
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

47

A Comparative Algorithmic Approach to Predict
Probability of Fault in a Module by Indirect Coupling

Kireet Joshi
M.Tech Scholar, Computer Science

& Engineering
B.T.K.I.T, Dwarahat

Ramesh Chandra Belwal
Asst. Professor, Deptt. Of

Computer Science & Engineering
B.T.K.I.T, Dwarahat

Shailendra Mishra, PhD.
Prof. & H.O.D, Computer Science &

Engineering
B.T.K.I.T, Dwarahat

ABSTRACT

 Any defect in the software module or a project can hamper the

quality of software projects that leads to failure of the

projects, so prediction of defects is a very important task in

the development of software development life cycle

(SDLC).In this research paper an algorithmic approach is

proposed that will compare the probability of defects due to

indirect coupling in the software modules with respect to

direct coupled modules. Since the indirect coupling in the

software modules can be find out by taking the transitive

closure between different modules, but predicting the

probability of defects in the software modules via direct

coupling is always been a tough task for the programmers, as

there may be various hidden dependencies which cannot be

exactly detected by direct coupling between software

modules. So this paper provides an extension of the previous

work done on direct coupled modules, for finding increased

probability of defects or faults between dependent modules by

indirect coupling approach.

Keywords

Defect Prediction using Indirect Coupling, Fault detection,

Coupling, Fault Localization, Software Quality, Defects

1. INTRODUCTION

 Reducing high Dependency in the software modules has

always been a challenging task for the programmers in order

to make an efficient and reliable system that is completely

free from defects. In software engineering, coupling or

dependency means how each module or a program fragment

is related with each other. The type of coupling which have

been in little attention is indirect coupling [8][9],which is

coupling between software modules that are indirectly related.

Efforts are made to create a model that serve low coupling

and high cohesion and is reusable.One can’t have modules in

the system that is completely independent of each other. They

must interact with each other so that the exchange of

information between them is maintained. Various past

researches have been done that focuses on direct coupling

which is a form of coupling that exists between modules that

are directly related to each other. Excessive coupling[11][12]

between software modules deteriorates the important property

of object oriented design i.e. reusability, and there is increased

chance that it will also cause the modularity of the software to

hamper. To improve modularity and other properties of

object oriented system one must have the effect of coupling as

low as possible so as to obtain lesser number of defects.

Coders and testers always make an effort to improve the

quality of the software and deliver it to the customers with

zero or minimum defects. There may be some modules or

components that produce high risk in the software project and

should be detected as early as possible so that software’s

quality should be enhanced before it is delivered to the

customer’s site. Defects in the software or module always

results in cost in terms of quality and time. Also it should be

kept in mind that it is not practically possible to eliminate

each and every defect in the software module or in project

but the intensity and the magnitude of the defects can be

minimised before it is delivered or made operational[1].

2. DEFECT PREDICTION

Software Defect is any flaw in the software development

life cycle that would produce unexpected results as compared

to the actual results and would cause that software or the

project to fail to meet the desired requirements in

software development process. A defect generally represents

unwanted results in the software that hampers software

quality. There exists network metrics on code entity

dependency graphs [5] that can be used to build some defect

prediction models. Afterwards the set of network metrics were

extended [6] by extending code dependency graph adding

contribution dependency edges.

As defect prediction is a relatively a new area of research.

Almost in every software engineering projects, knowledge

discovery is applied by the testing team by gaining the

information about the data which is collected, and defect

detection process is applied by concentrating more on the

affected modules that are fault prone and analysis is done so

that in near future the probability of defects in similar

modules or projects can be minimised. With the importance of

enforcing the highest levels of quality in software models, it

has become an important task for the development team to

improve defect prediction techniques so that greater number

of defects can be minimised in little span of time with

improved efficiency and reliability before the software is

delivered to the customers site.

When the software faults are analyzed by the project team in

some modules then some efficient fault localization[7]

algorithms should be applied so that cost and time factors

should be reduced [2].To enhance software’s quality, the

project team have to emphasize more on how maximum

number of defects can be removed in less amount of time

without introducing some new bugs or defects in the system.

3. RELATED WORK

Programmers and Researchers are continuously working to

understand the dependencies among the program elements by

direct coupling approach, among multiple modules. The

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

48

longer the two modules are connected to each other the more

hidden dependence. Indirect coupling can also be analyzed

and detected by the transitive closure of the modules, but

there may be some circumstances that instead of transitive

closure the indirect coupling may still exist and leads
hidden modules undetected in software engineering

process[3].

The existing algorithm calculates the Defect Propagation

factor [13] to find the probability of the dependent modules to

be fault prone by direct coupling. Indirect approach gives an

increased probability of defect detection in the program or

software module [4].

4. PROPOSED APPROACH

Some abbreviations that are used throughout in the paper for

calculations:

Calculate the indirect coupled defect propagation factor

(IDFxz) =

𝒄𝒐𝒎𝒎𝒐𝒏 𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕𝒍𝒚 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒂𝒊𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

And Percentage Defect propagation factor [13] DFxz is given

by

𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒏𝒈 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

 (ps,qs,k,l,o)

 (ps,l,z)

 (ps,qs,k, m)

Fig 1: Direct and Indirect Coupled Modules

Suppose from the above figure, there is a set of interlinked

modules such that one of the modules is interdependent on

another. Let CDxy consists of common variables between

modules x and y.CDxz consist of common variables between

modules x and z.CDyz consist of common variables between

modules y and z.Let DVxy be the set of defect producing

variables participating between dependent modules(x and

y).DVyz be the set of defect producing variables participating

between dependent modules (y and z). The intent is to find the

probability of the module to be fault prone with indirect

coupling.

If the Indirect coupled Defect Propagation Factor IDFxz,

exceeds the Defect Propagation Factor DFxz, then it can be

said that the module having high Indirect coupled Defect

Propagation Factor with respect to Defect Propagation Factor

is statistically more fault prone, and the dependency

(interdependency) is higher or more hidden dependence is

there. So it will help the testing team to focus more on that

defected module for further debugging and their efficiency

increases.

4.1. Proposed Algorithm

Input –

All variables in each module.

All defect producing variables propagating in dependent

modules.

Output: Set of more fault prone indirectly linked dependent

module as compared to directly coupled modules.

Method:

For each module Mx, get the set of dependent modules //

where x=1 to n

For each module My, Where y=1 to n

/* This for loop constitutes set of variables present in module

and compares them with the variables present in dependent set

of modules */

{

For each directly dependent module Mz // where z=1 to n and

x≠z

{

Find CDxz, where CDxz is the set of common variables

between the dependent modules.

/* CDxz [13] is calculated by taking the intersection of the

variables from the dependent set of modules */

}

}

For each module Mx // where x=1 to n

{

/* This for loop accounts for set of variables along with the

variables that are responsible in producing defects and

compares them with the variables present in dependent set of

modules */

For every dependent module Mz //where z≠x

{

Find DVxz, where DVxz is the set of defect producing

variables participating in the directly linked dependent

modules and are responsible for producing defects.

/* DVxz is calculated by taking the intersection of the

variables that are participating in the dependent modules and

are responsible for producing defects */

Calculate percentage Defect propagation factor [13] (DFxz) of

directly linked dependent modules =

𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒏𝒈 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

}

}

For each module Mx // where i=x 1 to n

{

For every dependent module My // where y=1 to n x≠y

{

Module x

Module y

Module z

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

49

For every indirectly linked module Mz which is coupled

directly with every dependent module My// where z=1 to n

and z≠y

{

Find the indirect coupled defect propagation factor (IDFxz)=

𝒄𝒐𝒎𝒎𝒐𝒏 𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕𝒍𝒚 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒂𝒊𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

If (IDFxz) >= (DFxz)

/*Where (DFxz) is calculated above as

𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒏𝒈 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

Then, there is probability that indirectly linked dependent

module is more fault prone as compared to directly linked

coupled module and there may be some hidden dependencies

between the modules.

Else

Probability of hidden dependencies is low between the

coupled modules

}

}

}

From the proposed algorithm if the Indirect coupled defect

propagation factor is greater than the Defect Propagation

Factor [13] (directly coupled) then the probability of the

module to be fault prone increases and there are some hidden

dependencies and testing team have to focus more on

checking that particular fault prone modules, so that the defect

should not propagate in the whole system.

4.2 Example 1

 Modx

 Mody Modz

Fig 2: Direct and Indirect Coupled Modules

.

Some abbreviations that are use in the paper for calculating

tasks:

 Defect Propagation factor (DF) [13] between the set of

dependent modules =

𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒏𝒈 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

Indirect coupled Defect Propagation Factor (IDF) between the

modules =

𝒄𝒐𝒎𝒎𝒐𝒏 𝒅𝒆𝒇𝒆𝒄𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕𝒍𝒚 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

𝒄𝒐𝒎𝒎𝒐𝒏 𝒗𝒂𝒓𝒂𝒊𝒃𝒍𝒆𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝒍𝒊𝒏𝒌𝒆𝒅 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒎𝒐𝒅𝒖𝒍𝒆𝒔

For example, consider three modules as per the given figure

and try to find out the probability of fault prone module.

Let x={ps,qs,r,k,o,}and y= { ps,qs,r,w,u }are set of variables

in Module x and Module y // where ps,qs are the variables

producing defects.

 CDxy= { ps,qs,r } are set of common variables between the

dependent set of modules x and y [13].

 DVxy= { ps,qs },where DVxy is the set of defect producing

variables participating in the dependent modules.

 Defect propagation factor (DFxy) =2/3 or 66.66 %(or in other

words it can be said that if module x is producing defect than

statistically it could be said that there is approximate 66.66%

probability, module y would also produce defect).

Let y={ ps,qs,r,w,u } z={ps,qs,t,k,o}be the set of variables in

modules y and z.

CDyz= { ps,qs } be the set of common variables between the

dependent set of modules y and z.

DVyz= { ps,qs} is the set of defect producing variables

participating in the dependent modules.

 Defect propagation factor (DFyz) =2/2 or 100%(or in other

words it can be said that if module y is producing defect than

statistically there is approximate 100% probability, module z

would also produce defect).

 Let x={ ps,qs,r,k,o,} z={ ps,qs,t,k,o}are set of variables in

modules x and z.

 CDxz= { ps,qs,k,o } be the set of common variables between

the dependent set of modules x and z.

DVxz={ ps,qs } is the set of defect producing variables

participating in the dependent modules.

 Defect propagation factor (DFxz) =2/4 or 50%(or in other

words it can be said that if module x is producing defect than

statistically there is approximate 50% probability , module z

would also produce defect).

 Now, the Indirect Coupled Defect Propagation Factor between

modules x and z is calculated by taking the ratio of common

defect producing variables participating in all modules to the

common variables between the indirectly linked set,

i.e.(IDFxz)=2/2 or 100%,it means statistically the probability

that module z is fault prone is high when indirect coupling is

considered as compared to defect propagation factor (direct)

DFxz=50%.

4.2. Example 2

Modx

 Modz

 Mody

Fig 3: Direct and Indirect Coupled Modules

For example, consider three modules as per the given figure

and try to find out the probability of fault prone module.

{ps,qs,r,k,o,}

{ps,qs,r,w,u} {ps,qs,t,k,o}

{ms,ns,ps,v,l}

{ms,ns,v} {ms,ns,ps,w,u,v}

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

50

Let x={ ms,ns,ps,v,l }and y={ ms,ns,v }are set of variables in

Module x and Module y // where ms,ns,ps are the variables

producing defects.

CDxy= { ms,ns,v }are set of common variables between the

dependent set of modules x and y.

DVxy= { ms,ns },where DVxy is the set of defect producing

variables participating in the dependent modules.

Defect propagation factor (DFxy) =2/3 or 66.66 %(or in other

words ,it can be said that if module x is producing defect than

statistically it could be said that there is approximate 66.66%

probability , module y would also produce defect).

Let y={ ms,ns,v } z={ ms,ns,ps,w,u,v } be the set of variables

in modules y and z.

CDyz= { ms,ns,v } be the set of common variables between

the dependent set of modules y and z.

DVyz= {ms,ns} is the set of defect producing variables

participating in the dependent modules.

Defect propagation factor (DFyz) =2/3 or 66.66 %(or in other

words, it can be said that if module y is producing defect than

statistically there is approximate 66.66% probability, module

z would also produce defect).

Let x={ ms,ns,ps,v,l } z={ ms,ns,ps,w,u,v }are set of variables

in modules x and z.

CDxz= { ms,ns,ps,v } be the set of common variables between

the dependent set of modules x and z.

DVxz={ ms,ns,ps } is the set of defect producing variables

participating in the dependent modules.

 Defect propagation factor (DFxz) =3/4 or 75 %(or in other

words it can be said that if module x is producing defect than

statistically there is approximate 75% probability , module z

would also produce defect) .

 Now,the Indirect Coupled Defect Propagation Factor between

modules x and z is calculated by taking the ratio of common

defect producing variables participating in all modules to the

common variables between the indirectly linked set, i.e.

(IDFxz) =2/3 or 66.66%, it means statistically the probability

that module z is more fault prone as compared to defect

propagation factor DFxz=75% (direct) is less and there may

not be any hidden dependencies in the module.

4.3. Example 3

 Modx

 Mody Modz

Fig 4: Direct and Indirect Coupled Modules

For example, consider three modules as per the given figure

and try to find out the probability of fault prone module.

Let x={ ms,ns,p,vs,l }and y={ ms,ns,vs }are set of variables in

Module x and Module y // where ms,ns,vs are the variables

producing defects.

CDxy= { ms,ns,vs }are set of common variables between the

dependent set of modules x and y.

 DVxy= { ms,ns,vs },where DVxy is the set of defect producing

variables participating in the dependent modules.

 Defect propagation factor (DFxy) =3/3 or 100%(or in other

words, it can be said that if module x is producing defect than

statistically it could be said that there is approximate 100%

probability , module y would also produce defect).

 Let y={ ms,ns,vs } and z={ ms,ns,p,w,u,vs } be the set of

variables modules y and z.

CDyz= { ms,ns,vs } be the set of common variables between

the dependent set of modules y and z.

 DVyz= { ms,ns,vs } is the set of defect producing variables

participating in the dependent modules.

 Defect propagation factor (DFyz) =3/3 or 100 %(or in other

words, it can be said that if module y is producing defect than

statistically there is approximate 100% probability, module z

would also produce defect).

 Let x={ ms,ns,p,vs,l } z={ ms,ns,p,w,u,vs }are set of variables

in modules x and z.

CDxz= { ms,ns,p,vs } be the set of common variables between

the dependent set of modules x and z.

DVxz={ ms,ns,vs } is the set of defect producing variables

participating in the dependent modules. Defect propagation

factor (DFxz) =3/4 or 75%(or in other words, it can be said

that if module x is producing defect than statistically there is

approximate 75% probability , module z would also produce

defect) Now, the Indirect Coupled Defect Propagation Factor

between modules x and z is calculated by taking the ratio of

common defect producing variables participating in all

modules to the common variables between the indirectly

linked set,i.e.(IDFxz)=3/3 or 100%,it means statistically the

probability that module z is highly fault prone as compared to

defect propagation factor DFxz=75% (direct) increases and

there may be hidden dependencies in the module.

5. RESULTS & COMPARISION

Table 1: Results of Proposed approach showing relation

between of the probability fault prone modules and

dependencies

Dependent

modules

Defect

Propagat

ion

Factor(

%)

Indirect

Coupled

Defect

Propogatio

n

Factor(%)

Probability

of

Indirectly

coupled

modules to

be fault

prone

Possibilit

y of

Hidden

depende

ncies

(x,y) 66.66 - - -

(x,z) 50 100 high high

(y,z) 100 - - -

{ms,ns,p,vs,l}

{ms,ns,vs}

{ms,ns,p,w,u,vs}

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

51

Fig 5: Plot showing variation of defect propagation factor

w.r.t indirect coupled defect propagation factor between

dependent modules

Table 2: Results of Proposed approach showing relation

between of the probability fault prone modules and

dependencies

Depende

nt

modules

Defect

Propagat

ion

Factor (

%)

Indirect

Coupled

Defect

Propagatio

n

Factor(%)

Probability

of

Indirectly

coupled

modules to

be fault

prone

Possibilit

y of

Hidden

depende

ncies

(x,y) 66.66 - - -

(x,z) 75 66.66 Low low

(y,z) 66.66 - - -

Fig 6: Plot showing variation of defect propagation factor

w.r.t indirect coupled defect propagation factor between

dependent modules

Table 3: Results of Proposed approach showing relation

between of the probability fault prone modules and

dependencies

Dependent

modules

Defect

Propagat

ion

Factor(

%)

Indirect

Coupled

Defect

Propogatio

n

Factor(%)

Probability

of

Indirectly

coupled

modules to

be fault

prone

Possibilit

y of

Hidden

depende

ncies

(x,y) 100 - - -

(x,z) 75 100 high high

(y,z) 100 - - -

Fig 7: Plot showing variation of defect propagation factor

w.r.t indirect coupled defect propagation factor between

dependent modules

Fig 8: Comparison of Both Approaches based on above

examples in Predicting higher probability of a module to

be fault prone and hidden dependencies between them

62

64

66

68

70

72

74

76

xy yz xz

P
e

rc
e

n
ta

ge

Dependent Modules

DEFECT
PROPAGATION
FACTOR(
directin %)

INDIRECT
COUPLED
DEFECT
PROPAGATION
FACTOR(%)

0

20

40

60

80

100

120

xy yz xz

P
e

rc
e

n
ta

ge

Dependent Modules

DEFECT
PROPAGATION
FACTOR(
directin %)

INDIRECT
COUPLED
DEFECT
PROPAGATION
FACTOR(%)

0

20

40

60

80

100

120

xz xz xz

P
e

rc
e

n
ta

ge

Modules

directly
coupled
defect
propagatio
n factor

indirectly
coupled
defect
propagatio
n factor

0

20

40

60

80

100

120

xy yz xz

P
e

rc
e

n
ta

ge

Dependent Modules

DEFECT
PROPAGATION
FACTOR(
directin %)

INDIRECT
COUPLED
DEFECT
PROPAGATION
FACTOR(%)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.19, May 2013

52

 From the above results it may be concluded that the testing

team will now focus more on module k as there may be some

hidden dependencies that may not be detected by considering

only the directly coupled modes, and this will give an idea to

the testing team members to focus more on the defects that are

caused by indirectly coupled modules. Greater the Indirect

coupled defect propagation factor than defect propagation

factor [13] (direct), there will be an increased probability of

the module to be fault prone. And as a result more defects can

be located. For any module the coupling whether it is direct or

indirect it should be as minimum as possible for a system to

be free from any kind of defects. If the indirect coupled

propagation factor is more it means there are some hidden

dependencies between the modules which may not be detected

by taking direct coupled modules alone.

 6. CONCLUSION

The paper focuses the application knowledge discovery in

predicting the probability of fault prone module in indirectly

linked software modules. The proposed paper demonstrates

an algorithmic approach for indirectly coupled interlinked

software modules in comparison to directly coupled modules

so that there will be higher chances for the testing team to

detect the fault prone module as more effort is required in

detecting defects in indirectly coupled modules. This will give

an ease to the project team members to efficiently analyze the

higher probability modules for defects and to make more

reliable and cost efficient models for software industry in less

time.

7. REFERENCES

[1] Tan, Xi Sch. of Comput. Sci., Fudan Univ., Shanghai,

China Peng, Xin, Pan, Sen, Zhao, Wenyon,” Assessing

Software Quality by Program Clustering and Defect

Prediction”, Reverse Engineering (WCRE), 2011 18th

Working Conference, pp. 244 – 248, Oct. 2011, ISSN :

1095-1350.

[2] Gonzalez-Sanchez, Alberto Software Technol. Dept.,

Delft Univ.of Technol.,Delft,Netherlands Abreu, Rui,

Gross, Hans-Gerhard, Van Gemund, Arjan J C,”

Prioritizing tests for fault localization through ambiguity

group reduction”, Automated Software Engineering

(ASE), 2011 26th IEEE/ACM International Conference,

pp. 83 – 92, 6-10 Nov. 2011, ISSN : 1938-4300.

[3] Vinay Singh and Vandana Bhattacherjee,” Detection of

Indirect Coupling Using Chaining Method and Its Impact

on Software Quality”, International Journal of Research

and Reviews in Information Sciences (IJRRVol. 1, No. 4,

December 2011, ISSN: 2046-6439.

[4] Jalbert, Kevin Software Quality Res. Group, Univ. of

Ontario Inst. of Technol., Oshawa, ON, Canada

Bradbury, Jeremy S.,” Using clone detection to identify

bugs in concurrent software”, Software Maintenance

(ICSM), 2010 IEEE International Conference, pp. 1 – 5,

12-18 Sept. 2010, ISSN : 1063-6773.

 [5] T. Zimmermann and N. Nagappan, “Predicting defects

using network analysis on dependency graphs,” in

Proceedings of the 30th international conference on

Software engineering, ser. ICSE ’08. ACM, 2008,

pp.531–540.

[6] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P.

Devanbu, “Puttingit all together: Using socio-technical

networks to predict failures,” in Proceedings of the

2009 20th International Symposium on Software

Reliability Engineering, ser. ISSRE ’09. IEEE Computer

Society, 2009,pp. 109–119.

[7] Liu Yanbin Ordnance Eng. Coll., Shijiazhuang,

China,Zhu Xiaodong,Sun Zhiming,Wang Yigang,Ye

Fei,” Dual-Slices Algorithm for Software Fault

Localization”, Computational Intelligence and Software

Engineering, 2009. CiSE 2009. International Conference,

pp. 1 – 4, 11-13 Dec. 2009, Print ISBN: 978-1-4244-

4507-3.

[8] Yang H. and Tempero E., 2007, Indirect Coupling as a

Criteria for Modularity. In Proceedings of the First

International Workshop on Assessment of Contemporary

Modularization Techniques (ACoM '07). IEEE

ComputerSociety, Washington, DC, USA, 10-11.

[9] Yang H. and Tempero E., 2007, Measuring the Strength

of Indirect Coupling, In Proceedings of the 2007

Australian Software Engineering Conference

(ASWEC '07). IEEE Computer Society, Washington,

DC, USA, 319-328.

[10] N. DiGiuseppe and J. Jones. On the influence of multiple

faults on coverage-based fault localization. In

Proceedings of the 9th ACM/IEEE International

Symposium on Software Testing and Analysis, ISSTA

’11, page To Appear, New York, NY, USA, 2011. ACM.

[11] Briand,L.C., Daly,J.W., & Wust,J.K.,”A Unified

framework for coupling measurement in object oriented

system”. IEEE Transact Software Engineering, (25(1):

pp. 91-121, January/February 1999.

[12] Yourdon. & Constantine, L.L,” Structured Design:

Fundamental of a discipline of computer program and

system design prentice hall”, 1979.

[13] Kireet Joshi, Ramesh Chandra Belwal and Shailendra

Mishra,” An Algorithmic Approach to Predict Fault

Propagation and Defects in Dependent Modules based on

Coupling”, International Journal of Computer

Applications 68(12):40-46, April 2013.

