
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

23

An Approach to Classify Existing Constraints as Inputs
for Web Service Composition

Amine Akhavan Sarraf
Faculty of Electrical and Computer Engineering

Shahid Beheshti University G.C.
Tehran, Iran

Hassan Haghighi
Faculty of Electrical and Computer Engineering
 Shahid Beheshti University G.C.

 Tehran, Iran

ABSTRACT

The selection of an appropriate Web service for a

particular task has become a difficult challenge due

to the increasing number of Web services offering similar

functionalities. Therefore, when one wants to compose web

services to catch a goal, she is faced with some preferences and

constraints affecting the final configuration; for simplicity, the

single terminology “constraint” in place of both “constraint” and

“preference” is used throughout the paper. Most of these

constraints in real applications are either functional or qualitative.

These constraints have been scattered and unstructured until now,

and therefore, when combining services, some of them are

considered while many of them are forgotten. In addition to the

possibility that some constraints are unthinkable to the user, some

of them are overlapping and some may even be contradictory. In

this paper a well-formed classification of all known composition

constraints is presented. The classification structure is a tree whose

parent-child relationships shape the proposed categorization.

Leaves of the tree can contain metrics to satisfy the constraints,

which are their parents. The tree structure of the classification

helps one to deliver constraints as an input in the XML format to

the composition process. Using a simple case study, the

applicability of the presented classification structure is shown.

Having this structure in place, the user can determine her

constraints and their priorities more easily. Moreover, one can

apply this structure to evaluate various composite services from

user’s point of view.

Keywords

Constraint, Service Oriented Architecture, Service Composition,

Service Selection, Taxonomy.

1 INTRODUCTION

A set of individual web services which are combined using a

specified and coordinated pattern and offers an improved and more

ideal service forms a composite web service. Composition has

emerged in the web as a chosen technology for creating inter-

organizational applications. Standards currently being used for

creating a process which use combined web services include

BPML, BPEL4WS and OWL-S [1].

With the increase of web service providers, many web services

with identical functionalities have been published in the web. In

this case service applicants are required to select a service among

several services with the same functionality. The problem of web

service selection becomes more difficult when there is the need to

execute a composite web service. With the existence of several

web services for each composite web service component, the

number of possible designs for combination is increased

dramatically.

For applying distinction among similar web services, some

constraints and preferences can be considered beforehand. Some of

the constraints in real applications are functional whereas some of

them are qualitative. There are also some cases which do not

belong to neither of the above categories. These constraints have

been scattered and unstructured until now, and therefore, when

combining services, some of them are considered while many of

them are forgotten. In this paper, a well-formed classification of all

composition constraints is presented. This work can be regarded as
one-step before service selection and composition. It is

demonstrated that having this structure in place, the user can

determine her constraints and their priorities more easily.

Moreover, one can apply this structure to evaluate various

composite services from user’s point of view.

The paper is organized as follows. Section 2 introduces the

problem layout. Section 3 presents our classification as a tree

structure. Section 4 shows the applicability of the proposed

classification structure. Finally, section 5 concludes the paper.

2 PROBLEM LAYOUT

When service composers compose several services, their goal is to

create a composite service with the best possible composition

according to the user’s point of view. However, for creating the

best possible composition, there are some constraints. What is of

great importance in this process is to know that identifying the

existing constraints in advance can be quite beneficial.

For example, suppose that somebody intends to do a composing

operation. This person is asked what parameters she has in mind as

a desired feature for her composite web service. With some

thought, the user or composer can name a few features, for

example the quality of her services; or service cost does not reach a

specific point; or her composite web service should be compatible

with specific structures and standards.

What draws our attention is that the user has no specific and

predefined reference to identify the parameters constraining the

composing process and to choose her desired parameters

accordingly. There is the possibility that some parameters are

unthinkable to the user, or some of the parameters are overlapping,

or some may even be contradictory. On the other hand, assume that

a composer wants to reach a secure composite web service. In this

case, how her required security can be measured? Or which aspects

of security does she have in mind? How important are these

parameters to her? These are questions that occur to every

composer’s mind before the composing operation. But so far, no

appropriate method and related structure for reaching the answer of

these questions has been presented.

The classification method given in this paper is one step before the

composing operation and presents its outcome to the selection

process which is the first phase of the composing operation. In

presenting the targeted tree structure, our effort has been to break

down every feature to leaves which could be quantifiable by

providing appropriate metrics. Of course, giving metrics for leaves

is out of the scope of this paper; some appropriate metrics have

been already introduced in the SOA literature.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

24

3 TAXONOMY TREE

3.1 Composition constraints

In general, composition constraints can be classified as

functional constraints and non-functional constraints. Also the non-

functional category can be divided to qualitative constraints and

environmental constraints. The presented taxonomy has a tree

structure, and its effort is to break down each constraint into

smaller parameters in its branches, in a way that quantifiable

attributes are reached in the leaves. The following constraints are

observed in the first two levels of the tree (figure 1). The paper

proceeds by presenting further levels of the tree in the next

sections, but before doing that, the next subsection shows how one

can evaluate composite services based on the proposed structure.

Fig 1: Composition constraints

3.2 Using Tree Structure in Composite

Service Evaluation

Suppose that there are K constraints in the tree leaves. The

following summation computes the value of a composite service.

(1)

Wn shows the priority or weight of the nth constraint from the user’s

point of view which is determined by her only once and

independent from candidate composite services. Five levels of

priority are considered for this parameter:

Unimportant (0) – Having Little Importance (1) – Having

Average Importance (2) – Important (3) – Very Important

(4)

The unimportant level with zero weight shows attributes

which the user doesn’t want to be considered in the calculation or,

in other words, their existence is negligible for her in the

composition.

Unlike Wn which is fixed for all compositions, Sn is the score

assigned to each composite service independently. For every

composition, each of the constraints presented in the tree leaves

may be assigned a numerical score from 0 to 10 regarding the

functionality or quality of that composition. The score will be

assigned based on the classification and normalization of quantified

values of the related constraint.

In simpler words, the achieved values for a constraint will be

mapped to numbers between 0 and 10. For example, supposing

maximum value 100% for availability, if availability of a

composite service is 80%, it will be assigned a score of 8. As

another example, suppose that the minimum response time of a

special function could be 3 seconds. On the other hand, suppose

that the maximum but yet acceptable response time is 7 seconds.

Now, score 10 and 1 can be assigned for cases “response time=3”

and “response time=7”, respectively; response times upper than 7

seconds will be assigned score zero, and response times upper than

3 seconds and lower than 7 seconds could be assigned scores

greater than 1 and less than 10 proportionally. Similar classification

and normalization of quantified values could be done for every

constraint.

Besides the notions of weight and score of leaves, a new

concept is needed which is called Crucial requirements throughout

the paper. Crucial requirements are those requirements vital to the

composer in a manner that if they are not satisfied in the

composition, the composition operation has no value to her and

must be disbanded. These requirements are definable for every

constraint in the tree. For example, a composer may want

availability over 80%, and if availability is dropped below 80%, the

composition has no value to her. Thus, in addition to giving this

specific constraint a high level of weight, the composer declares a

related crucial requirement. In this way, composite services with

availability lower than 80% should be discarded regardless of their

total value calculated by formula 1. In fact, if even one of the

crucial requirements isn’t fulfilled, there will be no need to

calculate the summation, because the composite service would be

worthless.

3.3 Functional constraints

Functional constraints are the first constraints encountered

when choosing a service. In other words, the most important factor

for a service composer is the functionality of the web service,

which will allow it to reach its goal in the chain of existing web

services. Usually, for these kinds of constraints, crucial

requirements are defined. The taxonomy of these constraints is

shown in the sub-tree of figure 2. In the following sections, quality

and environmental constraints will be presented. The explanation

of several constraints has been obtained from [2].

 Input

By input, the input of the final composite web service is meant.

Generally, one of the existing constraints for combining services is

the coordination of the output of one web service and the input of

the subsequent web service. But here the input is considered as the

input of the first service which is placed in the composition chain.

This will be the input of the composite web service.

 Output

By output, the output of the final service of the composition

chain is meant. This means the final output of the composite web

service.

 Pre-Conditions

They are conditions which need to be satisfied before the

operation of a web service is initiated.

 Post-Conditions

They are conditions which need to be satisfied after the

operation of a web service.

 Exceptions

In the chain of web services, exceptions as part of a work flow

of a process are known as constraints. Just as an operation can be

known as a constraint for selecting a web service, considering

cases which are not paid attention to and should be separated as an

exception are also a part of the web services functionality.

o Exception management mechanism

As mentioned, exceptions are part of the system functions

which are not considered in normal situations. Therefore, there

should be a mechanism for managing these conditions in the web

service. On the other hand, combining several web services can

introduce new exceptions; hence, creating an exception

management mechanism for the final composite web service is

crucial. For example, consider a case in which some data is sent

from service 1 to service 2, and the data does not have a specific

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

25

definition in the functionality of the second service. In this case,

this operation can be a problem for service 2. Thus, measures

should be taken for the sent data so that it would not negatively

affect the second service.

 Composition Algorithm

The composition algorithm and its definition can directly affect

the selection, especially, when the composition is done in a

dynamic manner. Each constraint which exists in the composition

algorithm can naturally lead to new constraints of the web service

selection.

 Process Rules

Generally the process rules which a combiner uses to create a

combination of services, affects his/her selection. This part directly

refers to the functionality of the web service and is considered an

inseparable part of the of the combination process.

Fig 2: Functional Constraints

3.4 Quality constraints

The sub-tree for quality constraints consists of 11 quality

attributes; see Figure 3. Obviously, a mentioned quality attribute is

considered for the final composite web service and not for the

services contributing to the composition operation. Due to space

limitation, all attributes will not be explained in this paper. Each of

these constraints has a specific and full explanation which is

presented in reference [2]. Sub-trees of most of these attributes are

given in turn via figures 4 to 12.

Fig 3: Quality Constraints

From the quality constraints sub-trees, the sections of cost and

security are elaborated here. The details of other sections can be

found in [2].

3.4.1 Cost.

The cost of web service composition can be classified into 6

main categories (figure 4):

 Service Cost (price of service) [3]

 Cost of Transaction Lost

 Execution Cost [4]

 Web Services Replacement Cost

 Network Cost

 Cost of Composition Application

 Service Cost

It is obvious that in order to create a composite web service,

services must be bought or granted from providers individually.

Therefore, the first cost that can be considered for a composition is

the purchase cost of services given by providers.

Web services can be produced in return for a specific amount

of money. Normally the price of a web service is determined by the

provider. The price of a service can be permanent for each

purchase or be measured for each service potentially and according

to the required service and be finalized at the time of web service

usage. Service providers can also ask for more money for services

provided on faster and higher quality hardware [5].

 Cost of Composition Application

The creation of a composition algorithm can be done in a

dynamic or static manner. Either way, an algorithm defined for this

purpose must be used. Therefore gaining the algorithm and

implementing it may have costs for the composers. These costs are

usually called composition algorithm costs.

 Network Cost

Some compositions and the application of some services may

required special network facilities. For example, to use a vital or

real-time service, having a high speed network connection is

essential. Therefore, before the composition, these constraints and

costs to satisfy them should be accounted for.

 Cost of Transaction Lost

When a transaction is being done inside a composition of

services, every service must do its job properly for the transaction

to have the desired results. If any of the components of the

composition are not able to do its job correctly or is unavailable

when required, the transaction must restart. Other than the time

consumed for the restart, the system might also suffer costs. Thus it

is required to take into consideration these costs at the time of

composition and, the composition process must be done in a way

that in case of transaction loss, the suffering costs are minimal.

 Web Services Replacement Cost

As mentioned above, when an operation is being done by a

composition of services, it is probable that some services may not

be able to operate correctly. Therefore, it is required that one

service is replaced, or a part of the web service composition is

altered. This means that a new composition of several web services

is substituted. This operation can have extra costs for the composer.

 Execution Price

For every function of a service, the execution price is the price

which the user must pay to summon the service [6]. If the cost of

executing a service each time is too high, the composer may not be

interested in using that service in her composition. It’s important to

know that these costs are different from the initial costs which are

paid for using the service in the first place. In some cases, the users

must pay an amount of money for each time they use a service. If

using a service in a composition may inflict high costs for the

users, it is possible that the composers avoid using that service in

their composition.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

26

3.4.2 Security.

 Availability

o Availability Rate

 Confidentiality

o Authentication

o Data Encryption

o Firewall

o Authorization

 Integrity

o None-Repudiation

Fig 4: Cost Sub-tree

Security is one of the main concerns of web service and

service oriented architecture [4]. With disregard to some

expressions of security, this quality attribute is generally about

providing the required conditions to prevent deliberate and

accidental unauthorized access to services. Bass [3] has

mentioned that “Security is the ability of a system to resist

against unauthorized efforts of service utilization and the

denial of service to unauthorized users, while providing

service for rightful users.”

Although according to software systems, security can

relate to many things, in general it is classified into 3

concepts:

1. Confidentiality: the privilege of access to

information/service is only offered to operators with

permission.

2. Integrity: Sets of information (integrated and unified) are

not prone to unauthorized changes or corruption

(intentional or accidental)

3. Availability: information/services are available.

Any of the above concepts can be classified into more detailed

components. Under the integrity sub-tree, the undeniability

attribute has been pointed out. This attribute means that the sender

of a message cannot deny sending one. Under the confidentiality

sub-tree, 4 capabilities of authenticity verification, authorization,

fire wall and data encryption have been mentioned. These

capabilities are explained as follows:

1. Authenticity verification: confirmation of identity using

one of below methods:

- “Having something”: for example keys, tickets,

membership card

- “Knowing something”: for example a personal PIN,

password

- “Being somebody”: for example facial features, DNA

test, fingerprint

- “Being somewhere”: for example telephone number

recognition, system verification for IP

2. Authorization or access control: a process for deciding

which entities have permission for what activities.

3. Firewall: what walls are raised between networks to

permit access according to given or prohibited access

rights.

4. Data encryption: according to Bieberstein [3], encryption

is the conversion of data from one structure to another

using mathematical transition. Therefore, without the

specific knowledge it would be unreadable.

As the final sub-tree of security, availability is seen, the degree

of which a system or component is available and ready to function

when required [4]. For measuring the availability of a service, the

availability rate matrix can be used.

The availability of service s can be calculated using relation 2:

qav(s) =Ta /Ө (2)

In which Ta is the total time (in seconds) where a service is

available in the last Ө seconds. Ө is an adjustable constant. The

quantity of Ө can vary based on the used application [7].

Fig 5: Security Sub-tree

Other than security and costs, other quality attributes have also

been classified. In this part, only the sub-trees will be figured, and

detailed explanation for each sub-tree will be avoided. For

complete information on the attributes mentioned in this section

refer to [2].

Fig 6: Reliability Sub-tree

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

27

Fig 7: Performance Sub-tree

Fig 8: Reproducibility Sub-tree

Fig 9: Integratability Sub-tree

Fig 10: Maintainability Sub-tree

Fig 11: Scalability Sub-tree

Fig 12: Usability Sub-tree

3.5 Environmental constraints

This subsection mainly addresses miscellaneous constraints,

which are not classified as functional or qualitative attributes. This

category of constraints consists of non-functional and non-

qualitative items that are encountered in a composition, but are

mainly never considered or in the best case addressed in a sporadic

manner.

A main group of these constraints includes user preferences

whose sub-tree consists of the users previous experiences. It’s

obvious that the ability for the user to implement her preferences

into the composition can lead to a much better and desirable
composition. The users or composers previous experiences can be a

good guide to specify their required services fast and efficiently.

For example, if a user is interested in a specific provider, it can be

guessed that she will probably select a service from that provider in

her new composition. This can be done using personal user

accounts and profiles used to select services. For compositions

which are done dynamically, this attribute is not efficient.

Besides user preferences, there are other environmental

constraints which constitute environmental category include 6

branches (Figure 13). Web service attribute is itself the root of

another sub-tree shown in Figure 14. Some nodes of Figure 13 is

described as follows. The explanation of other nodes of figures 13

and 14 can be found in [6].

 Time (Date/Hour)

The time of the service can also be very important. The

existence of a time constraint for an applicant requires the

service to be offered and delivered at an acceptable time. A

composer might want to have a service for 24 hours for several

years but the provider might not be able to offer the service in

that manner. It is also possible that some services are available

on special occasions like Christmas.

 Service Creation time

The composer can consider services which have been produced

after a specific date.

 Service Update time

The composer can select services which have been updated

after a specific date and are compatible with newer technology.

 Service Status

A few of pre composition constraints can be the ability of the

service to be free and active.

 Being active

A service can be only used when active. It is possible that some

service providers do not offer a service after a period of time or

the service may become deactivated for any other reason [8].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

28

 Being free

A web service can only be used when it has been removed

from a previous composition (not be used in any other

composition). When a new composition starts, the web services

must be locked [8].

 Geographical Location

The location or geographical situation where the service is

being offered can be very important to the composer. The

closer the provider is to the applicants or even if the service is

local, it will be much more advantageous.

Fig 13: Other Constraints Sub-tree

Fig 14: Web service attribute Constraints Sub-tree

4 EVALUATION

4.1 Based on a case study

To perform a case study, firstly the required scenario and

related constraints for composition are determined. Then, several

schemes for the selection operation are reviewed. And finally, by

calculating the summation given in formula 1, the most proper

scheme is selected.

4.1.1 Scenarios

Suppose that a user intends to purchase an airplane ticket from

Frankfurt to New York. He intends to travel on August 20th 2012

and spend no more than 700 Euros. There are other constraints in

this operation that are important for the service composer. Because

of the high magnitude of the complete table of constraints, only

some constraints have been presented as Table 1. Also, crucial

requirements have been determined in the corresponding column

by the required score of the related constraint. It is possible that the

composer doesn’t use normalized values to determine required

scores. In this case, her desired values should be converted to

normalized values (between 0 and 10) according to the method

given in 3.2.

Table 1. Weights and crucial requirement of the composer

Weight Crucial

Requirement

Sub-

constraints

Constraint

4 - Input Functionality

4 Score = 9 Output

4 - Exception

3 - Post condition

3 - Cost of

Transaction Lost

Cost

4 - Web Services

Replacement Cost

0 - Cost of

composition

application

0 - Network Cost

2 Score < 5 Service Cost

3 - Execution Cost

4.1.2 Composition Schemas

Now each of the schemas is reviewed and the numerical value

of each schema according to the desired preferences by the

composer is calculated. Accordingly, three composition schemas

based on real services will be reviewed. The source for selecting

the services is the website given in [9].

 Schema 1

In this schema, service C presents a list of existing flights.

This list is presented to service D and the cost of the flights is

determined. Similarly, the existing flight list is presented to

service F and more flight information, such as flight class or

flight line codes, are determined. Service B controls the flight

information and service E register the flight.

 Schema 2

In this schema flights information and their costs are

received and then the flight is registered in service E.

 Schema 3

In this schema, firstly Airline information is received in

service G, and the flight list of that flight line is presented.

Service H receives the flight list and announces the flight

numbers. Then service I receives the information and registers

the flight.

In Table 2 quantitative values derived from each of the

constraints for each schema are presented. These values can be

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

29

taken from mathematical calculations or from service providers and

service level agreements (SLA). However, it is assumed that there

are these numbers in hand. Presenting quantitative values for many

of the constraints is an effortful task. According to calculations on

the complete table, schema 3 showed the most success in fulfilling

the user requirements. It should be noted that all three schemas

fulfill the crucial requirements given in Table 1. In case one of the

schemas doesn’t fulfill all of the crucial requirements, it must be

omitted from the comparison list.

Table 2. Scores of schemas

Sche

ma3

Score

Sch

ema

2

Sco

re

Sche

ma1

Scor

e

Weig

ht

Sub-constraints Constr

aints

8 8 9 4 Input Functi

onality:

Cost:

9 9 9 4 Output

7 9 6 4 Exception

9 6 5 3 Post condition

8 9 6 3 Cost of Transaction

Lost

7 4 9 4 Web Services

Replacement Cost

5 5 5 0 Cost of composition

application

4 4 4 0 Network Cost

2 2 2 2 Service Cost

3 3 4 3 Execution Cost

4.2 Taxonomy evaluation in comparison with

similar works

Prior to this study, much research has been done on web

service composition, each defining and fulfilling functional or

qualitative constraints based on their personal preferences. But

none of them paid specific attention to the constraints. For

example, some papers only noted time constraints. This section

will compare instances of existing research in the literature and the

current paper to indicate the integrity of this research. This

comparison has been made in Table 3

In [10], composition is considered as a Constraint Satisfaction

Problem. Generally it has an architectural outlook with special

attention to cost. In [11], the key attribute of a composition is the

ability of the user to have high preferences based on abstract

operations. In this paper, web technology is used to show the

requirements of each service in an operation. This is based on

previous automated discoveries of semantic services which are

based on user requirements. This paper has an architectural

viewpoint and has not mentioned other constraints with detail, but

has paid attention to service quality attributes.

[12] also has an architectural viewpoint and has considered

some parameters, such as cost and run time, but because of its

viewpoint, it has limited service quality attributes. [8] has classified

constraints to pre composition, during composition and post

composition. In pre composition it has paid attention to being free,

being active and input-output accordance. In the during

composition section, it has discussed deadlock and in the post

composition section, it talks about the input and output of the final

composite web service. In [13] response time, operational power,

reliability, availability, and cost have been considered.

[14] has also had an architectural look into composition and

has quantified service quality for services into a matrix, but has not

paid attention to any details. The topics mentioned in [15] are in

much more relevance to this paper but are a bit more limited. The

topics discussed in that paper are execution, response time,

availability, acceptance and the ability to succeed. Also cost,

organizational sequence, scanning, payment methods, popularity

and location have been mentioned. [16] has paid attention to

constraints such as price, run time, availability and reliability. [17]

has mostly emphasized on efficiency. In general, response time,

reliability, cost and security have also been considered. [18] has

studied an automated and dynamic composition along with

flexibility. It has also discussed dynamic error management and has

spoken of profession regulations to offer more flexibility for

service oriented architecture. It has also studied the efficiency of

processes combined with BPEL. Topics mentioned in that paper

are generally technical run time failure, flexibility, and reliability.

[19] which is based on ontology has mostly considered run time,

summoned service cost, input-output coordination, pre conditions

and effects and summoning mechanisms of unavailable services.

Also in a case study, efficiency and scalability have been

considered.

[20] is another work with the architectural viewpoint and uses a

feature model. It has mostly concentrated on interdependence and

mutual exclusion. This work describes an instance of valid

configuration under feature hierarchies which presents different

constraints. Components considered in this paper are message

priority, synchrony, end time, delivery guarantee, message

encryption, access control, message integration, regulated

transmission, logging, message validation, message routing,

multicast, queue and etc.

[21] mentions the user’s viewpoint of the web service and

considers the viewers previous experiences. In fact, this paper uses

ontology to measure the accordance of a user’s description with the

description presented for the service. This work concentrates on

cost, response time, reliability, input and output. [22] has an

architectural point of view and has concentrated on topics such as

response time, functional power, service rate, location, capacity

and cost. [23] also has an architectural viewpoint and has focused

mostly on the constraints of the establishment of service oriented

architecture and its configurations, for example, the dependence of

functional and nonfunctional source features and policies.

Most of the works mentioned have mainly concentrated on

some limited constraints, and none of them have covered as much

constraints as the current study. In fact each paper has discussed

the required constraints and their satisfaction according to its

needs. Table 3 shows a brief comparison of the mentioned studies.

Due to limited space, all of the attributes have not been mentioned.

5 CONCLUSION

As seen in the evaluation section, the taxonomy of constraints

related to the composition operation and the selection phase are

items that have not been thoroughly investigated yet: these

constraints have only been investigated in some cases, in a brief

manner and in some specific fields. This kind of taxonomy was

presented in this paper for the first time. Of course the presented

taxonomy isn’t claiming to be perfect, but in comparison to

previous works, it covers much broader ground.

Completing this taxonomy is the first recommendation for

future works. Another item worth mentioning for future study is

presenting more metrics for items that were not presented so far.

Also, the normalization of values derived from metrics and items

that are not in a metric form can further improve the utilization of

this structure.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

30

6 REFERENCES

[1] Jafarpour, Nasrin, Khayambashi, Mohammadreza, 2009.

Composite Web Service Creation Based On Users Quality

Requirement, 2nd conference of Electronic city, Jahad

Daneshgahi Institute of Information and Communication

Technology, Tehran Municipality, Tehran, Iran.

[2] Akhavan Sarraf, Amine, 2012. An Approach to Classify

Existing Constraints as Inputs for Developing Web Services

Composition, MSC Thesis, Shahid Beheshti University, Iran.

[3] Annika Pettersson, October 2006. Service-Oriented

Architecture (SOA) quality attributes – A research Model,

MSC Thesis, University of Lund, Switzerland.

[4] Liam O’Brien, Paulo Merso and Len Bass, 2007. Quality

Attributes for Service-Oriented Architectures, International

Workshop on Systems Development in SOA Environments,

Minneapolis, Minnesota.

[5] Moreno Marzolla, Raffaela Mirandola, 2010. QoS Analysis

for Web Service Applications: a Survey of Performance-

oriented Approaches from an Architectural Viewpoint,

Technical Report UBLCS-2010-05, Department of

Computer Science University of Bologn, Mura Anteo

Zamboni 7, Bologna (Italy).

[6] Zhiqiang Fan, Li Zhang, Jufang Shen and Shouxin Wang.

2010. A User’s Preference based Method for Web Service

Selection, 2nd Inter. Conf. on Comp, Research and Dev.

Kuala Lumpur, Malaysia.

[7] Rostampour, Ali, 2011. Metric-based evaluation of software

services in service-oriented modeling phase, MSC Thesis,

Shahid Beheshti University, Iran.

[8] Hu Yan and Wang Hui, 2008. Constraints in Web Services

Composition, IEEE 4th International Conference on Wireless

Communications, Networking and Mobile Computing

WiCOM '08, Dalian, China.

[9] http://fusion.cs.uniena.de/OPOSSum/index.php?action=searc

hservices&showserviceid=-1.

[10] Nizamuddin Channa, Shanping Li, Abdul Wasim Shaikh and

Xiangjun Fu, 2005. Constraint Satisfaction in Dynamic

Web Service Composition, Proc. the 16th International

Workshop on Database and Expert Systems Applications.

[11] Rohit Aggarwal, Kunal Verma, John Miller and William

Milnor, 2004. Constraint Driven Web Service Composition

in METEOR-S, Proceedings of the 2004 IEEE International

Conference on Services Computing, Pages 23-30, IEEE

Computer Society Washington, DC, USA.

[12] Ying Guan, Aditya K. Ghose and Zheng Lu, 2006. HCLP

Based Service Composition, Proc. 2006 IEEE/WIC/ACM

Inter. Conf. on Web Intel. and Intelligent Agent Technology,

Pages 138-141, Hong Kong, China.

[13] Philip Bianco, Grace A. Lewis, Paulo Merson, 2008. Service

Level Agreements in Service-Oriented Architecture

Environments, Technical Report CMU/SEI-2008-TN-021,

Software Endineering Institute, Carnegie Mellon University.

[14] Jiuxin Cao, Jingyu Huang, Guojin Wang and Jun Gu, 2009.

QoS and Preference based Web Service Evaluation

Approach, 8th Inter. Conf. on Grid and Cooper. Computing,

Jiangsu Provincial Key Lab. of Network & Inf. Security,

Southeast Univ, Nanjing, China.

[15] Youakim Badr, Ajith Abraham, Frédérique Biennier and

Crina Grosan, 2008. Enhancing Web Service Selection by

User Preferences of Non-Functional Features, 4th

International Conference on Next Generation Web Services

Practices, Nat. Inst. of Appl. Sci. of Lyon, Villeurbanne.

[16] Zhiyong Chen, Haiyang Wang, Peng Pan, 2009. An

Approach to Optimal Web Service Composition Based on

QoS and User Preferences, International Joint Conference on

Artificial Intelligence, Hainan Island, China.

[17] Moreno Marzolla and Raffaela Mirandola, 2010. QoS

Analysis for Web Service Applications: a Survey of

Performance-oriented Approaches from an Architectural

Viewpoint, Technical Report UBLCS-2010-05, University of

Bologna (Italy). Department of Computer Science.

[18] MingXue Wang, Kosala Yapa Bandara, Claus Pahl, 2009.

Constraint Integration and Violation Handling for BPEL

Processes, 4th Inter. Conf. on Internet and Web Applications,

Venice, Italy.

[19] Anna Hristoskova, Bruno Volckaert, Filip De Turck, 2009.

Dynamic Composition of Semantically Annotated Web

Services through QoS-aware HTN Planning Algorithms, 4th

Inter. Conf. on Internet and Web Applications, Venice, Italy

[20] Hiroshi Wada and Junichi Suzuki, Katsuya Oba, 2007. A

Feature Modeling Support for Non-Functional Constraints in

Service Oriented Architecture, IEEE International

Conference on Service Computing, Salt Lake City, Utah.

[21] Rohallah Benaboud, Ramdane Maamri and Zaidi Sahnou,

2010. User's preferences and experiences based web service

discovery using ontologies, Fourth International Conference

on Research Challenges in Information Science (RCIS

2010), Nice, France.

[22] Assel Akzhalova, Iman Poernomo, 2010. Model driven

approach for dynamic service composition based on QoS

constraints, IEEE 6th World Congress on Services, Miami,

Florida, USA.

[23] Jing Luo, Ying Li, Jie Qiu, Ying Chen, 2008. Declarative

Constraint Framework for SOA Deployment and

Configuration, IEEE International Conf. on Web Services,

Beijing, China.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

31

Table 3. Comparing this taxonomy with similar works

R
ef

er
en

c
es

C
o

st

E
x

ec
u

ti
o

n

T
im

e A
v

a
il

a
b

il
it

y

R
el

ia
b

il
it

y

T
h

ro
u

g
h

p
u

t

L
o

ca
ti

o
n

C
a

p
a

ci
ty

R
es

p
o

n
se

T
im

e R
ec

ip
ie

n
t

F
a

u
lt

T
o

le
ra

n
ce

In
p

u
t

O
u

tp
u

t

S
ec

u
ri

ty

O
th

er
 o

p
ti

o
n

[8] *

[10] * *

[6] * *

[11] * * * * *

[13] * * * * * *

[14] * * * *

[15] * * * *

[16] * * *

[17] * * * *

[18] * * * *

[19] * * * * *

This

Work
* * * * * * * * * * * * *

