performance measure,ρ that is associated with an optimal load

factor α.This guides the memory requirement, the

computational complexity and the query runtime of the data

structure under the LSH scheme. Over the years, many

researchers haveused 𝛼 = 4[25, 21, 30, 31]. In this paper, it

is demonstrated that the choice of 𝛼 = 4 does not guarantee

low memory requirement and low computational complexity

of the data structure under the LSH scheme. In addition, the

query runtime is slow. We show that under the LSH scheme,

a load factor of𝛼 = 5guarantees a lower memory requirement,

lowercomputational complexity and faster query runtime

compared to the conventional choiceof 𝛼 = 4.

The remainder of this paper is organized as follows: Section

1.2 formulates the problem; section 2 offers the background of

LSH in general; section 3 explains theorems and parametric

constraintsof our proposed technique; section 4 talks about the

complexity of the LSH; section 5 offers an empirical

implementation of LSH on real data; and section 6draws the

conclusions and proposes a future improvement.

1.2 Notations and Problem Definition
Unless otherwise stated the following parameter notations are

used throughout this paper. P is a set of n data points in d-

dimensional space (ℜ𝑑). A query data point and any other

point are denoted q and p respectively such that 𝒑 ≠ 𝒒 ∈ P.

A sphere of radius R centered at q is denoted by 𝛽(𝒒, 𝑅). For

any 𝜀 > 0, 𝑐 = 1 + 𝜀 is the approximation factor such that

𝑐𝑅 > 𝑅. The l2 norm of p is denotedby 𝑝 2. The expected

number of data points per bucket (i.e. load factor) is denoted

byα. Our goal is to build a data structure forP under the LSH

scheme by choosing an optimal value forαthat guarantees

lower memory, lowercomputational complexityand faster

query runtime than that of the existing load factor,𝛼 = 4.This

data structure is to solve the (R, c)-nearest neighbor problem

in the l2 norm space defined as follows: if ∃ 𝒒∗: 𝒒 − 𝒒∗ 2 ≤

𝑅 then in sublinearquery runtime, report any point 𝒑: 𝒒 −
𝒑 2 ≤ 𝑐𝑅 if it such a point exists.

2. LSH BACKGROUND
LSH is an index-based data structure that allows spatial item

retrieval over a large database. The basic idea underlying the

operation and the effectiveness of the LSH is that if two data

points 𝒑, 𝒒 ∈ ℜ𝑑 (i.e. 𝑑 ∈ 𝑍+) are close, then after a scalar

projection of these points onto a hyper-plane, the two points

should remain close to each other. On the other hand, if the

points are far apart, they should remain far apart from each

other after a scalar projection onto that same hyper-plane.

This assertion is true in most cases[25, 32].However, with

small failure probability,δ, some points that are far apart

might become closer after projection onto a lower dimension.

For a dynamic dataset (i.e. dataset grows from time to time),

the major advantage of LSH over tree-data structures is its

ability to support deletion and insertion [30] operations.

Suppose the real number line is "chopped" into slots (i.e.

bucket)numbered 0, 1, … , 𝑚 − 1 to form a table. If integer

values are assigned to the data points based on which slots

they project to, then intuitively, making several projections

certainly increases the probability,P1 of nearby points

projecting to the same slot and decrease the probability, P2 of

far points from projecting to same slot. To make further

guarantee this, several families of hash functions are used to

perform the scalar projections. To achieve this goal, the

functions must be locality sensitive and universal[33].

Definition #1: A family of hash functions, ℋ = {𝒉𝒊𝒋:P → 𝑈}

each hij mapping one point from domainPto domain U, is said

to be 𝑃1 > 𝑃2, 𝑐𝑅 > 𝑅locality-sensitive if for any 𝒑, 𝒒 ∈ P,

 if 𝒑 ∈ 𝛽(𝒒, 𝑅) then Pr⁡[𝑕𝑖𝑗 𝒑 = 𝑕𝑖𝑗 (𝒒)] ≥ 𝑃1(′𝑕𝑖𝑔𝑕′)

 if 𝒑 ∉ 𝛽(𝒒, 𝑐𝑅) then Pr⁡[𝑕𝑖𝑗 𝒑 = 𝑕𝑖𝑗 (𝒒)] ≤ 𝑃2(′𝑙𝑜𝑤′)

Definition #2: Suppose P is a universe of keys, and ℋis a

family of a finite collection of hash functions, each mapping

Uto 0,1, … , 𝑚 − 1, ℋ is said to be universal if ∀ 𝒑, 𝒒 ∈

Pand 𝑝 ≠ 𝑞, then Pr 𝑕𝑖𝑗 ∈ ℋ: 𝑕𝑖𝑗 𝒑 = 𝑕𝑖𝑗 𝒒 = ℋ/m.

A well-developed hash function tries to amplify the gap

between the two probabilities, 1P and 2P . To guarantee this

amplification 𝑃1/𝑃2, k hash functions are chosen identically

and independently from ℋ. To further amplify the gap

between P1 and P2, Ltables are created. Whenever two or

more items hash into the same bucket on any table, collision,

is said to have occurred and this is sometimes resolved using

double hashing, linked-list, or chaining. Normally, the

number of buckets is large. As a result, it is only the non-

empty buckets that are retained after all the data points in

Pare projected into the buckets on the various tables.

Creation of hash tables is normally fast and simple if the

objects in the dataset are binary strings, i.e. 0 1 𝑑[21, 25]—

the biggest drawback of LSH. In spite of this limitation, LSH

algorithm has been used in a number of applications involving

non-binary data set[34-40]. To handle non-binary dataset, the

algorithm has to be extended to the l2 norm, by embedding l2

space into l1 space, and then l1 space into the binary Hamming

space. This however increases the complexity of the search

algorithm but the advantages achieved outweigh this

drawback.

Once the hash table is created and stored, for any query

point 𝒒 ∈ P, the 𝑅, 𝑐 -NNs can be found by hashing qand

retrieving data points stored in the buckets

𝑕1 𝒑 , 𝑕2 𝒑 , . . . , 𝑕𝐿(𝒑) in which the query point hashes into.

Therefore, when the load factor, varies, there is a trade-off 

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

24

between a larger table with a smaller final linear search or a

more compact table with more data points to consider in the

final search. The 𝑅, 𝑐 -NNs search is terminated after

finding the first 2L data points (including duplicates) closet to

q[30]. The parameters k and L are chosen such that the

following two conditions hold with constant probabilities:

 Condition #1: if 𝒒∗ ∈ 𝛽(𝒒, 𝑅), then𝑕𝑗 𝒒
∗ = 𝑕𝑗 (𝒒)for

some 𝑗 = 1,2, … , 𝐿

 Condition #2: the expected number of collision of 𝒒 with

any point 𝒑 ∈ P such that 𝒑 ∈ 𝛽(𝒒, 𝑐𝑅) is less than 2L

3. THEORY AND CONSTRAINTS

3.1 S-stable Distribution
Stable distributions are defined as limits of normalized sums

of independent identically distributed variables [41]. A

distribution Dis said to be s-stable if there exists 𝑠 ≥ 0, such

that for any N real numbers 𝑢1 , 𝑢2 , … , 𝑢𝑁 and independent

identically distributed random variables, 𝑋1 , 𝑋2, … , 𝑋𝑁 with

distribution D, the random variable, 𝑢𝑖𝑋𝑖
𝑁
𝑖=1 has the same

distribution as the variable 𝑢𝑖
𝑠𝑁

𝑖=1
1/𝑠

𝑋, where X is a

random variable with distribution D . For 𝑠 ∈ [0, 2], there

exist stable distributions[41]. However, the focus is shifted to

the case, 𝑠 = 2 since the similarity measure which is normally

used is the l2 norm (the Euclidean space). Under this, the

normal Gaussian distribution denoted, 𝒩(0, 1) with a

probability distribution function, 𝑓 𝑥 =
1

 2𝜋
𝑒−𝑥2/2 is 2-

stable. Stable distributions have applications in many fields

[34]. In computer science, stable distributions are used for

"sketching" high dimensional vectors[25].

Suppose a random vector 𝒉𝒊𝒋 ∈ ℜ𝑑 is chosen from the

standard Gaussian distribution, 𝒉𝒊𝒋~𝒩(0, 1) and 𝒑is any

vector such that 𝒑 ∈ ℜ𝑑 → 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑑]. Then the

scalar dot product 𝒉𝒊𝒋 • 𝒑 is a random variable which tends to

be distributed as 𝒑 2𝒉𝒊𝒋, where hij is a random variable with

2-stable distribution and 𝑝 2 is the l2 norm of vector p given

as 𝑝 2 = 𝑝𝑧
2𝑑

𝑧=1
1/2

. In other words, the difference,𝒉𝒊𝒋 •

𝒑 − 𝒉𝒊𝒋 • 𝒒 tends to be distributed as 𝒒 − 𝒑 2𝒉𝒊𝒋. Small

collections of such dot products corresponding to different

hijcan be used to estimate 𝒒 − 𝒑 2,the l2 norm between the

two data points 𝒑, 𝒒 ∈ P. Hence the data structure under the

LSH scheme is said to be l2-embedding and the l2 norm forms

the similarity metric for finding the NN to a given query data

point.

3.2 Evaluation of P1 and P2
Suppose 𝑐 = 𝒒 − 𝒑 2 and bij is an offset drawn uniformly

from [0, 𝛼] at random. Also assume that hj is a family of k

hash functions drawn randomly and independently from

𝒩(0, 1) such that, 𝑕𝑗 = [𝒉𝟏𝒋, 𝒉𝟐𝒋, … , 𝒉𝒌𝒋]. The hash value of

𝒑 can be computed

as,𝑕𝑗 𝒑 =
𝒉𝟏𝒋•𝒑+𝑏1𝑗

𝛼
 ,

𝒉𝟐𝒋•𝒑+𝑏2𝑗

𝛼
 , … ,

𝒉𝒌𝒋•𝒑+𝑏𝑘𝑗

𝛼
 .From the

2-stable distribution, 𝒉𝒊𝒋 • 𝒑 − 𝒉𝒊𝒋 • 𝒒 for any ith hash function

such 𝒉𝒊𝒋 ∈ 𝑕𝑗 has the same distribution as𝑐𝒉𝒊𝒋. The probability

that 𝒑 and 𝒒collides is given by Equation (1). The 𝐹(•) in

Equation(1) represents the probability density function of the

absolute value of the Gaussian distribution.

 Pr 𝑐 = Pr 𝑕𝑗 𝒑 = 𝑕𝑗 𝒒 =
1

𝑐
𝐹

𝑡

𝑐
 1 −

𝑡

𝛼

𝛼

0
 𝑑𝑡(1)

It should be noted that for a given α, the probability of

collision decreases monotonically with c. This means that the

probability of collision is high if 𝒑 − 𝒒 2 is small and low if

 𝒑 − 𝒒 2 is large. Thus, as per Definition#1, for this to be

𝑃1 > 𝑃2, 𝑐𝑅 > 𝑅sensitive 𝑃1 = Pr 𝑐 = 1 and 𝑃2 = Pr 𝑐 >
1 . Solving these yieldEquations (2) and (3) with 𝐹𝑐𝑑𝑓 (•)

being the cumulative distribution function of the Gaussian

random variable.

𝑃1 = 1 − 2𝐹𝑐𝑑𝑓 −𝛼 −
2

 2𝜋𝛼
 1 − 𝑒

−𝛼2

2

 (2)

𝑃2 = 1 − 2𝐹𝑐𝑑𝑓 −𝛼/𝑐 −
2

 2𝜋𝛼/𝑐
 1 − 𝑒−𝛼2/2𝑐2

 (3)

These prior probabilities influence the performance measure,

ρ as shown in Equation (4).

𝜌 =
ln 𝑃1

ln 𝑃2

 (4)

3.3 Computing the performance measure, ρ
The two prior probabilities P1and P2are needed to compute ρ.

From Equation(2), once α is known P1can be computed. To

compute P2 from Equation(3), both α and c must be known.

Theρ directly affects the memory space required to store items

in the hash table. As a result, the goal is to find α that

minimizes ρ at a specific c. In other words, the aim is to solve

Equation(5).

min∀𝛼∈𝑍+
ln 𝑃1

ln 𝑃2

 (5)

There exists no closed-form solution for Equation(5). In [25],

the authors provided an approximate solution as 𝜌(𝑐) ≈ 1/𝑐.

A minimization tool such as Matlab could be used to find the

optimal value for ρ. Later in[30], the authors conducted a

minimization experiment in Matlab to solve Equation(5). The

experiment was conducted for𝑐 = (1 10]in increment of 0.05.

For each value of c, the minimum value of𝜌(𝑐)is computed

over the range of α. They concluded that their approach gave

a minimum value of ρ slightly below the approximate solution

by[25]. Furthermore, they observed thatρ is not very sensitive

to α beyond a certain point; and as long α is chosen

“sufficiently” away from 0, the value ofρ would be close to

optimal. They added that, if α is too large, both P1 and P2

approach unity and this increases memory space and the query

runtime.

3.4 Proposed Optimal Load Factor
Over the years, researchers use 𝛼 = 4proposed by [30]as the

optimal load factor. This however, raises two major concerns.

First, does the choice of𝛼 = 4guarantee low computational

complexityand low memory space to create and store a data

structure for n data points under the LSH scheme? Second,

assuming𝛼 = 4 is indeed the optimal load factor, what is the

„best‟ optimal performance measure,ρ to choose if 𝛼 = 4gives

multiple distinct values forρat different values of c? We

address these concerns by repeating the same experiment

by[30] after which a multi-objective optimization is used to

find the actual optimalαandρ.

In our experiment over the same specified range for c, there is

a statistical frequency count of the number of times a specific

optimal load factor, 𝛼𝑜𝑝𝑡 minimizes Equation(5) at different

values of c to give different optimal values ofρ denoted

𝜌𝑜𝑝𝑡 .Let this frequency be denotedby𝑓𝛼𝑜𝑝𝑡 .Let Cαopt be a set

of the distinct values of c for that 𝛼𝑜𝑝𝑡 such that𝑓𝛼𝑜𝑝𝑡 >

1.Since the increment of c is uniform, the𝛼𝑜𝑝𝑡 withthe

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

25

highest𝑓𝛼𝑜𝑝𝑡 has the widest span of c in its corresponding set,

Cαopt. This means that the choice of such𝛼𝑜𝑝𝑡 would support a

wider range of approximation factors. As per Definition #1,

P1must be „high‟ and P2 must be „low‟. Thus, the final choice

of a specific 𝛼𝑜𝑝𝑡 depends not only on it having the highest

𝑓𝛼𝑜𝑝𝑡 but also on the corresponding c that maximizes P1, and

minimizes both P2and𝜌𝑜𝑝𝑡 .The problem then becomes a

multi-objective optimization. Let P1opt and P2opt be the

optimal values of P1 and P2respectively. Also let ραopt be the

optimal value of𝜌𝑜𝑝𝑡 .Suppose𝛼𝑜𝑝𝑡𝑀𝑎𝑥 is the optimal load

factor with the highest frequency. Then,P1opt and ραopt can be

obtained using Equations (6) and (7) respectively.

𝑃1𝑜𝑝𝑡 = 1 − 2𝐹𝑐𝑑𝑓 𝛼𝑜𝑝𝑡𝑀𝑎𝑥 −
2

 2𝜋𝛼𝑜𝑝𝑡𝑀𝑎𝑥
 1 −

𝑒
−𝛼𝑜𝑝𝑡𝑀𝑎𝑥

2

2

(6)

𝜌𝛼𝑜𝑝𝑡 = min
∀𝛼∈𝐶𝛼𝑜𝑝𝑡

ln 𝑃1𝑜𝑝𝑡

ln 𝑃2 𝑐 |𝛼=𝛼𝑜𝑝𝑡𝑀𝑎𝑥

 (7)

Suppose ραopt is obtained at optopt Ccc  . Then, P2opt can

be computed either using Equation(8) or (9).

𝑃2𝑜𝑝𝑡 = 1 − 2𝐹𝑐𝑑𝑓 −
𝛼𝑜𝑝𝑡

𝑐𝑜𝑝𝑡
 −

2

 2𝜋
𝛼𝑜𝑝𝑡

𝑐𝑜𝑝𝑡

 1 − 𝑒−𝛼2/2𝑐𝑜𝑝𝑡
2

 (8)

𝑃2𝑜𝑝𝑡 = 𝑒
ln 𝑃1𝑜𝑝𝑡

𝜌𝛼𝑜𝑝𝑡

 (9)

Figure1 shows the optimal load factor, opt from the

minimization of)(c in Equation (5) and its approximate

solution, c/1 provided in[25]. In Figure 1, it is observed that

the𝜌𝑜𝑝𝑡 curve lies slightly below that of1/𝑐.

Figure1:The optimal performance parameter (ρopt) and its

corresponding approximate solution (1/c)

Figure2 shows the frequency distributions of𝛼𝑜𝑝𝑡 for the

minimization ofρ inEquation(5). In Figure 2, it is observed

that at𝛼𝑜𝑝𝑡 = 4 and𝛼𝑜𝑝𝑡 = 5 tied at the same highest

frequency (specifically, 16). We now shift the focus of our

discussion to these critical optimal load factors.

Figure2:The frequency distributions of the optimal load

factors

Table 1 summarizes the corresponding optimal parameters

obtained from Equations (6) through (9) for these critical

optimal load factors obtained in Figure 2.

Table 1. Values of the optimal parameters corresponding

to the critical optimal load factors

αoptMax copt P1opt P2opt ραopt

4 2.50 0.8005 0.5304 0.3508

5 3.30 0.8404 0.5108 0.2588

In what follows, we examine the effect ofραopton the choice of

the number of independent projections, k;the number of

tables, L; the computational complexity to create the data

structure; the memory requirementfor the data structure;and

the query runtime.For simplicity, we use α, c, P1, P2, and ρ to

mean αoptMax, copt, P1opt, P2opt, and ραopt respectively.

3.5 Choosing Parameters k and L
From Equation(2), the probability of collision for a single

scalar projection is 1P . Let  be the probability of false

negatives, i.e. the probability of failure to return a true nearest

neighbor as an output to a given query data point. A typical

choice of  is 0.1[30].Now, for k1 independent projections

the probability of collision becomes 𝑃1
𝑘 thus, making the ratio

𝑃1/𝑃2 larger. Consequently, the probability of no collision

under all k projections is given by 1 − 𝑃1
𝑘 . To further

increase the chance of close data points hashing to the same

bucket with a high probability, a family of these hash

functions is chosen independently for a number of L tables.

This means that the probability of no collision under all L1

tablesis 1 − 𝑃1
𝑘

𝐿
. Requiring that this probability is bounded

below by i.e. 1 − 𝑃1
𝑘

𝐿
≥ 𝛿, yields Equation(10).

𝐿 ≥
ln 𝛿

ln 1−𝑃1
𝑘

 (10)

This becomes a one-degree of freedom design. Thus, the

remaining parameter, k is chosen using Johnson-Lindenstrauss

Lemma as shown in Equation(11). Once k is known, L can be
computed.

𝑘 =
ln 𝑛

ln 1/𝑃2
 (11)

For a fixed value of P2, k increases monotonically with n and

L increases monotonically with k respectively. The L can be

expressed in terms of ρ as shown in Equation (12).

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 M
ea

su
re

,
𝜌

Approximation Factor, c

1/c

0

5

10

15

3 4 5 6 7 8 9 10 11 12 13 14 15

F
re

q
u

en
cy

 c
o

u
n

t,

f α

o
p
t

Optimal load factor, αopt

𝜌𝑜𝑝𝑡

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

26

𝐿 ≥
ln 𝛿

ln 1−𝑃1
𝑘

 (12)

To make the computational complexity and memory analyses

easier, the lower bound of L is approximated using Newton‟s
Binomial Theorem as shown in Equation (13).

𝐿 ≈ 𝑛𝜌 ln(1/δ)
 (13)

Figure3 and Figure4show variations ofk and L with

nrespectively.

Figure3:Variation of k with n for α = 4 and α = 5

From Figure3, it should be noted that the value of k is not

significantly affected by the choice of 𝛼 = 4or𝛼 = 5.

Figure4:Variation of L with n for α = 4 and α = 5

4. Complexity Analyses
The main goal of selecting optimal parameters for LSH is to

enable fast computations of the hash values; and to use as

little memory space as possible to store the computed hash

values. These are necessary in order to guarantee fast query

runtime. In what follows we analyze the computational

complexity, the memory requirement and the query runtime

for LSH in general and more specifically for the load

factors𝛼 = 4 (mostly used) and𝛼 = 5.

4.1 Computational Complexity
This is the total number of computations required to compute

the hash values for the n data points using k hash functions to

create L tables. Suppose hij is the ith hash function for the jth

table. Assuming that it takes one computational operation to

project a data point 𝒑 in the direction of hij (i.e. 𝒉𝒊𝒋 • 𝒑). To

make k projections, requires k operations. To project p onto

all the L tables requires 𝑘𝐿operations. Thus, to project all n

data points requires 𝑛𝑘𝐿 operations. As a result, the

computational complexityis 𝑂(𝑛𝑘𝐿). The hidden constant in

𝑂(𝑛𝑘𝐿) depends on the dimensionality of 𝒑. For a fixed n,

the computational complexity grows as a function of k and

L.This implies that both k and L must be at their best

minimum in order to ensure low computational complexity.

From Equation(10),kmonotonically decreases as P2 decreases.

To ensure that k is small, P2 must be chosen as small as

possible. From Equation(11), L decreases with decreasingk.

From Equation(4), ρdecreases asP1 increases and P2

decreases. Thus,P1 must be chosen as large as possible.Table

2 shows the computational complexitiesfor using the existing

optimal load factor used by researchers over a decade; and

using our proposed optimal load factor.

Table 2.Computational complexities for α = 4 and α = 5

α Computational Complexity

4 𝑂(𝑛1.3508 ln 1/𝛿 ln 𝑛)

5 𝑂(𝑛1.2588 ln 1/𝛿 ln 𝑛)

The computational complexities grow logarithmically as n

increasesfor 𝛼 = 4 and 𝛼 = 5 as shown in Figure5.

Figure5:Thecomputational complexityfor α = 4 andα = 5

The unit for the computational complexity is number of

operations. In an actual implementation of the hash tables, this

is expressed in seconds. The computational complexity

saving denoted CCS, for using 𝛼 = 5over 𝛼 = 4can be

approximatedbyEquation (14).

CCS ≈ 1 −
1

𝑛0.1 ∗ 100%

 (14)

Figure6 shows the computational complexity saving of the

proposed optimal load factor over the existing one.

Figure6: Computational complexity saving forα=5 over

α=4

From Figure6, for just a million data points (i.e. 𝑛 = 106)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

k

n

α = 4
α = 5

x 106

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10

L

n

α = 4

α = 5

x 106

0

25

50

75

100

125

150

175

200

1 2 3 4 5 6 7 8 9 10

C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
x
it

y

n

α = 4

α = 5

x 106

x 109

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

C
C

S
 (

%
)

n x 106

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

27

there is approximately 75% less computations for using 𝛼 = 5

compared to using𝛼 = 4.

4.2 Memory Requirement
This is the memory space required to store the n data points

themselves along with their respective hash values. To store

each data point (i.e. 𝒑 ∈ ℜ𝑑) along with its k concatenated

hash values on all L tables requires 𝐿(𝑑 + 𝑘) memory. If the

k-concatenated values are hashed to produce a single integer,

then the memory requirement reduces to 𝐿(𝑑 + 1) per data

point. For all n data points, the memory requirement becomes

𝑂(𝑑𝑛𝐿 + 𝑛𝐿). For a large data set this can be huge. In our

implementation however, two optimization techniques are

used to reduce the memory requirement further. First, all the

n data points in P are indexed from 1 through n. The

indexing is the same across all the L hash tables. This means

that each data point is stored once instead of L times. This

reduces the memory to 𝑂(𝑑𝑛 + 𝑛𝐿). Second, the single

integer produced from hashing the k-concatenated values is

not stored but rather used to point to a bucket. The index of

the data point is then stored in that bucket. Thus, each data

point can be referred to by an index. The hidden constant in

𝑂(𝑑𝑛) depends on the data type of the data points in the

dataset. Henceforth, the memory analysis concentrates on the

hash tables of the data structure. Thus the memory

requirement to store the hash tables for all the n data point

becomes 𝑂(𝑛𝐿). Once again, L has to be kept at its best

minimum to achieve the best memory space. The hidden

constant in 𝑂(𝑛𝐿) is the number of bytes required to point to

each bucket and 0.125 log2 𝑛 bytes to store each index of

the data point on each table. For example, for a billion data

points (𝑖. 𝑒. 𝑛 ≈ 230) the hidden constant becomes eight bytes.

Table 3 shows the memory requirement for using the existing

optimal load factor and our proposed optimal load factor.

Table 3. Memory requirements for α = 4 and α = 5

α Memory Requirement

4 𝑂 𝑛1.3508 ln 1/𝛿

5 𝑂 𝑛1.2588 ln 1/𝛿

The memory requirementsgrow with n. No graph is provided

since the expressions on Table 3 are similar to those obtained

in Table 2. It is however worth mentioning that he memory

saving denoted as MS, for using 𝛼 = 5over𝛼 = 4can be

approximatedby Equation (15).

MS ≈ 1 −
1

n0.1 ∗ 100%

 (15)

From Equation (15), for just a million data points (i.e.

𝑛 = 106) the memory saving for using𝛼 = 5instead of𝛼 =
4isapproximately 75% and this increases as n increases.

4.3 Query Runtime
When running a query 𝒒, two time complexities are involved.

First, the time required to hash the query to a bucket on each

of the L tables to retrieve the candidate set. Second, the time

required to compute the distance between the query and the

entries in the candidate set. Let 𝜏𝑕 and 𝜏𝑐 denote these

respectively. Computing the hash value 𝑕𝑗 (𝒑) for all the

tables is 𝑂(𝑘𝐿). The second level hash value computation is

𝑂(𝐿) and it is relatively insignificant compared to that of the

first. Thus, 𝜏𝑕 is 𝑂(𝑘𝐿). Suppose it takes one computational

operation to compute the l2 norm between 𝒒 and an entry in

the candidate set. The expected number of entries in the

candidate set is 𝛼𝐿. Thus, 𝜏𝑐becomes𝑂(𝛼𝐿). As a result, the

total query runtime is 𝑂(𝑘𝐿 + 𝛼𝐿).

If the (𝑅, 𝑐)-NNs are to be sorted then, the computed l2 norms

have to be sorted using a sorting algorithm such as a quick

sort. Let this be denoted by𝜏𝑠 . The quick sort average

computational complexityis 𝑂(𝛼𝐿 log2 𝛼𝐿). Thus, the total

query runtime becomes τh+τc+τs. The hidden constants in

these analyses depend on the dimensionality and the

complexity of the data points.

Neglecting the complexities due to computing the distances

between the query point and the items in the retrieved buckets

and neglecting the complexity due to sorting these distances,

the query time complexity is dependent only on the table

lookup. Thus, the query time complexity becomes O(𝑛𝜌 ln 1/
𝛿 ln n) with a hidden constant factor of −𝜌/ ln 𝑃1 (usually

less than 2).The theoretical query runtime gain, G for

using𝛼 = 5over𝛼 = 4canthen be approximated by

Equation(16).

𝐺 ≈ 𝑛0.1 (16)

The G, is the ratio of the query runtime for using𝛼 = 5to that

of using𝛼 = 4. From Equation (16),for just a million data

points (i.e.𝑛 = 106), the query runtime gain for 𝛼 = 5is

approximatelyfour times relative to𝛼 = 4.

5. PRACTICALLSH

IMPLEMENTATION
We present a real-world problem and solve it using LSH

parameterization based on existing optimal load factor of

𝛼 = 4and our proposed optimal load factor,𝛼 = 5. It must be

emphatically stated that the performance of the LSH

algorithm is not dependent on the dataset used. This was

evident in all the comparative analyses thathave been

conducted in the previous sections. This experiment is to

onlyprovide a sample test of the LSH under the proposed load

factor compared to the existing load factor. Consequently,

there is no need to test the new parameterization of the LSH

with several datasets in order to justify that LSH using the

proposed load factor always outperforms that of the existing

load factor.

5.1 Dataset
The algorithm is tested on real texture features extracted from

Defense Meteorological Satellite Program (DMSP) satellite

images. The DMSP began in 1991. The visible and infrared

sensors collect images across a 3000 km swath, providing

global coverage twice per day. Currently, the National

Geophysical Data Center (NGDC) receives and processes

approximately 8.5 GB of satellite imagery data per day from

four DMSP satellites. Each image is downsized

to363 x 293.The texture featuresare extracted for 1.6 million

images. The dimension for each texture feature vector is

1 x 10 (i.e. 𝑑 = 10) and consists floating point numbers.

These features are based on normalized central moments of

wavelet edges after multi-resolution decomposition of each

image. A detailed discussion of the texture feature extraction

approach could be found in[42].

The LSH parameterization we formulate is to help quickly

find the similar images to a given query image based on

Euclidean metric space. The similar images may assist

scientists, meteorologists, and data analysts to integrate these

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

28

into their scientific predictive models to make real-time

predictions such as when and where a hurricane may strike.

5.2 Parameterization
Table 4 lists the input parameters and their computed values

required to build the hash tables for the dataset using the

traditional optimal load factor of 𝛼 = 4 and our proposed

optimal load factor of 𝛼 = 5.

Table 4 Corresponding inputs to existing load factor and

proposed load factor for n = 1.6 x 106

Inputs α c ρ m k L

Existing 4 2.5 0.3508 400009 23 383

Proposed 5 3.3 0.2588 320009 22 105

On Table 4, m is the size of each hash table. That is the

number of buckets on each table and this is computed as a

prime approximation of 𝑛/𝛼 . The ceiling operator • must

be applied to both k and L since both have to be positive

integers (𝑘, 𝐿 ∈ 𝑍+).

5.3 Hash Table Creation
Below are the steps for building the hash tables for the n data

points in the dataset. The creation of the hash tables takes

time. As a result, they are created only once and stored along

with their families of hash functions. The tables are then used

to answer different queries in sublinearqueryruntime.

(1) Generate L families of hash functions, 𝑕1 , 𝑕2 , … , 𝑕𝐿

randomly and independently from 𝒩(0, 1) such that

each 𝑕𝑗 = [𝒉𝟏𝒋, 𝒉𝟐𝒋, … , 𝒉𝒌𝒋] and each hash function,

𝒉𝒊𝒋 ∈ ℜ𝑑∀ 𝑗 ∈ [1, 2, … , 𝐿] and ∀ 𝑖 ∈ [1, 2, … , 𝑘]

(2) Generate an offset, bij randomly, independently and

uniformly from [0, 𝛼] for each ith hash function in each

jth family

(3) Generate L set, 𝐻1, 𝐻2, … , 𝐻𝐿 of random integers from

the range [1 𝑚], independently such that each 𝐻𝑗 ∈ ℜ𝑘

(4) Index all the n data points in P from 1 through n

(5) For each feature vector 𝒑 ∈ P, normalized 𝒑 as

𝒑 = 𝒑/ 𝒑 2

(6) Compute the hash value for 𝒑 for the jth family as

𝑕𝑗 𝒑 =
𝒉𝟏𝒋•𝒑 +𝑏1𝑗

𝛼
 ,

𝒉𝟐𝒋•𝒑 +𝑏2𝑗

𝛼
 , … ,

𝒉𝒌𝒋•𝒑 +𝑏𝑘𝑗

𝛼

(7) Compute the second level hash value for the 𝒑 as

𝑕𝑗
∗ 𝒑 = (𝑕𝑗 𝒑 • 𝐻𝑗)mod 𝑀 mod 𝑚

(8) Store the index of 𝒑 in the bucket 𝑕𝑗
∗ 𝒑 on the jth table

The M is a large prime integer close to 2𝑊 where, W is the

word width of the microprocessor being used. For a 64-bit

computer, 𝑀 = 264 − 5. In [43, 44],we offered more details

regarding the formulation of the equation for computing the

hash values.

5.4 Bucket Hashing
Below are the steps to find the (𝑅, 𝑐)-NNs to a query point.

(1) For a given query feature vector, 𝒒 ∈ P normalized

𝒒(i.e. 𝒒 = 𝒒/ 𝒒 2)

(2) Compute the hash values for 𝒒 as

𝑕1 𝒒 , 𝑕2 𝒒 , … , 𝑕𝐿 𝒒

(3) Compute the second level hash values as

𝑕1
∗ 𝒒 , 𝑕2

∗ 𝒒 , … , 𝑕𝐿
∗ 𝒒

(4) Use the indices in these buckets to collect their

corresponding feature vectors (let us call this the

candidate set)

(5) Compute the l2 norm between 𝒒 and the entries in the

candidate set

(6) Retrieve the top K, (𝑅, 𝑐)-NNs to 𝒒 or terminate the

search once 2𝐿 (including duplicates) items are

retrieved

In our implementation, the number of nearest neighbors to be

found closest to 𝒒is 𝐾 = 50 (must be less than 2L). The

choice of R is better controlled if the data points are

normalized. In the l2 normalized space, the l2 norm between

any two data points, 𝒑 and 𝒒 can be computed using Equation

(17)

 𝒑 − 𝒒 2 = 2(1 − 𝒑 • 𝒒)

 (17)

From Equation (17),0 ≤ 𝒑 − 𝒒 2 ≤ 2. Let λ be the fraction

of the maximum distance within which each (𝑅, 𝑐)-NNs must

lie. This means that cR is bounded below by 2λ.

Consequently, the upper bound of R can be computed as in

Equation (18) for any approximation factor, c.

𝑅 =
2λ

𝑐
 (18)

It should be noted that if λ is large, the search domain

becomes bigger. On the other hand, if λ is too small, the

search domain becomes small and only few nearest neighbors

could be found. For a highly sparse dataset, λ has to be kept

relatively high while for highly dense dataset, λ has to be kept

relatively small. We keep λ at 5% (retrieved data points are

within 95 percentile of the maximum distance). Thus R

becomes 0.0303 units.

5.5 Result and Discussion

Two sets of hash tables are createdusing a 64-bit Intel (R)

core (TM) 880 i7 CPU at 3.07/3.20 GHz with 16 GB RAM.

The firstset has383 hash tables, each having 400009buckets.

This set corresponds to𝛼 = 4.The second set which

corresponds to𝛼 = 5, has105 hash tables, each having 320009

buckets. The two sets of hash tables are stored together with

their respective families of hash functions. Table 5

summarizes the computational complexities and the memory

requirements of the two sets of hash tables.

Table 5 The computational complexities (CC) and

memory requirements (MR) for α = 4 and α = 5

α CC (s) CCS (%) MR

(MB)

MS (%)

4 13676 - 3092 -

5 3740

73 606 80

From Table 5, under the proposed load factor of 5 , the

hash tables are created in much smaller time compared to the

time taken to create the hash tables under the existing load

factor of𝛼 = 4.In other words, there is 73% less computations

to create the hash tables using𝛼 = 5compared to using𝛼 =
4.This is due to the fact our proposed technique creates fewer

hash tables that are just sufficient enough to report the NNs

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

29

correctly. In fact, our proposed choice of𝛼 = 5reduces the L

to more than a third compared to that of𝛼 = 4(see Table 4). In

addition, the memory required to store the hash tables is much

smaller under the proposed load factor. To store the hash

tables, approximately 80% memory space is saved for

using𝛼 = 5 compared to using𝛼 = 4.The theoretical CCS and

MS are approximately 75% each (see Equations 15 and 16).

Once the tables are created and stored, they can be used to

answer queries. Since the data points are indexed, a query is

simply referred to by its index. The two sets of hash tables

are presented with same ten queries chosen randomly from the

dataset and the goal is to report the top 50(𝑅, 𝑐)-NNs to each.

Each query is run through a Linear Search (LS) to find the top

50 exact NNs („gold standard‟). Two comparisons are made.

First, the 50(𝑅, 𝑐)-NNs for each query reported by each

choice for 𝛼 are compared to that of the LS to compute the

retrieval percentage accuracy. Second, the query runtimes

(𝜏𝐿𝑆𝐻4 and 𝜏𝐿𝑆𝐻5 for 𝛼 = 4 and 𝛼 = 5 respectively) are

compared to the query runtime (𝜏𝐿𝑆) of the LS.These ratios

are denoted as G4 and G5 (gains). 𝐺4 = 𝜏𝐿𝑆𝐻4/𝜏𝐿𝑆and𝐺5 =
𝜏𝐿𝑆𝐻5/𝜏𝐿𝑆for 𝛼 = 4 and 𝛼 = 5 respectively. The query

runtime gain of using 𝛼 = 5over 𝛼 = 4 is given by 𝐺 =
𝜏𝐿𝑆𝐻4/𝜏𝐿𝑆𝐻5. The sizes of the candidate sets are expressed as

fraction of the number of data points, n and are denoted by

CSs4 and CSs5 respectively.

Table6 summarizes these results for the ten queries, which are

represented by their indices.

For visual purposes, Figure 7 and Figure 8 show one sample

query image (the 970997th image) and its top five similar

visual and thermal images respectively. The images are

ranked; „1‟ being the best similar image and „5‟ being the

worst similar image found respectively.

Figure 7: Visual query image and its top five matches

Figure 8: Thermal query image and its top five matches

Table6.Summarized results for ten random queries reference by their indices

Query

index

Retrieval Accuracy (%)

Query Runtime (ms) Gain Candidate Set size (%)

4

5
 LS 4LSH 5LSH G4 G5 G CSs4 CSs5

412014 100 100 2824.30 52.87 27.10 53 104 2.0 0.28 0.41

497945 100 100 2600.94 26.88 12.69 97 205 2.1 0.28 0.25

783624 100 100 2678.10 35.34 12.17 76 220 2.9 0.28 0.28

970997 100 100 2558.26 37.87 10.82 68 236 3.5 0.27 0.23

1011775 100 100 2677.33 20.16 11.35 133 236 1.8 0.18 0.22

1084917 100 100 2767.25 26.04 16.33 106 169 1.6 0.35 0.38

1191509 100 100 2727.99 19.52 12.29 140 222 1.6 0.19 0.27

1211521 100 100 2653.87 27.85 16.36 95 162 1.7 0.32 0.4

1285384 100 100 3121.96 27.99 20.54 112 152 1.4 0.33 0.57

1507281 100 100 2621.44 23.07 14.55 114 180 1.6 0.25 0.36

Average 100 100 2723.14 29.76 15.42 99 189 2.1 0.27 0.34

From Table 6 the average query runtime gain of using 𝛼 = 5

over using 𝛼 = 4 is approximately 2.It should be noted that both

schemes reported the top 50 NNs correctly compared to those

reported by the LS. These similar images are same as those

reported by the LS.

For the results shown in Figure 7 and Figure 8, the LSH scheme

corresponding to 𝛼 = 5 searched only 0.23% whiles that

corresponding to 𝛼 = 4searched0.27% of the dataset. Usually

we expect 𝐶𝑆𝑠5 < 𝐶𝑆𝑠4 but this is not necessarily the case

because the candidate set is the union of the entries in all the

buckets collected. If the union operator is not applied then

indeed CSs5 would always be less than CSs4.

6. CONCLUSION
In a large dataset retrieval application in which an approximate

match is as good and acceptable as an exact match, LSH is very

effective. Unlike the LS, hash tables need to be created when

using LSH and this takes time. But once this is done and

stored,the benefit of the LSH outweighs that of LS in terms of

the query runtime complexity. The goal of the LSH is to search a

fraction of the dataset to find the(𝑅, 𝑐)-NNs for any given query

data point.This makes LSH scalable for searching large dataset.

The number of tables created and the number of projections used

have a significant effect on the performance of the LSH. We

have shown both theoretically and practically that for𝛼 = 5, the

LSH achieves lower computational complexity, lower memory

requirement and faster query runtime than usingthe traditional

Query (thermal) 1 2

3 4 5

Query (visual) 1 2

3 4 5

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

30

optimal load factor of 𝛼 = 4. We therefore propose the use

of𝛼 = 5 as an optimal load factor under the LSH scheme.

The parameterization discussed based on the l2norm is

extendable to all fractional norms as well. In general, LSH is not

effective for small dataset.

7. ACKNOWLEDGEMENT
This work is partly supported by the Expeditions in Computing

by the National Science Foundation (NSF) under Award CCF-

1029731 and by National Oceanic and Atmospheric

Administration/National Geophysical Data Center

(NOAA/NGDC) Educational Program under Cooperative

Agreement No: NA060AR4810187. We are very grateful to

NSF and NOAA/NGDC.

8. REFERENCES
[1] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R.,

and Wu, A. Y. 1998. “An optimal algorithm for

approximate nearest neighbor searching fixed dimensions,”

J. ACM, vol. 45, no. 6, pp. 891-923, 1998).

[2] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Qian,

H., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D.,

Steele, D., and Yanker, P. 1995. “Query by image and

video content: the QBIC system,” Computer, vol. 28, no. 9,

pp. 23-32, 1995).

[3] Fayyad, U. M. 1996. Advances in knowledge discovery

and data mining: AAAI Press.

[4] Lin, K. I., Jagadish, H. V., and Faloutsos, C. 1994. “The

TV-tree: an index structure for high-dimensional data,” The

VLDB Journal, vol. 3, no. 4, pp. 517-542, 1994).

[5] Roussopoulos, N., Kelley, S., and Vincent, F. 1995.

“Nearest neighbor queries,” in Proceedings of the 1995

ACM SIGMOD international conference on Management

of data, San Jose, California, United States, pp. 71-79.

[6] White, D. A., and Jain, R. "Similarity indexing with the SS-

tree," Data Engineering, 1996. Proceedings of the Twelfth

International Conference on. pp. 516-523.

[7] Berchtold, S., Keim, D. A., and Kriegel, H.-P. 1996. “The

X-tree: An Index Structure for High-Dimensional Data,” in

Proceedings of the 22th International Conference on Very

Large Data Bases, pp. 28-39.

[8] Berchtold, S., Böhm, C., Keim, D. A., and Kriegel, H.-P.

1997. “A cost model for nearest neighbor search in high-

dimensional data space,” in Proceedings of the sixteenth

ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems, Tucson, Arizona, United

States, pp. 78-86.

[9] Cleary, J. G. 1979. “Analysis of an Algorithm for Finding

Nearest Neighbors in Euclidean Space,” ACM Trans. Math.

Softw., vol. 5, no. 2, pp. 183-192, 1979).

[10] Bentley, J. L., Weide, B. W., and Yao, A. C. 1980.

“Optimal Expected-Time Algorithms for Closest Point

Problems,” ACM Trans. Math. Softw., vol. 6, no. 4, pp.

563-580, 1980).

[11] Friedman, J. H., Bentley, J. L., and Finkel, R. A. 1977. “An

Algorithm for Finding Best Matches in Logarithmic

Expected Time,” ACM Trans. Math. Softw., vol. 3, no. 3,

pp. 209-226, 1977).

[12] Sproull, R. 1991. “Refinements to nearest-neighbor

searching in k -dimensional trees,” Algorithmica, vol. 6, no.

1, pp. 579-589, 1991).

[13] Arya, S., and Mount, D. M. 1995. “Approximate range

searching,” in Proceedings of the eleventh annual

symposium on Computational geometry, Vancouver,

British Columbia, Canada, pp. 172-181.

[14] Preparata, F. P., and Shamos, M. I. 1985. Computational

Geometry: An Introduction: Springer-Verlag.

[15] Edelsbrunner, H. 2004. Algorithms in Combinatorial

Geometry: Springer.

[16] de Berg, M., Cheong, O., van Kreveld, M., and Overmars,

M. 2008. Computational Geometry: Algorithms and

Applications: Springer.

[17] Yao, A. C., and Yao, F. F. 1985. “A general approach to d-

dimensional geometric queries,” in Proceedings of the

seventeenth annual ACM symposium on Theory of

computing, Providence, Rhode Island, United States, pp.

163-168.

[18] Clarkson, K. L. 1988. “A randomized algorithm for closest-

point queries,” SIAM J. Comput., vol. 17, no. 4, pp. 830-

847, 1988).

[19] Agarwal, P. K., and Matoušek, J. 1993. “Ray shooting and

parametric search,” SIAM J. Comput., vol. 22, no. 4, pp.

794-806, 1993).

[20] Meiser, S. 1993. “Point location in arrangements of

hyperplanes,” Inf. Comput., vol. 106, no. 2, pp. 286-303,

1993).

[21] Gionis, A., Indyk, P., and Motwani, R. 1999. “Similarity

Search in High Dimensions via Hashing,” in Proceedings of

the 25th International Conference on Very Large Data

Bases, pp. 518-529.

[22] Weber, R., Schek, H. J., and Blott, S. 1998. “A Quantitative

Analysis and Performance Study for Similarity-Search

Methods in High-Dimensional Spaces,” in Proceedings of

the 24rd International Conference on Very Large Data

Bases, pp. 194-205.

[23] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R.,

and Wu, A. 1994. “An optimal algorithm for approximate

nearest neighbor searching,” in Proceedings of the fifth

annual ACM-SIAM symposium on Discrete algorithms,

Arlington, Virginia, United States, pp. 573-582.

[24] Har-Peled, S. "A Replacement for Voronoi Diagrams of

Near Linear Size," 42nd IEEE symposium on Foundations

of Computer Science. pp. 94-94.

[25] Indyk, P., and Motwani, R. 1998. “Approximate nearest

neighbors: towards removing the curse of dimensionality,”

in Proceedings of the thirtieth annual ACM symposium on

Theory of computing, Dallas, Texas, United States, pp.

604-613.

[26] Kleinberg, J. M. 1997. “Two algorithms for nearest-

neighbor search in high dimensions,” in Proceedings of the

twenty-ninth annual ACM symposium on Theory of

computing, El Paso, Texas, United States, pp. 599-608.

[27] Kushilevitz, E., Ostrovsky, R., and Rabani, Y. 1998.

“Efficient search for approximate nearest neighbor in high

dimensional spaces,” in Proceedings of the thirtieth annual

ACM symposium on Theory of computing, Dallas, Texas,

United States, pp. 614-623.

[28] Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.21, May 2013

31

1999. “When Is ''Nearest Neighbor'' Meaningful?,” in

Proceedings of the 7th International Conference on

Database Theory, pp. 217-235.

[29] Hinneburg, A., Aggarwal, C. C., and Keim, D. A. 2000.

“What Is the Nearest Neighbor in High Dimensional

Spaces?,” in Proceedings of the 26th International

Conference on Very Large Data Bases, pp. 506-515.

[30] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.

2004. “Locality-sensitive hashing scheme based on p-stable

distributions,” in Proceedings of the twentieth annual

symposium on Computational geometry, Brooklyn, New

York, USA, pp. 253-262.

[31] Andoni, A., and Indyk, P. 2006. “Near-Optimal Hashing

Algorithms for Approximate Nearest Neighbor in High

Dimensions,” in Proceedings of the 47th Annual IEEE

Symposium on Foundations of Computer Science, pp. 459-

468.

[32] Slaney, M., and Casey, M. 2008. “Locality-Sensitive

Hashing for Finding Nearest Neighbors [Lecture Notes],”

Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 128-

131, 2008).

[33] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

2001. Introduction to Algorithms, Second Edition, p.^pp.

224 -252: MIT Press.

[34] Nolan, J. 2007. Stable Distributions: Models for Heavy-

Tailed Data: Springer Verlag.

[35] Buhler, J. 2001. “Efficient large-scale sequence comparison

by locality-sensitive hashing,” Bioinformatics, vol. 17, no.

5, pp. 419-428, 2001).

[36] Buhler, J. 2002. “Provably sensitive Indexing strategies for

biosequence similarity search,” in Proceedings of the sixth

annual international conference on Computational biology,

Washington, DC, USA, pp. 90-99.

[37] Buhler, J., and Tompa, M. 2002. “Finding motifs using

random projections,” J Comput Biol, vol. 9, no. 2, pp. 225-

242, 2002).

[38] Ouyang, Z., Memon, N. D., Suel, T., and Trendafilov, D.

2002. “Cluster-Based Delta Compression of a Collection of

Files,” in Proceedings of the 3rd International Conference

on Web Information Systems Engineering, pp. 257-268.

[39] Shivakumar, N. 1999. “Detecting digital copyright

violations on the internet,” Stanford University.

[40] Cheng, Y. "MACS: music audio characteristic sequence

indexing for similarity retrieval," Applications of Signal

Processing to Audio and Acoustics, 2001 IEEE Workshop

on the. pp. 123-126.

[41] Zolotarev, V. M. 1986. One-Dimensional Stable

Distributions: American Mathematical Society.

[42] Gebril, M., Buaba, R., Homaifar, A., and Kihn, E.

"Structural indexing of satellite images using automatic

classification," Aerospace Conference, 2011 IEEE. pp. 1-7.

[43] Buaba, R., Homaifar, A., Gebril, M., and Kihn, E. "Satellite

image retrieval application using Locality Sensitive

Hashing in L2-space," Aerospace Conference, 2011 IEEE.

pp. 1-7.

[44] Buaba, R., Homaifar, A., Gebril, M., Kihn, E., and Zhizhin,

M. 2011. “Satellite image retrieval using low memory

locality sensitive hashing in Euclidean space,” Earth

Science Informatics, vol. 4, no. 1, pp. 17-28, (2011/03/01

2011).

