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ABSTRACT  
A novel environment for optimization, analytics and decision 

support in general engineering design problems is introduced. 

The utilized methodology is based on reactive search 

optimization (RSO) procedure and its recently implemented 

visualization software packages. The new set of powerful 

integrated data mining, modeling, visualiztion and learning  

tools via a handy procedure stretches beyond a decision-

making task and attempts to discover new optimal designs 

relating to decision variables and objectives, so that a deeper 

understanding of the underlying problem can be obtained. In 

an optimal engineering design environment as such solving 

the multicriteria decision-making (MCDM) problem is 

considered as a combined task of optimization and decision-

making. Yet in solving real-life MCDM problems often most 

of attention has been on finding the complete Pareto-optimal 

set of the associated multiobjective optimization (MOO) 

problem and less on decision-making.  In this paper, along 

with presenting two case studies, the proposed interactive 

procedure which involves the decision-maker (DM) in the 

process addresses this issue effectively. Moreover the 

methodology delivers the capablity of handling the big data 

often associated with production decision-making as well as 

materials selection tasks in engineering design problems.  

Keywords:  
Opimal engineering  design, interactive multicriteria decision 

making, reactive search optimization, multiobjective 

optimization 

1.  INTRODUCTION    
The MCDM environments [1,3,4,5,6,18,19,32,81,84,85] build 

their bases on software tools used for a large number of 

applications from modeling, optimization and decision-

making tasks, to performance’s simulation. Further addition 

of new tools is intended to extend the support to the creative 

part of the design process and also the capability to deal with 

big data [2,10,34,35,59]. This support empower the designers 

to improve the performance of their concepts, allowing 

computers to take part on the generation of variants, and on 

the judgment, by true modeling of these variants. Integration 

of data mining, modeling, learning, and interactive decision-

making are all parts of a reliable software tool that can nurture 

the knowledge of designers to generate new solutions, based 

on many separate ideas leading to new the design concepts 

[7,8,9,12,23].  

The methods for structural and topological optimal design, 

based on evolutionary design, currently are widely used to 

obtain optimal geometric solutions [15,16,21,22,24,37,59]. 

The methods and design stragey as such are evolving to 

configurations that minimize the cost of trial and error and 

perform far beyond the abilities of the most skilled designers. 

Although in developing a multicriteria decision making 

environment relying only on evolutionary design components, 

in today’s ever-increasing complexity when often numerous 

design objevtives involved, is not sufficient [14,23,17,60]. 

Moreover most studies in the past concentrated in finding the 

optimum corresponding to a single goal, say designing for 

minimum cost or maximum quality. The single-obective 

optimization procedure searches through possible feasible 

solutions and at the end identifies the best solution. Often, 

such solution lacks the consideration of other important 

design objectives. Fortunately applied optimization over the 

years have been dramaticaly changed, particularly with the 

availability of efficient MCDM algorithms which facilitates a 

DM to consider more than one conflicting goals 

simultaneously [18].   

The task of MCDM is divided into two parts: (1) a MOO 

procedure to discover conflicting design trad-offs and (2) a 

decision-making process to choose a single preferred solution 

among them [18]. Although both processes of optimization 

and decision-making are considered as two joint tasks, yet 

they are often treated as a couple of independent activities 

[12,18]. For instance evolutionary multiobjective optimization 

(EMO) algorithms [15,16] have mostly concentrated on the 

optimization aspects i.e. developing efficient methodologies 

of finding a set of Pareto-optimal solutions. However finding 

a set of trade-off optimal solutions is just half the process of 

optimal design in a multicriteria decision making 

environment. This has been the reason why EMO researchers 

were looking to find ways to efficiently integrate both 

optimization and decision making tasks in a convenient way 

[9,14,17,23,60] where the efficient MOO algorithms facilitate 

the DMs to consider multiple and conflicting goals of a 

MCDM problem simultaneously. Some examples of such 

algorithms and potential applications could be found in 

[25,26,27,28,29,30,37,59]. Nevertheless within the known 

approaches to solving complicated MCDM problems there are 

different ideologies and considerations in which any decision-

making task would find a fine balance among them.  

In traditional applications to MCDM [12,18] often the single 

optimal solution is chosen by collecting the DM’s preferences 

where MOO and decision-making tasks are combined for 

obtaining a point by point search approach [11,12]. In 

addition in MOO and decision-making, the final obtained 

solutions must be as close to the true optimal solution as 

possible and the solution must satisfy the preference 

information. Towards such a task, an interactive DM tool to 

consider decision preferences is essential. This fact has 

motivated novel researches to properly figure out the 

important task of integration between MOO and MCDM 

[14,17,22,23,60]. Naturally in MCDM, interactions with the 

DM can come either during the optimization process, e.g. in 

the interactive EMO optimization [15,23,60], or during the 

decision-making process [16,37]. In fact there exists a number 

of interactive MOO methods in the MCDM literature [7,11]. 

2.  A REVIEW 
The usage of EMO in real-life optimal design has been always 

an important interest to MCDM community. In the EMO-

based optimal design there are two different ways identified 

by which EMO and MCDM methodologies can be combined 
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together [23]. Either EMO followed by MCDM or, MCDM 

integrated in an EMO. In the first way, an EMO algorithm is 

applied to find the Pareto-front solutions. Afterward, a single 

preferred solution is chosen from the obtained set by using a 

MCDM procedure. In this way EMO application helps a DM 

to analyze different trade-off solutions to choose the final one. 

However the DM has to go through analyzing many different 

solutions to be able to make the final decision. Therefore the 

DM has to consider too many possible solutions.  As the 

typical DM cannot deal with more than a very limited number 

of information items at a time [63] the methods as such are 

reported inefficient [23].    

Alternatively a MCDM procedure could be integrated within 

an EMO to find the preferred Pareto-front solutions where the 

search is concentrated on the important region of the Pareto-

front [14]. This would let the optimization task to evaluate the 

preferences of the DM interactively. These approaches to 

interactive evolutionary algorithms are reviewed in [17]. 

Additionaly a summary can be found in the text by Miettinen 

[18]. Further popular approaches as such include interactive 

surrogate worth trade-off method [19], the reference point 

method [20] and the NIMBUS approach [12].  

All above procedures require a DM to provide the design 

preferences [14]. A search workflow is then used to find the 

optimum of the objective task. This procedure is repeated 

many times until the DM is satisfied with the obtained final 

solution. For instance in [21,22] an EMO procedure is applied 

to a complicated design problem and then an interactive 

methodology is employed to choose a single solution. In [23], 

EMO is combined with MCDM procedures, and an interactive 

procedure is suggested where the EMO methodologies are 

combined with a certain and efficient MCDM technique. The 

work later in [23] was extended by involving more MCDM 

tools and integrations with further software packages such as 

MATLAB, for providing better working on more real-life 

study case [14]. In [23] unlike the classical interactive 

methods in [12], a good estimation of the Pareto-optimal 

frontier is created, in which helps to concentrate on a 

particular region. The authors in [23] conclude that when an 

approach is best suited for one problem it may be inadequate 

in another problem. As the result worth mentioning that in 

developing MCDM and EMO novel integrations, a successful 

procedure could include more than one optimization and 

decision-making tool in it so that any number of optimization 

and decision-making tool may be combined to build an 

effective problem solving procedure [24]. The researches 

reviewed above, have motivated other EMO, MCDM and 

optimal design researches, including our article, to develop 

such integration schemes further by considering other 

potential optimization and decision-making tools.     

2.1 Drowbacks to Solving MOO Problems 

with EMO Algorithms    
The general form of a MOO problem [7,8], can be stated as; 

Minimize                      , Subjected to        
where    ℝn  is a vector of   decision variables;     ℝn is 

the feasible region and is specified as a set of constraints on 

the decision variables;      ℝm is made of    objective 

functions subjected to be minimization. Objective vectors are 

images of decision vectors written as        
                  Yet an objective vector is considered 

optimal if none of its components can be improved without 

worsening at least one of the others. An objective vector   is 

said to dominate   , denoted as     , if       
   for all   

and there exist at least one   that       
 . A point    is Pareto 

optimal if there is no other     such that      dominates 

        The set of Pareto optimal points is called Pareto set 

(PS). And the corresponding set of Pareto optimal objective 

vectors is called Pareto front (PF).   

The EMO algorithms [16,24,25] for solving MCDM problems 

have been around for up to two decades now, and are well 

suited to search for a set of PS to be forwarded to the DM. 

Considering solving MCDM problems, EMO algorithms are 

among the most popular a posteriori methods for generating 

PS of a MOO problem aiming at building a set of points near 

the PF. However they become inefficient for increasing 

number of objectives. MOO of curve and surfaces [37,59] 

would be a good example for such an ineffective attempt due 

to increasing complexity. Because the proportion of PF in a 

set grows very rapidly with the dimension  , therefore the 

former approaches for solving the MOO of the curve and 

surfaces [13, 37,59] whether a priori or a posteriori, in 

particular EMO, would involve plenty of various 

complications. In fact the reality of applied optimal design has 

to consider plenty of priorities and drawbacks to both 

interactive and non-interactive approaches. Although the 

mathematical representative set of the MCDM model is often 

created however presenting a human DM with numerous 

representative solutions on a multi-dimensional PF is way 

complicated. This is because the typical DM cannot deal with 

more than a very limited number of information items at a 

time [63]. Therefore an improved decision procedures should 

be developed according to human memory and his data 

processing capabilities. In addition often DMs cannot 

formulate their objectives and preferences at the beginning. 

Instead they would rather learn on the job. This is already 

recognized in the optimal design formulation, where a 

combination of the individual objectives into a single 

preference function is not executed. Considering the problems 

in [27,37,59] the DM is not clear about the preference 

function. This uncertainty is even increased when the 

objectives such as beauty involved. This fact would employ 

lots of uncertainty and inconsistency.  

Consequently interactive approaches [12,14,18,23] try to 

overcome some of these difficulties by keeping the user in the 

loop of the optimization process and progressively focusing 

on the most relevant areas of the PF directed by DM. This is 

done when the fitness function is replaced by a human user. 

However most DMs are typically more confident in judging 

and comparing than in explaining. They would rather answer 

simple questions and qualitative judgments to quantitative 

evaluations. In fact the identified number of questions that has 

to be asked from the DM a crucial performance indicator of 

interactive methods. This would demand for selecting 

appropriate questions, for building approximated models 

which could reduce bothering the DM [33,60].   

The above facts, as also mentioned in [39], and later in [36] 

demand a shift from building a set of PF, to the interactive 

construction of a sequence of solutions, so called brain-

computer optimization [60], where the DM is the learning 

component in the optimization loop, a component 

characterized by limited rationality and advanced question-

answering capabilities. This has been the reason for the 

systematic use of machine learning techniques for online 

learning schemes in optimization processes available in the 

software architectures of LIONsolver and Grapheur 

[39,40,60]. 
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3. BRAIN-COMPUTER OPTIMIZATION 

(BCO) APPROACH TO STOCHASTIC 

LOCAL SEARCH   

As Battiti et al. [8,39], also clearly state, the aim of stochastic 

local search is to find the minimum of the combinatorial 

optimization function  , on a set of discrete possible input 

values  . To effectively and interactively doing so the focus 

in [60] is devoted to a local search, hinting at reactive search 

optimization (RSO) with internal self-tuning mechanisms, and 

BCO i.e. a DM in the interactive problem-solving loop. 

Accordingly in this context the basic problem-solving strategy 

would start from an initial tentative solution modifying the 

optimization function. According to [8] the local search starts 

from a configuration of       and builds a search 

trajectory     , . . . ,       . where   is the search space and 

     is the current solution at iteration    time. Then         

would be the neighborhood of point     ,obtained by applying 

a set of basic moves              to the configuration 

of                 Such that        
           . . . , 

  . If the search space is given by binary strings with a given 

length            , the moves can be those changing the 

individual bits, and therefore   is equal to the string length  . 

The accuracy of the achieved point is a point in the 

neighborhood with a lower value of   to be minimized. The 

search then would stop if the configuration reaches a local 

minimum [7]. 

 

          IMPROVING-NEIGHBOR             

         
                                   

                                       
          [8] 

 

Here the local search works very effectively and the 

improving-neighbor returns an improving element in the 

neighborhood. This is manily because most combinatorial 

optimization problems have a very rich internal structure 

relating the configuration   and the   value [8]. In the 

neighborhood the vector containing the partial derivatives is 

the gradient, and the change of   after a small displacement is 

approximated by the scalar product between the gradient and 

the displacement [38].  

3.1 Learning Component; DM in the Loop 
In problem-solving methods of stochastic local search, 

proposed in [60], where the free parameters are tuned through 

a feedback loop, the user is considered as a crucial learning 

component in which different options are developed and 

tested until acceptable results are obtained. As explained in 

[7] by inserting the machine learning the human intervention 

is decreased by transferring intelligent expertise into the 

algorithm itself. Yet in order to optimize the outcome setting 

the parameters and observing the outcome, a simple loop is 

performed where the parameters in an intelligent manner 

changed until a suitable solution is identified. Additionaly to 

operate efficiently, RSO uses memory and intelligence, to 

recognize ways to improve solutions in a directed and focused 

manner. 

In the RSO approach of problem solving the brain-computer 

interaction is simplified. This is done via learning-optimizing 

process which is basically the insertion of the machine 

learning component into the solution algorithm. In fact the 

strengths of RSO are associated to the brain charactristics i.e. 

learning from the past experience, learning on the job, rapid 

analysis of alternatives, ability to cope with incomplete 

information, quick adaptation to new situations and events 

[7,8]. Moreover the term of intelligent optimization in RSO 

refers to the online and offline schemes based on the use of 

memory, adaptation, incremental development of models, 

experimental algorithmics applied to optimization, intelligent 

tuning and design of heuristics. In this context with the aid of 

advanced visualization tools implemented within the software 

architecture packages [39,40,60] the integration of 

visualization and automated problem solving and optimization 

would be the centere of attention.  

3.2 RSO and Visualization Tools; an 

Effective Approach to MCDM 
Visualization is an effective approach in the operations 

research and mathematical programming applications to 

explore optimal solutions, and to summarize the results into 

an insight, instead of numbers [31, 32]. Fortunately during 

past few years, it has been a huge development in 

combinatorial optimization, machine learning, intelligent 

optimization, and RSO [7,8], which have moved the advanced 

visualization methods even further. Previous work in the area 

of visualization for MCDM [32] allows the DM to better 

formulate the multiple objective functions for large 

optimization runs. Alternatively in our research utilizing RSO 

and visualization [60], which advocates learning for 

optimizing, the algorithm selection, adaptation and 

integration, are done in an automated way and the user is kept 

in the loop for subsequent refinements. Here one of the crucial 

issue in MCDM is to critically analyzing a mass of tentative 

solutions assusiated with big data, which is visually mined to 

extract useful information [34,35,36]. In developing RSO in 

terms of learning capabilities there has been a progressive 

shift from the DM to the algorithm itself, through machine 

learning techniques [7].  

Concerning solving the MCDM problems, utilizing RSO, the 

final user is not distracted by technical details, instead 

concentrates on using his expertise and informed choice 

among the large number of possibilities. Algorithms with self-

tuning capabilities like RSO make life simpler for the final 

user. To doing so the novel approach of RSO is to integrate 

the machine learning techniques, artificial intelligence, 

reinforcement learning and active learning into search 

heuristics. According to the original literature [33] during a 

solving process the alternative solutions are tested through an 

online feedback loop for the optimal parameters’ tuning. 

Therefor the DM would deal with the diversity of the 

problems, stochasticity, and dynamicity more efficiently. Here 

are some case studies treated very promising by RSO 

[26,27,28,29,36]. Worth mentioning that RSO approach of 

learning on the job is contrasted with off-line accurate 

parameter tuning [39,40] which automatically tunes the 

parameter values of a stochastic local search algorithm.  

3.3  Characteristics of the Proposed 

Approach  
During the process of solving the real-life problems exploring 

the search space, utilizing RSO, many alternative solutions are 

tested and as the result adequate patterns and regularities 

appear [39,40]. While exploring, the human brain quickly 

learns and drives future decisions based on the previous 

observations and searching alternatives. For the reason of 

rapidly exploiting the most promising solutions the online 

machine learning techniques are inserted into the optimization 

engine of RSO [8]. Furthermore with the aid of inserted 

machine learning a set of diverse, accurate and crucial 

alternatives are offered to the DM. The complete series of 

solutions are generated. After the exploration of the design 
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space, making the crucial decisions, within the multiple 

existing criteria, totaly depends on several factors and 

priorities which are not always easy to describe before starting 

the solution process. In this context the feedbacks from the 

DM in the preliminary exploration phase can be considered so 

that a better arrangement of the parameters takes the 

preferences into account [7]. Further relevant characteristics 

of RSO, according to [8], could be summarized as; learning 

on the job, rapid generation, and analysis of many 

alternatives, flexible decision support, diversity of solutions 

and anytime solutions.  

3.4  Applications   
A number of complex optimization problems arising in widely 

different contexts and applications which has been effectively 

treated by the general framework of RSO are reviewed in 

[36].  This include the real-life applications in computer 

science and operations research community combinatorial 

tasks, applications in the area of neural networks related to 

machine learning and continuous optimization tasks. This 

would include risk management, managing the big data of 

social networks, transportation, healthcare, marketing and e-

commerce. In addition in the following we summarize some 

applications in real-life engineering application areas which 

are the main interests of this research. In the area of electric 

power distribution there have been reported a series of real-

life applications [42]. An open vehicle routing problem [43], 

as well as the pickup and delivery problem [44] both with the 

time and zoning constraints is modeled where the RSO 

methodology is applied to the distribution problem in a major 

metropolitan area. Alternatively to solve the vehicle routing 

problem with backhauls a heuristic approach based on a 

hybrid operation of reactive tabu search is proposed in [45]. 

By utilizing the RSO the flexible job-shop scheduling [46], 

the plant location problem [47], the continuous flow-shop 

scheduling problem [48], adaptive self-tuning neurocontrol 

[49] and the real-time dispatch of trams [50] were effectively 

solved. Moreover various applications of RSO focused on 

problems arising in telecommunication networks, internet and 

wireless in terms of optimal design, management and 

reliability improvements e.g. [51]. The multiple-choice multi-

dimensional knapsack problem with applications to service 

level agreements and multimedia distribution is studied in 

[52]. In the military related applications, in optimal designing 

of an unmanned aerial vehicle routing system [53] and in 

finding the underwater vehicle trajectories [54], RSO worked 

wonder. The problem of active structural acoustic control [55] 

and visual representation of data through clustering [56] are 

also well treated. Additionally the solution of the engineering 

roof truss design problem is discussed in [57]. An application 

of RSO for designing barrelled cylinders and domes of 

generalized elliptical profile is studied in [58]. Overall a series 

of successful projects accomplished with the aid of RSO 

could be found in [25,26,27,28,29,30,36]. Further applications 

of RSO are listed in [33,40] and the stochastic local search 

book [41]. 

3.5  Software Architecture Packages for the 

Proposed Reactive and Interactive MCDM 

Environment   
Grapheur and LIONsolver [7,8,39,40] are two 

implementaions of RSO. The software implements a strong 

interface between a generic optimization algorithm and DM. 

While optimizing the systems produce different solutions, the 

DM is pursuing conflicting goals, and tradeoff policies 

represented on the multi-dimensional graphs [33,40]. During 

multi-dimensional graphs visualization in these software 

packages, it is possible to call user-specific routines 

associated with visualized items. This is intended as the 

starting point for interactive optimization or problem solving 

attempts, where the user specifies a routine to be called to get 

information about a specific solution. These implementations 

of RSO are based on a three-tier model, independent from the 

optimization algorithm, effective and flexible software 

architecture for integrating problem-solving and optimization 

schemes into the integrated engineering design processes and 

optimal design, modeling, and decision-making. 

For solving problems with a high level of complexity,   

modeling the true nature of the problem is of importance and 

essential. For this reason a considerable amount of efforts is 

made in modeling the MOO problems in Scilab which later 

will be integrated into optimizer package. Here, as an 

alternative to the previous approaches [22,23,24] the robust 

and interactive MOO algorithm of RSO is  proposed in order 

to efficiently optimize all the design objectives at once in 

which couldn’t be completely considered in the previous 

attempts. In this framework the quality of the design, similar 

to the previous research workflows, is measured using a set of 

certain functions. Then an optimization algorithm is applied in 

order to optimize the function to improve the quality of the 

solution. Once the problem is modeled in scilab it is 

integrated to the optimizer via advanced interfaces to the RSO 

algorithm and its brain-computer implementations and 

visualizations. In this framework the application of learning 

and intelligent optimization and reactive business intelligence 

approaches in improving the process of such complex 

optimization problems is accomplished. Furthermore the 

problem could be further treated by reducing the 

dimensionality and the dataset size, multi-dimensional 

scaling, clustering and visualization tools [36,60]. 

4.  CASE STUDY 1: WELDED BEAM 

DESIGN     
The problem of welded beam design is a well-known case 

study in structural engineering, dealing with optimal 

designing the form of steel beams and with connecting them 

to form complex stuctures [24]. This case study has been used 

by many experts as a benchmark problem of single and also 

multiobjective design optimization. The problem of optimal 

designing a welded beam consists of dimensioning a welded 

steel beam and the welding length in order to minimize the 

cost subjected to bending stress, constraints on shear stress, 

the buckling load on the bar, the end the deflection of the 

beam, and side constraints. There are four design variables i.e. 

h, l, t, b shown in the Fig. 1. Structural analysis of the welded 

beam leads to two nonlinear objective functions subjected to 

five nonlinear and two linear inequality constraints. The 

objectives include the fabrication cost and the end deflection 

of the beam. In our case, the aim is to reduce fabrication cost 

without causing a higher deflection. Decision-making on the 

preferred solution among the Pareto-optimal set requires the 

intelligent participation of the designer, to identify the trade-

off between cost and deflection. 

As it is shown in the figure 1 the beam is welded on another 

beam carrying a certain load P. The problem is well studied as 

a single objective optimization problem [24], but we have 

transformed the original single objective problem into a two-

objective problem for more flexible design. In the original 

study the fabrication cost (     ) of the joint is minimized 

with four nonlinear constraints related to normal stress, shear 

stress, buckling limitations and a geometry constraint. 
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Fig 1:  The welded beam optimal design problem. 

 

With the following formulation we have introduced one more 

objective i.e. minimization of the end deflection (    ) of the 

structure. The problem has four decision variables presented 

in the optimization formulation, i.e. thickness of the beam b, 

width of the beam t, length of weld l, and weld thickness h. 

The overhang portion of the beam has a length of 14 in and F 

¼ 6; 000 lb force is applied at the end of the beam. The 

mathematical formulation of the problem is given as; 

Minimize                                         

Minimize              
       

    
 

Subjected to                                  

                     

                                                   

                                                          

0.125   ,    b             0.   ,      t       

 

The described problem has recently been modeled and solved 

utilizing a novel optimal design strategy so called interactive 

multi-objective optimization and decision-making using 

evolutionary methods (I-MODE). However I-MODE software 

implementation can only consider a maximum of three 

objectives due to limitation of visual representation of the 

Pareto-optimal solutions. In applying I-MODE framework to 

further real-life optimal design problems 

[22,23,25,26,27,28,29,30] in which real DMs are involved 

there exists a number of shortcomings which are considered 

and improved in the proposed RSO optimal design strategy.    

 4.1 Creating the Model in Scilab  
Scilab is now a robust, flexible and low-cost alternative to 

MATLAB which makes is an ideal modeling tool to be 

integrated to the MCDM. The success story presented in this 

paper in a short time and on a limited budget is the evidence 

of this statement. In fact he ongoing global crisis started in 

2008 has forced the design companies to focus on efficiency 

and costs reduction by exploring open source software tools 

as a possible alternative to closed source. Moreover the final 

integrated optimal design tool has a fast and efficient 

computational capabilities in addition to the possibilities to 

automatically call parallel instances of the Scilab routine in 

background batch mode. 

Here in this case study Scilab file contains a string definition, 

i.e. g_name, inluding a short, mnemonic name for the model 

as well as two 8-bit integers, i.e. g_dimension and g_range, 

defining the number of input and output variables of the 

model. Additionaly the file has two real-valued arrays; i.e. 

g_min and g_max, containing the minimum and maximum 

values allowed for each of the input and output variables. The 

following description is a simple definition of a function that 

is integrated to RSO so it can be understood and utilized by 

software implementation [7,8,40].  

The extensive implementation of the problem in Scilab is 

available in [36].  

g_name = "ZDT1";  

g_dimension = int8(2);  

g_range = int8(2);  

g_min = [0, 0, 0, 0];  

g_max = [1, 1, 1, 1];  

g_names = ["x1", "x2", "f1", "f2"];  

function f = g_function(x)  

f1_x1 = x(1)  

g_x2 = 1 + 9 * x(2)  

h = 1 - sqrt(f1_x1 / g_x2)  

f = [ 1 - f1_x1, 1 - g_x2 * h ]  

endfunction; 

 

 
 

Fig 2: Description of the welded beam design problem in 

the software architecture of RSO multiobjective 

optimization; tuning the objectives and constraints 

 

Among the four constraints,   deals with the shear stress 

developed at the support location of the beam which is meant 

to be smaller than the allowable shear strength of the material 

(13,600 psi). The    guarantees that normal stress developed 
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at the support location of the beam is smaller than the 

allowable yield strength of the material (30,000 psi). The    

makes certain that thickness of the beam is not smaller than 

the weld thickness from the standpoint. The   keeps the 

allowable buckling load of the beam more than the applied 

load P for safe design. A violation of any of the above four 

constraints will make the design unacceptable. More on 

adjusting the constraints would be availabe in [22,23]. 

Additionaly on the stress and buckling terms calculated in 

[24] needless mentionning that they are highly non-linear to 

design variables.  

 

4.2 Setting up the RSO Software  
Here the RSO software architecture of LIONsolver [33,40] 

helps the designer to become aware of the different 

posibilities and focus on his preferred solutions, within the 

boundary of constraints. Consequently the constraints are 

transformed into a penalty function which sums the absolute 

values of the violations of the constraints plus a large 

constant. Unless the two functions are scaled, the effect of 

deflection in the weighted sum will tend to be negligible, and 

most Pareto-optimal points will be in the area corresponding 

to the lowest cost. Therefore each function is devided by the 

estimated maximum value of each function in the input range 

[24]. The Pareto-optimal solutions of the multiobjective 

optimization and MCDM corresponding to fabrication cost vs. 

end deflection of the beam are visualy presented in the graph 

of Figure 3.   

 

 
 

Fig 3: Set of pareto-optimal solutions, fabrication cost vs. 

end deflection of the beam 

 

By associating a multidimentional graph for an advanced 

visualization, available in Figure 4, and a paralell chart, 

available in Figure 5, to the results table, the MCDM problem 

very clearly comes to the consideartion and the final decision 

is very confidently made. Here as the result, quite similar to 

the results abtained from the other approach in [23] it is 

observed that the welding length l and depth h are inversely 

proportional, the shorter the welding length, the larger the 

depth has to be, and that height t tends to be close to its 

maximum allowed value.  

 

 
 

Fig 4: Parelel chart including all variables, constraints and 

optimization objectives 

 

The final visualization and observations can inspire many 

problem simplifications e.g. it is observed that by fixing the 

height to its maximum value and by expressing the length as a 

function of depth, therefore eliminating two variables from 

consideration in the future explorations, the optimal design 

problem would be simpler.  

 

 
 

Fig 5: Multidimentional graph for an advanced 

visualization; the fabrication cost vs. end deflection of the 

beam 

 

5. CASE STUDY 2. OPTIMAL DESIGN 

OF TEXTILE COMPOSITES AND 

MATERIAL SELECTION 
The second case study would be dealing with optimal design 

of textile composites, a more challenging task where the 

number of design criteria are increased and the geometry 

becomes way complicated. Textile composite materials 

consist of a polymer matrix combined with textile 

reinforcement. Typical applications range from high 

performance aerospace components to structural parts of 

transportation industry. In fact because of the numerous 
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advantages of composites in comparison to traditional 

materials there has been an increasing trend in the usage of 

composite materials in different industries.   

Former research on optimal design of textile composites [75] 

highlighted that the ability to test preliminary designs is not 

economically workable and the assesment of preliminary 

materials systems urges the use of simulation tools. Such a 

strategy would improve the process of multi-criteria materials 

selection [76] and also can empower designers in considering 

the role of materials selection in design of materials and 

products. Jahan and Edwards believe [78] that there appears to 

be a simulation-based materials design revolution underway 

in which materials selection could be improved in order to 

more rapidly qualify new material designs. This would 

happen by shift from costly and time-consuming physical 

experimentation to less costly computational modeling and 

design [77]. 

The integrated and multi-disciplinary design process of 

composites has been very challenging. The design process is 

divided into several criteria and sub-criteria, while receiving 

the contributions of many different departments trying to meet 

conflicting requirements of the design simultaneously. 

Consequently, an optimal design process within such complex 

systems is required through advanced decision-support tools 

that can account for interactions and conflicts between several 

criteria. This leads to the need of optimizing several 

conflicting objectives simultaneously via reliable multicriteria 

decision-making models. 

For the optimal design of composites, with the aid of 

advancement of interdisciplinary and data analysis tools, a 

series of criteria including mechanical, electrical, chemical, 

cost, life cycle assessment and environmental aspects are now 

able to be simultaneously considered. As one of the most 

efficient approach, the MCDM applications can provide the 

ability to formulate and systematically compare different 

alternatives against the large sets of design criteria. However, 

the mechanical behavior of woven textiles during the draping 

process has not been yet fully integrated to the optimal design 

approaches of MCDM algorithms. In this case study the 

criteria of mechanical behavior of the woven textile during the 

draping and the further involved simulations and analysis are 

included in the process of the optimal design and decision-

making. For this reason the proposed optimal design strategy 

has been upgraded in terms of complex geometry modeling, 

and integration to materials selection. Comparing material 

properties and selecting the most appropriate materials, help 

to enhance the performance of products. Therefore it is 

important to consider and rank all the available materials.   

A key objective of mechanical modeling of textiles is to 

define the dimensions and characteristics of a product and the 

materials from which it is made so that it can perform an 

acceptable function [73]. The area of the design decision-

making for simultaneous consideration of the structural 

solution and materials selection, which is generaly needed at 

the early design stage is relatively weak. Although the 

importance of integrating materials selection and product  

design has been often emphasized [74].  

The designer in engineering of the optimal textile structures 

assume a material before optimizing the geometry or select 

the best material for an existing geometry of a structure, but 

clearly either approach does not guarantee the optimal 

combination of geometry and material [71]. Alternatively here 

the materials properties are directly transmitted to the design 

software package so that the effect of changing materials 

properties on the geometry and dimentions of a component 

design can be directly evaluated and ranked. At the same time 

the engineering designer can evaluate the effect of changing 

geometry and dimentions on product performance.  

Worth mentionning that the process of meterials selction is 

highly dependent on data related to material properties. In fact 

with a large number of materials, clearly there is a need for an 

information-management system [72]. Therefore in the initial 

proposed optimal design strategy for interactive optimization 

and MCDM the existing drawbacks to utilizing MCDM are 

improved by connecting the data mining, visualization and 

optimization through the user interaction and decision-

making. Besides the materials databases are used as materials 

selection systems, which are essentially developed for data 

storage searching. Morover the electronic materials databases 

and data search software packages would help designer in this 

regard [78]. 

5.1 Draping 
The manufacturing of woven reinforced composites requires a 

forming stage so called draping in which the preforms take the 

required shapes. The main deformation mechanisms during 

forming of woven reinforced composites are compression, 

bend, stretch, and shear which cause changes in orientation of 

the fibers. Since fiber reorientation influences the overall 

performance it would be an important factor that in the 

process of material selection to consider the draping along 

with the other criteria.    

 

 
 

Fig 6: Simulation of draping process including a combined 

mechanical modeling of compression, bend, stretch, and 

shear shown from two different draping angles 

 

In an optimal engineering design process for the textile 

composites, the materials selection integrated with draping 

can well determine the durability, cost, and manufacturability 

of final products [61,62]. The process would naturally involve 

the identification of multiple criteria properties of mechanical, 

electrical, chemical, thermal, environmental and life cycle 

costs of candidate materials [64]. In fact multiple criteria from 

different disciplines which are to be satisfied in a materials 

selection problem, often because of the criteria conflicts the 

complexities are even increased. Moreover the mechanical 

behavior of woven textiles during the draping process has not 

been yet fully integrated to the MCDM algorithms.  Although 
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many applications and algorithms of MCDM [64] have been 

previously presented to deal with decision conflicts often seen 

among design criteria in materials selection. However many 

drawbacks and challenges are identified associated with their 

applicability [67]. 

5.2 Geometrical-Mechanical Modeling and 

Simulation of Draping   
The mechanical models of draping with a much higher 

computation cost, comparing to the kinematic models, offer 

the benefit of representing the non-linear materials behavior. 

Moreover the mechanical simulation, as the most promising 

technique, gives a real-life prediction of the fiber 

reorientation. Beside of all presented approaches to the 

geometrical modeling of woven textiles so far [68], the 

Spline-based methods have been the most effective technique. 

In fact, the Spline-based geometrical representation of a real-

life model of any type of the flat-shaped woven textile, are 

done with implementing the related computer aided 

geometrical design (CAGD) code. However the mathematical 

representation of a multiple-dome shaped woven, which is 

essential for draping simulation, in the practical scale, could 

not be computationally efficient. Threfore in order to handle 

the computational complexity of geometrical modeling the 

multiple-dome woven shapes, utilizing the NURBS-based 

CAGD packages are proposed. Khabazi [70] introduced 

generative algorithms for creating these complex geometries. 

His improved algorithm is capable of producing the whole 

mechanism of deformation with combining all details of 

compressed, bended stretched and sheared properties.  

 

Fig 7: A combination of four different simulation criteria 

including the compression, bend, stretch, and shear form 

the draping a) Geometrical modeling and simulation of the 

woven textiles b) Mechanical modeling of the bending; the 

behavior of textile under its weight is simulated by 

manipulating the related geometrical model within the 

CAGD package. 

It is assumed that if the mechanical behavior of a particular 

woven fabric of a particular type and material is identified 

then the final geometrical model of the draping could be very 

accurately approximated. In this technique the defined 

mechanical mechanisms of a particular material, in this case 

glass fiber [68], are translated into a geometrical logic form 

integrated with the NURBS-based CAGD package through 

the process of scripting [70]. 

Worh mentionning that traditionally in order to include the 

materials property into the mechanical models of textile the 

outputs from finite element analysis (FEA) are utilized as 

inputes to MCDM in material selection.  FEA allows 

materials property data to be transmitted directly to a design 

software package so that the effect of changing materials 

properties on the geometry and dimentions of a component 

design can be directly evaluated. At the same time the DM 

can evaluate the effect of changing geometry and dimentions 

on product performance [75].  

 

 
 

Fig 8: Geometrical modeling of double dome utilizing the 

Khabazi’s algorithm [70]. 

 

5.3  Integration the MCDM-Assisted 

Material Selection with Draping Simulation    
Recently a combined FEA-MCDM approach as a framework 

that links the capabilities of FEA tools to the MCDM 

approaches for composite structural materials selection 

problem [75] proposed. However due do the geometricaly 

challenging modeling of the composite product the draping 

simulation has not been considered in their work.  

In order to select the best material of a woven textile as well 

as the right angel of draping, the draping simulation needs to 

be carried out for a number of draping degrees for a particular 

material. The results of all the draping simulations of different 

drape angles are gathered as a data-set for consideration, in 

addition to already existed data-sets from the earlier case 

study [64], including the other criteria i.e. mechanical, 

electrical, chemical, cost, life cycle assessment and 

environmental.  

5.4 Visualization; an Effective Approach to 

MCDM and Material Selection 
Visualization is an effective approach in the operations 

research and mathematical programming applications to 

explore optimal solutions, and to summarize the results into 

an insight, instead of numbers [65,66]. Fortunately during past 

few years, it has been a huge development in combinatorial 

optimization, machine learning, intelligent optimization, and 

RSO, which have moved the research in advanced 

visualization methods forward [67].    

The previous work in the area of visualization for MCDM 

[67] allows the user to better formulate the multiple objective 

functions for large optimization runs. Alternatively in our 

research utilizing RSO [79,82,83,84], which advocates 

learning for optimizing, the algorithm selection, adaptation 

and integration, are done in an automated way and the user is 

kept in the loop for subsequent refinements and final decision-

making [64]. Here one of the crucial issue in MCDM is to 

critically analyzing a mass of tentative solutions related to 

materials and draping simulation, which is visually mined to 

extract useful information. Concerning solving the MCDM 

problems the DM is not distracted by technical details instead 

concentrates on using his expertise and informed choice 

among the large number of possibilities.  As the whole 
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process may be carried out in different design and design-

making departments worth mentioning that the workflow may 

overlaps with a number of other fields of research such as 

enterprise decision management [80].    

5.5  Software Architecture of the Reactive 

and Interactive MCDM Visualization 

Environment  
The proposed software is based on a three-tier model, 

independent from the optimization package [7,8] which is an 

effective and flexible software architecture for integrating 

problem-solving and optimization schemes into the integrated 

engineering design processes and optimal design, modeling, 

and decision-making. The software is implemented a strong 

interface between the generic optimization algorithm and DM. 

While optimization systems produce different solutions, the 

DM is pursuing conflicting goals and tradeoff policies 

represented on the multi-dimensional graphs (see Figure 9 and 

10). 

 

Fig 9: Mechanical modeling of draping process for a number of draping degrees 

 

 

Fig 10: a) Paralel chart considering five optimization objectives simultaneously  b) The 7D visualization graph used for 

considering different prodcuts, materials and draping characteristics simultaneously  

 

6. DISCUSSION AND CONCLUSIONS 
In this paper a novel environment for optimization, analytics 

and decision support in general engineering design problems 

is introduced. The utilized methodology is based on reactive 

search optimizationprocedure and its recently implemented 

software packages. The new set of powerful integrated data 

mining, modeling, visualiztion and learning  tools via a handy 

procedure stretches beyond a decision-making task and 

attempts to discover new optimal designs relating to decision 

variables and objectives, so that a deeper understanding of the 

underlying problem can be obtained. Here along with 

presenting two study cases, the interactive procedure is 

introduced which involves the DM in the optimization process 

helping to choose a single solution at the end. The method is 

well capable of handling the big data often associated with 

MCDM problems.  

Furthermore the preliminary tests of the software environment 

in the concrete context of optimal designing the welded beam 
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design problem have shown the effectiveness of the approach 

in rapidly reaching a design preferred by the DM via 

advanced visualization tools and brain-computer novel 

interactions.   

Along with presenting the latter study case the aspects of data 

mining, modeling, and visualization the data related to 

material selection are considered. Further the utilization of the 

proposed software architectures for multiobjective 

optimization and decision-making, with a particular emphasis 

on supporting flexible visualization is discussed. The 

applicability of the software can be easily customized for 

different problems and usage contexts.       

Considering the abilities of LIONsolver and Grapheur, the 

interesting patterns are automatically extracted from our raw 

data-set via data mining tools.  Additionally the advanced 

visual analytical interfaces are involved to support the DM 

interactively. With utilizing the features such as parallel filters 

and clustering tasks, in the material selection study case the 

managers can solve MOO problems as it amends previous 

approaches. The utilization of a software architecture for 

MCDM, including the mechanical modeling of draping, with 

a particular emphasis on supporting flexible visualization is 

discussed. The applicability of software can be easily 

customized for different problems and usage contexts. 

The preliminary tests of the software environment in the 

concrete context of designing a multiple dome shape have 

shown the effectiveness of the approach in rapidly reaching a 

design preferred by the decision-maker.  

In addition the future research is set out to investigate the role 

that the proposed multiobjective optimization and decision-

making strategy can play in sustainable regional decision-

making [86], waste management [87], and materials selection 

[88] in construction and demolition projects.  
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