
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

24

An Enhanced Version of Pattern Matching Algorithm

using Bitwise XOR Operation

K. P. Ambika

Dept. of Biotechnology
MS University, Tirunelveli,

India.

U. Ramesh
Dept. of Molecular Biology

School of Biological
Sciences, MK University,

Madurai, India.

K. Saravanan
Dept. of Zoology

Nehru Memorial College
Puthanampatti, Trichy,

India.

J. Hencil Peter
Playfast Technologies,

UBI Techpark, Singapore.

ABSTRACT

In this study, a new algorithm for the traditional pattern

matching problem has been proposed. This algorithm is a

modified version of KMP algorithm and using bitwise XOR

operation to process two characters (or bytes) in parallel, to

speed up the pattern matching process. An additional loop to

avoid the undesirable comparison(s) also been introduced and

let the algorithm to initiate, and continue only the essential

comparisons from the required location. As the new algorithm

uses the principle of Finite automata which is used by KMP

algorithm and Bitwise XOR operation to speed up the

character match, it shows some reasonable performance

improvement. Also this new algorithm is easy to implement as

it doesn't require any additional/complex data structure(s) and

suitable for DNA sequence search.

Keywords

KMP Algorithm, Pattern Matching. Exact Pattern Matching.

1. INTRODUCTION
A text string T of length n and a pattern string P of length m,

with a finite character set ∑ with size is equal to σ, pattern

matching problem is to find all the occurrences of the given

pattern string P in a text string T. There are many applications

of pattern matching problems exist in computer science

subject, namely text editor, web search engine, image

analysis, speech recognition, DNA sequence search in bio-

informatics, etc.

In general, pattern matching algorithms can be classified into

two categories:

(i) Exact pattern matching algorithm(s).

(ii) Approximate pattern matching algorithm(s).

As the name implies, exact pattern matching algorithm will

look for the same sequence of pattern string in the text string.

The Brute force algorithm, Knuth-Morris-Pratt Algorithm [3]

and Boyer-Moore algorithm [4] are the traditional exact

pattern matching algorithms.

Similarly there are many solutions are proposed for the

approximate pattern matching problems. For instance, Landau

and vishkin proposed two solutions [11] and [12], which are

using suffix tree and lowest common ancestor algorithm.

Also another algorithm proposed by Galil and Giancarlo [10]

is to find the pattern match with k (k ≤ m ≤ n) mismatches.

Automata also play an important role in string matching

algorithms. The idea behind automata based solution for

pattern search is, prepossess the pattern string before initiate

the actual search. So if the P is the sub word of T, compute the

shift location to skip the matched (sub word) characters

comparison and reinitiate the search from the unmatched

string index. Automata based solutions [6], [7], [8], [9] have

been applied on most of the algorithms to speed up the

performance of pattern search.

This article is organized as follows. In section 2, pattern

matching algorithms have been discussed, and followed by

section 2, in section 3; newly proposed solution has been

explained with the help of sample DNA sequence. Upon

explaining the proposed algorithm, Section 4 and 5 address

the experimental study and further customization respectively.

Eventually section 6 concludes with the advantages of

proposed algorithm and further enhancements.

2. RELATED WORK
The exact pattern matching algorithms are used in many

practical applications to solve simple as well as complex

problems. Also most of the pattern matching algorithm will

have two phases, namely pre-processing phase and searching

phases. Usually pre-processing phase will pre-process the

pattern string P in order to speed up the search and Search

phase will use the pre-processed data to locate the pattern

string P in text string T efficiently. The simple pattern

matching algorithm is Brute force algorithm which doesn’t

have the pre-processing phase but it checks all the positions in

the text string T (between 0 and n-m) to find whether an

occurrence of pattern string start with or not. If there is any

mismatch occurs during the pattern search, it shifts the pattern

by one position towards right and continues the search. So the

time complexity of this algorithm is O (mn).

Knuth-Morris-Pratt algorithm [3] performs the comparisons

from left to right order but it shifts the pattern very

intelligently than the brute force algorithm. This algorithm has

two phases, KMP algorithm’s Failure function (also it is

referred as KMPNext function) will pre-process the pattern to

find the prefixes of the pattern with in the pattern itself. i.e it

computes the size of largest prefix of pattern string P[0..j-1]

which is also the suffix of P[1..j-1] where j is the current

mismatch position of pattern string P. So this information will

be used in the search phase to shift the pattern elegantly when

mismatch occurs. This algorithm requires O (m) time

complexity during the pre-processing phase and searching

phase requires O (n) time complexity. Hence the overall time

complexity of this algorithm is O (n + m).

Boyer Moore[4] is another efficient algorithm when the size

of alphabets (σ) are large. This algorithm scans the pattern

characters from right to left and compare with the text string.

If there is any mismatch occurs, it uses two functions namely,

good-suffix shift and bad-character shift, to shift the current

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

25

window towards right. The tables required for these two

functions would be constructed during the pre-processing

phase and used in the searching phase. The worst case time

complexity of this algorithm is O (nm).

Karp-Rabin [5] algorithm uses hashing function for the

pattern match. Instead of checking each character in text

string T for the pattern match, it checks the contents of the

window (length must be equal to the given pattern string)

"looks like" the pattern string. This algorithm takes O(m) time

during the pre-processing and takes O(nm) in searching

phase.

The proposed algorithm uses the Bitwise XOR operation to

improve the performance of the pattern match process.

Initially bitwise techniques have been applied in Shift-Or [1]

algorithm. Though this algorithm is an efficient algorithm, it

can process the pattern only if the pattern length is no longer

than the memory-word size of the system. This algorithm does

take O(m + σ) time complexity during the pre-processing

phase and takes O(n) time complexity during the search

phase.

Navarro and Raffinot [14] used nondeterministic backwards

directed acyclic word graph in a bit-parallel approach and

proposed BNDM algorithm. As this algorithm uses the shift

mechanism in a negligent manner, the overall performance of

the algorithm is good.

Peltola and Tarhio [15], and Holub and Durian [13] simplified

the inner while loop of BNDM algorithm and improved its

initial performance. Eventually they proposed good

performance algorithms namely SBNDM and SBNDM2

respectively which are based on BNDM.

Pattern matching problems are further modified to support

DNA sequence search which are represented using encoded

two bits. For instance, Fed algorithm [19] combines a multi-

pattern version of the Quick-Search algorithm [20] and a

simplified version of the Commentz-Walter algorithm [17].

Simone and Tierry[18] proposed an efficient algorithm for

exact pattern matching in encoded DNA sequences and on

binary strings. This algorithm combines a multi-pattern

version of the Bndm algorithm [16] and a simplified version

of the Commentz-Walter algorithm [17].

3. PROPOSED SOLUTON
A new algorithm has been proposed which is based on the

popular Knuth-Morris-Pratt (KMP) pattern matching

algorithm [3]. The new algorithm initially read the text string

as well as pattern string from the file and initializes the in-

memory buffers T and P of text string and pattern string

respectively. These buffers can be accessed using its index as

well as base address (and offset). There are few important

changes have been made in this new algorithm, especially to

improve the performance:

(i) Bitwise XOR operation for comparing two

characters with single operational cost has been used in

this algorithm. The Shift-And [2] and Shift-Or [1]

pattern matching algorithms are already using bitwise

operations efficiently in order to improve the

performance. In this algorithm, bitwise XOR operation

has been used to perform the pattern match for two

bytes concurrently. i.e. Single ascii character needs 1

byte space memory and a buffer with size of a WORD

is sufficient to hold the binary values of two characters

(i.e. two bytes).

(ii) Added an additional loop to skip the undesirable

comparisons which is required to move the text string’s

index to the correct location on the right side, for the

subsequent comparison(s). Usually, the existing

algorithms start comparing each characters (or bytes)

which go through the complete main cycle though it

contains the mismatch characters in the beginning, but

the mismatched characters can be skipped until the first

letter’s match occurs. So an additional loop is essential,

as and when the algorithm re-initiates the Pattern search

from the starting character of pattern string (i.e. P’s

current index j = 0).

As the intention of this study is to propose the good solution

for pattern search on DNA sequence, KMP algorithm has

been chosen for the customization. Because, other algorithms

like Boyer-Moore [4], are well suitable only if the alphabets

size σ is huge and KMP performs well when the size of the

Alphabets are small. As the intention is to deal with only four

English letters ∑= {A, G, T, C}, using KMP algorithm

approach gives better result. Also this algorithm has been

intended to process two characters (or bytes) in single

operation, so it is essential to make sure that T and P have

minimum of two characters from the current string array

location. Thus a ‘0’ has been appended to text string T and

pattern string P. The figure 1 shows the sample text string T

and pattern string P, and the same being used to explain the

new algorithm.

Text T:

Pattern P:

Fig 1. Text string T and Pattern string P with ‘0’

 appended for the safe XOR operation.

The Exclusive OR (or XOR) operation on two bits result

single true value (1) if the opposite bits are not equal to each

other otherwise it results false value (0). The operator

has been used to refer the XOR operation on two bits.

Table 1. XOR Operation – Truth Table

Input Output

A B A B

0 0 0

0 1 1

1 0 1

1 1 0

G G T C A G G A G T C A G T C A A A G T 0

A G T C A 0

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

26

 The decimal and binary representation for the DNA

sequences, ∑= {A, G, T, C}, have been shown in the Table 2.

Table 2. Decimal and Binary representation of DNA

alphabets.

Character Decimal Binary

A 65 1000001

G 71 1000111

T 84 1010100

C 67 1000011

For instance, the result of XOR operation between “AA” and

“AG” are shown in the following Table 3.

Table 3. The result of XOR Operation on

“AA” and “AB”.

 Character Binary

S1 A A 1000001 1000001

S2 A G 1000001 1000111

 S1 S2 0000000 0000110

In short, the XOR operation gives ‘0’ result when text string

characters and pattern string characters are matched and return

non zero if both are non-identical. The actual binary

representation of given text string T and pattern string P

would look like Figure 2 in memory:

Fig 2. Binary representation of T and P in memory.

This algorithm starts with pre-processing the input pattern

string P and construct the table with length of m, with the

integer values of the longest prefix[0..j] which is also the

suffix of P[1..j-1], where j is the mismatched character

position in P.

Table 4. Failure Index table for the pattern string P.

The Table 4 shows the failure indexes of the pattern string P

and these values will be used when mismatch occurs. So, F is

an integer array of size m will have the prefix size for the safe

shift when mismatch occurs.

After the Failure Index table construction, algorithm will

initiate the pattern match and start with the first two bytes

from both the strings T and P respectively. The bitwise XOR

operation on the two consecutive bytes of T and P will let the

algorithm to make either one of the following decisions:

Case 1:
Result of xor operation is 0 indicate that both the characters

are matched. If the current pattern index is two byte away

from the pattern string length P, algorithm will conclude that

the pattern match found and starting index of pattern P in T

will be added into the output array (store the pattern match

locations) and current index of P will be set to 0 (i.e j = 0).

Otherwise current index of pattern will be incremented twice.

In either case, current index of T (i.e i) will be incremented

twice as the algorithm has successfully compared the two

consecutive bytes.

Case 2:
Result of xor operation is not 0 but the current (or first)

index’s character from T and P matched. This case indicate

that only the single character is matched and still the

algorithm needs to check the pattern match if the current

index of P is only one byte away from the length of pattern

string P. If so, the pattern match found and starting index of

pattern P in T will be added into the output array and current

index of P will be set to 0. Otherwise, index of P will be set to

the P’s index value of Failure Index array. Since only one

character match found, index of T gets incremented by 1.

Case 3:
Result of xor operation is not 0 and the current index

characters from T and P are not matched, and current index of

P > 0. When this case get satisfied, only index of P must be

updated as there could be valid character skips are possible.

So the j-1th index value of Failure Index array will be

assigned to j.

Case 4:
If none of the above cases (case 1, case 2 and case 3) are

matched, P’s current index j will be equals to 0. Hence only

T’s index i must be incremented only once as none of the two

consecutive characters are matched. Furthermore, the

algorithm skips the T’s current index to the next right location

where T’s current index byte and P’s first index byte must

match. This is the additional loop, will be executed until it

finds the first character of P in T from the current location or

last possible location to be searched.

The outer loop of this algorithm will continue until the last

character of T touched, if the pattern match found in the last

or it decides the remaining characters of T from the current

location doesn’t seem to be a pattern. The Pattern search using

the new algorithm has been explained as follows using an

example text and pattern strings T and P respectively:

j 0 1 2 3 4

P(j) A G T C A

F(j) 0 0 0 0 1

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

27

Step 1:
The algorithm starts with comparing first two consecutive

bytes (highlighted) of T with P, shown in the Figure 3 as

follows:

Fig 3. First step of algorithm compares two consecutive

bytes.

In this case, none of the bytes matched with each other and

P’s starting index is 0. So Case 4 will get executed and inner

loop will move T’s index on the right side where T [i] = P [0]

or i will be assigned with the length of T if the remaining

characters length in T is less than pattern length. After the

right move of ptrT, it will point the new location, shown in

Figure 4 as the pattern string exists on the right side.

Fig 4. Text string T’s current index moved to the correct

index on the right side.

Step 2:
As the text string index and pattern string index are pointing

the correct next match location on the respective strings, XOR

operation applied on the two consecutive highlighted bytes

shown in Figure 5.

Fig 5. XOR operation applied on current two consecutive

bytes between T and P.

Step 3:
As the result of previous XOR operation in Step 2 returns 0,

two pointers of T ad P are further incremented twice, shown

in Figure 6.

Fig 6. XOR operation on the subsequent bytes of previous

Step (2).

Step 4:
In Step3, XOR operation’s result is non-zero value and none

of the characters were matched. However current index of P is

greater than 0, hence case 3 gets executed. So only P’s index

get modified with the value of FailureIndex table value,

shown in Figure 7.

Fig 7. P’s index is reassigned to the starting location

After re-initializing the P’s index with starting location and

XOR operation on the current two consecutive bytes of P and

T still gives non-zero value and this time case 4 gets executed.

Because none of the characters are matched and current

starting index of P is zero. So, Case 4 will increment the index

of T until the T’s current iterating character matches P’s first

character. Eventually the inner loop will stop moving the

iterator soon after it reaches the matching character in T

which is shown in Figure 8.

Fig 8. Modified T’s Index to point the right side character

of T where P’s first character matches with T’s current

character.

Step 5:
In Step 4, two consecutive characters were matched and Case

1 increments the indexes of two strings by 2, and the new

comparison will start from the following index shown in

Figure 9.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

28

Fig 9. Incremented indexes of P and T by 2.

Step 6:
As the two bytes matched in the previous Step 5, again Case 1

will get executed and both the strings indexes were further

incremented by 2 and new pointer locations are shown in the

following Figure 10.

Fig 10. Latest two bytes of P are being compared with two

bytes of T.

Figure 10 clearly shows that combined XOR operation for

two bytes gives non-zero value. However first byte matches

and its XOR value is 0. So Case 2 will get executed where the

current P’s index is equal to the length of the pattern string.

Hence it reports the pattern match.

Algorithm

Input:

 (i) Text - given text string where the pattern string will

 be searched in.

 (ii) Pattern - given pattern string which will be searched in

 the text string.

Output:

(i) oArray[] – an output array has the indexes of pattern

found locations in text string. If the given pattern string

doesn’t exist in text string, first index of oArray will be

assigned with -1 (no match).

Precondition:

 (i) length of the pattern string must be ≤ length of the text

 string.

Let iTextLength be the length of the text string.

Let iPatternLength be the length of the pattern string.

Let wXORVal be the word type variable used to store the

result of XOR operation.

Let FI be an array of integers store the length of safest shift

when the mismatch occur.

Let FailureIndexes be the function which computes the size of

largest prefix of Pattern[0..j-1] which is also the suffix of

Pattern Pattern[1..j-1] where j is the current mismatch position

of pattern string.

i  j  0

oArray[0] = -1

Count = -1

 FI  Compute FailureIndexes(Pattern)

While (i < iTextLength) Begin

wXORVal  Text[i..i+1] Pattern[j..j+1]

 If (0 = wXORVal) Then

 If (j ≥ iPatternLength - 2) Then

 Count  Count + 1

 oArray[Count]  i - j + 1

 i  i – j + iPatternLength

 j  0

Else

 i  i + 2

 j  j + 2

End If
 Else If (0 = (wXORVal & 0x00FF)) Then

 If (j = iPatternLength -1) Then

 Count  Count + 1

 oArray[Count]  i – j + 1

 j  0

Else
 j  FI [j]

End If

i  i + 1

Else If (j > 0)

 j  FI[j - 1]

Else
 i  i + 1

 While(Text[i] != Pattern[0] &&

 (i + iPatternLength ≤ iTextLength))

 Begin
 i  i + 1

 End While

 If ((i + iPatternLength) > iTextLength) Then

 i  iTextLength

 End If

End IF

End While

In this algorithm, Text [i..i+1] refers two consecutive

characters from the current character (i.e. current and next

character). As this algorithm process two bytes

simultaneously, it reads two consecutive characters (or bytes)

from both text string as well as pattern string. Also the newly

introduced small inner loop’s iterations are not being counted

as it is used to just skip the non-matched characters and

doesn’t involve any complete cycle of comparisons (all the

four cases).

4. EXPERIMENTAL RESULT
The newly proposed algorithm is referred as “Enhanced

KMP” algorithm. The existing and newly proposed algorithms

are implemented in MS Visual C++ 2010 on Windows 7 (64

bit) Operating System. The Hardware configuration is:

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

29

Intel(R) Core(TM) i5 CPU 760@2.80 GHz processor and 6

GB RAM. Also the DNA sequences from National Center for

Biotechnology Information (NCBI) [21] have been used to

test the performance of the newly proposed algorithm.

Furthermore, this algorithm uses WORD type pointer to easily

iterate the text string T as well as pattern string P. This is

really essential to access two consecutive bytes in parallel and

apply XOR operation between two values.

Table 5. Running time of Pattern matching algorithms

(in milli-seconds).

Algorithm
Running Time

Experiment 1 Experiment 2 Experiment 3

Brute Force 0.008407 0.010056 0.009774

Boyer-Moore 0.004471 0.003356 0.004803

KMP 0.003013 0.003058 0.003148

Enhanced
KMP

0.002788 0.002211 0.001384

Running time comparison, Table 5 shows that newly proposed

Enhanced KMP algorithm’s performance is better than the

existing algorithms.

Table 6. Iterations required for Pattern Matching

algorithms.

Algorithm
Number of Iterations

Experiment 1 Experiment 2 Experiment 3

Brute Force 1644 1803 2994

Boyer-Moore 733 1009 1266

KMP 824 1221 1326

Enhanced KMP 529 546 850

As an additional loop has been introduced in the new

algorithm, it could reduce some outer loop’s iterations and

eventually newly proposed algorithms takes very few

iterations to process the pattern.

The basic KMP algorithm requires O (n+ m) time for the

pattern search process. As this algorithm compares two

characters simultaneously, it can reduce the effort by half in

the best case scenario. However it acts like KMP algorithm in

the worst case scenario, other than the time gaining due to the

bitwise comparison. So this algorithm also requires O (n + m)

time complexity.

5. FURTHER CUSTOMIZATION
In a fixed-length encoded DNA sequence, each base is

represented by a couple of bits [18]. So the DNA sequence

letters {A, G, T, and C} can be mapped to {00, 01, 10, and

11} in order to save the memory and improve the processing

speed.

In this algorithm, only two consecutive characters (or bytes)

have been processed simultaneously. As two bits are

sufficient to represent the DNA base, same bitwise XOR

operation can be used to compare multiple bases using single

operational cost. However, finding the first mismatched

binary location logic must be proposed if there is any

mismatch during the comparison, in order to improve this

algorithm further.

6. CONCLUSION
Since pattern matching algorithms are very essential in the

current scenario, an enhanced version of algorithm has been

proposed. The proposed algorithm is based on the existing

KMP algorithm and uses XOR operation to process two bytes

in parallel. Also it uses an additional loop to skip the

undesirable characters efficiently and takes only few iterations

to find the pattern in the given text string, and eventually it

gives better performance. Further research will address the

problem of searching pattern in an encoded DNA sequence

using XOR operation and new efficient solution for the first

non-matched encoded character from the XOR operation will

be proposed.

7. REFERENCES
[1] Baeza-Yates, R. A. and Gonnet, G. H. 1992. A new

approach to text searching. Communications of the ACM

35, 10, 74–82.

[2] Bálint Dömölki, An algorithm for syntactical analysis,

Computational Linguistics 3, Hungarian Academy of

Science pp. 29–46, 1964.

[3] Knuth, Donald; Morris, James H., jr; Pratt, Vaughan

(1977). "Fast pattern matching in strings". SIAM Journal

on Computing 6 (2): 323–350.

[4] Boyer, Robert S.; Moore, J Strother (October 1977). "A

Fast String Searching Algorithm.". Communications of

the ACM (New York, NY, USA: Association for

Computing Machinery) 20 (10): 762–772.

[5] Karp, R.M., Rabin, M.O., 1987, Efficient randomized

pattern-matching algorithms, IBM Journal on Research

Development 31(2):249-260.

[6] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and

R. McConnel: Linear size finite automata for the set of

all subwords of a word: an outline of results. Bull. Eur.

Assoc. Theor. Comput. Sci., 21 1983, pp. 12–20.

[7] M. Crochemore: Optimal factor tranducers, in

Combinatorial Algorithms on Words, A. Apostolico and

Z. Galil, eds., vol. 12 of NATO Advanced Science

Institutes, Series F, Springer-Verlag, Berlin, 1985, pp.

31–44.

[8] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.

T. Chen, and J. Seiferas: The smallest automaton

recognizing the subwords of a text. Theor. Comput. Sci.,

40(1) 1985, pp. 31–55.

[9] C. Allauzen, M. Crochemore, and M. Raffinot: Factor

oracle: a new structure for pattern matching, in

SOFSEM’99, J. Pavelka, G. Tel, and M. Bartosek, eds.,

LNCS 1725, Milovy, Czech Republic, 1999, Springer-

Verlag, Berlin, pp. 291–306.

https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F&ei=jqg8UaCUEc3JrAfJxoCQAw&usg=AFQjCNEtxijk1bbk_J3zghYe8TRBijQ4rw&sig2=88Y-0gc7U7WWG7TsFosnfA&bvm=bv.43287494,d.bmk
https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F&ei=jqg8UaCUEc3JrAfJxoCQAw&usg=AFQjCNEtxijk1bbk_J3zghYe8TRBijQ4rw&sig2=88Y-0gc7U7WWG7TsFosnfA&bvm=bv.43287494,d.bmk
http://en.wikipedia.org/wiki/Robert_S._Boyer
http://en.wikipedia.org/wiki/J_Strother_Moore
http://dl.acm.org/citation.cfm?doid=359842.359859
http://dl.acm.org/citation.cfm?doid=359842.359859

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.23, April 2013

30

[10] Galil, Z., and Giancarlo, R. Improved string matching

with k mismatches. SIGACT News 17 (1986), 52-54.

[11] Landau, G. M., and Vishkin, U. Fast string matching with

k differences. J. Comput. System Sci. 37 (1988), 63-78.

[12] Landau, G. M., and Vishkin, U. Fast parallel and serial

approximate string matching. Journal of Algorithms 10

(1989).

[13] J. Holub and B.Durian. Fast variants of bit parallel

approach to suffix automata. Unpublished Lecture,

University of Haifa, April 2005.

[14] G. Navarro and M. Raffinot. Fast and flexible string

matching by combining bit-parallelism and suffix

automata. ACM Journal of Experimental Algorithms,

5(4):1-36, 2000.

[15] H. Peltola and J. Tarhio. Alternative algorithms for bit-

parallel string matching. In LNCS 2857, Proceedings of

SPIRE'2003, pages 80-94, 2003.

[16] G. Navarro and M. Raffinot. A bit-parallel approach to

suffix automata: Fast extended string matching. In CPM,

volume 1448 of LNCS, pages 14–33. Springer-Verlag,

1998.

[17] B. Commentz-Walter. A string matching algorithm fast

on the average. In ICALP, volume 71 of LNCS, pages

118–132, 1979.

[18] Simone Faro, Thierry Lecroq: An Efficient Matching

Algorithm for Encoded DNA Sequences and Binary

Strings. CPM 2009: 106-115.

[19] J. W. Kim, E. Kim, and K. Park. Fast matching method

for DNA sequences. In Combinatorics, Algorithms,

Probabilistic and Experimental Methodologies, volume

4614 of LNCS, pages 271–281, 2007.

[20] D. M. Sunday. A very fast substring search algorithm.

Commun. ACM, 33(8):132–142, 1990.

[21] Human DNA Sequences downloaded from,

ftp://ftp.ncbi.nlm.nih.gov

AUTHOR’S PROFILE

K. P. Ambika is a Research Scholar in Manonmaniam

Sundaranar (MS) University, Tirunelveli, India. She has

completed her M.Sc degree from MS University, Tirunelveli

and M.Phil degree from Bharadhidasan University,

Tiruchirappalli, specialized in Biotechnology. Now she is

doing her Ph.D. in Biotechnology and working on the pattern

matching algorithms to predict various diseases from the

DNA sequence.

Dr. U. Ramesh is working as assistant Professor in Molecular

Biology Department, Madurai Kamaraj University, Madurai,

India. He earned his M.Sc (Environmental Biotechnology)

Ph.D (Zoology) from Manaonmanium Sundaranar University,

Tirunelveli, India. He has published many research papers in

various National and International Journals.

Dr. K. Saravanan is working as assistant Professor of

Zoology, Nehru Memorial College (Autonomous),

Puthanampatti-621 007, Tiruchirappalli (District), Tamilnadu,

India. He completed his M.Sc (Wildlife Biology) and Ph.D

(Zoology) at AVC College Mayiladuthruai, and he has also

completed M.Sc Bioinformatics at Annamalai University,

Chidambaram. He has published 25 scientific articles in

reputed journals in the various fields of biological sciences.

Dr. J. Hencil Peter completed his M.C.A. and Ph.D. degrees,

specialized in Computer Science, from St. Xavier's College

(affiliated to MS University) Palayamkottai, India. His area of

interest is clustering algorithms, cryptography and

Performance Tuning. He is currently working as R&D

Specialist in Playfast Technologies, Singapore and has

published research papers on clustering algorithms in various

National and International Journals.

