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ABSTRACT 

This paper presents a new method of controlling chaos in the 

nonlinear Van Der Pol oscillator with uncertainties. The 

proposed method is based on a nonlinear observer to estimate 

unmeasured velocity signal coupled to a control law. The 

observer ensures, firstly, an asymptotic convergence of the 

velocity estimation error. Then, the control law, which is 

based on the estimated variables, forces the output system to 

track a desired trajectory despite presence of uncertainties 

(external forces) on the system dynamics. Simulation results 

are provided to show the effectiveness of the proposed control 

strategy.  
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1. INTRODUCTION 
In the few last decades, controlling chaos has received a great 

interest [1-3]. In many applications, chaos has been viewed as 

an undesirable phenomenon which may damage such physical 

systems, especially in mechanical non linear devices such as 

coupled oscillators [4]. The first control strategy was 

suggested by Ott et al. [1] in order to stabilize the unstable 

periodic orbits. After then, different methods has been 

developed for controlling chaotic systems [5-7] and [8]. Zeng 

et al. [9] proposed an adaptive controller to control chaos in 

Lorenz System. In [10], Kotaro et al. developed a neural 

networks based control law for chaotic systems. However, 

many of these proposed methods supposed knowledge of the 

all state variables which can not be always measured due to 

noise that affect sensors. Consequently, the design of a state-

observer is needed to estimate the unmeasured velocity 

signals of such a system in order to construct the adequate 

control law. In literature, several types of observers have been 

proposed for chaotic systems [11-13]. In [14], the authors 

proposed an observer-based Backstepping control scheme to 

stabilize a class of chaotic systems. These approaches seem to 

give good results on controlling chaos, however, many of 

them fail for dynamical systems in presence of external forces 

(perturbing terms). In this paper, we propose a novel observer 

based control scheme to suppress chaos in forced Van Der Pol 

oscillator. The control strategy is based on a novel sliding 

mode observer to estimate the unmeasured velocity signal of 

the system. This observer is, then, coupled to a control law 

based on flatness of the system dynamics and which forces the 

output system to track a desired trajectory. The global 

tracking problem is, finally, solved despite the presence of 

perturbing external forces in the oscillator dynamics. The 

reminder of this paper is organized as follows. Section II 

displays the mathematical model of the Van Der Pol oscillator 

and underlines its chaotic behaviour. Section III is devoted to 

the development of the flatness based control law. In section 

IV, we present the observer design and the asymptotic 

convergence analysis. Section V illustrates the main results 

when applying our proposed method to stabilize the unstable 

periodic orbits of the chaotic Van Der Pol oscillator. Finally, 

some conclusions are included in Section VI.  

2. PROBLEM STATEMENT 
The dynamics of the system under consideration belongs to 

the class of the uncertain chaotic system described by the 

following equation: 

)()(),,( tutftxxfx e    (1) 

where x and x represent respectively the position and its ith 

derivatives of the oscillator. ),,( txxf   is an unknown 

nonlinear function, )(tf e
 is an unknown external perturbing 

term and u(t) is the control input to be determined. This class 

of systems includes a wide variety of chaotic oscillators which 

may present the coexistence of chaotic attractors. The 

mathematical model of the Van Der Pol oscillator is given by: 

)().cos(.).1( 2 tutwqxxxx     (2) 

where ,q  and w are nonzero constant parameters. Different 

works [5] have shown that for various values of these 

parameters, the forced Van der Pol oscillator may exhibit a 

wide variety of nonlinear behaviour, including chaos. Let us 

choose xxxx  21 , . Then, model (2) can be rewritten in 

the following state-representation  
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For the following parameters 5.2,6  q , and 3w , it 

was shown in [5] that the behavior of the Van der Pol 

oscillator is chaotic in the absence of control law as shown in 
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Figure 1, from which, we can see that the states of the system 

are always bounded inside the region 
1x ( 2,2)   and 

2x ( 5,5)  .  
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Figure 1. State trajectory of Van der Pol oscillator before 

control (strange attractor) 

 

In order to avoid fracture of the mechanical parts and some 

undesirable dynamical effects, it is recommended to induce 

regular dynamics in this class of systems. Thus, it is necessary 

to introduce a control action in the system dynamics. 

However, in practice, velocity sensors are always 

contaminated by noise due to operational or environmental 

conditions. It is therefore necessary to use a state-observer in 

order to estimate the system variables, from only position 

measurements, and then construct the control law.  

3. CONTROL LAW 

In this section, we will use the concept of flatness of the 

chaotic oscillator to construct the control law. So, we 

introduce, first, the following definition of flatness  

Definition1: The nonlinear system  

)u,x(fx   (4) 

where 
mn Ru,Rx  and f a nonlinear function is said to 

be flat system [15] if there exists a differentially output 

function )y,...,y(y m1  such that all system variables and 

state are parameterised in terms of y and a finite number of its  

time derivatives. y is called flat output of system (4).    

Proposition1:  

The nonlinear system (2) is a differentially flat system with 

respect to the flat output 1xy  .  

Proof  

Choosing 1xy  as a flat output and applying definition 1 to 

the system (2), we get 

1

2 1

2

x y

dy
x x y

dt

u y (y 1)y y q cos(wt)





  

     

(5) 

From (3), we have  

2

2 1 2 1

2

x (x 1).x x q cos(w.t) u(t)

(y 1).y y q.cos(w.t) u(t)

     

     
     (6) 

From (5), and using the expression of u, we have:  

2x y      (7) 

Consequently, from (5), (6), and (7), it is clearly seen that the 

system of variables and states are parameterised in terms of 

the flat output y and a finite number of its time derivatives.  

Now, the control law is based on the flatness of the system (2) 

and developed using Pole Placement Approach for Tracking.  

For the flat output system y, let us consider a given reference 

trajectory 
*y .  

Proposition 2.  

Let the set of real coefficients 21 k,k be chosen so that the 

polynomial 
01

2 ksks)s(P   is Hurwitz. Then, the 

controller  

e.kekvv 01

*       (8) 

globally exponentially asymptotically stabilizes the tracking 

error defined by 
*vye  where  *

2

* y
dt

d
v  .  

Proof: 

From (7), we demonstrate that there exist a diffeomorphism 

such that vy  . Then, the error tracking system is given by 

** vv)t(y)t(y)t(e     (9) 

Using (8), we have 

)t(e.k)t(ek)t(e 01     (10) 

From (10) and using suitable choice of 21 k,k , it is clearly 

seen that e(t) converges globally exponentially to zero.  
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4. DEVELOPMENT OF THE 

NONLINEAR OBSERVER   
The controller (8) is based on the knowledge of the velocity 

signals and the output system. However, from practical point 

of view, this is not always releasable and the velocity signals 

are always contaminated with noise. Then, it is necessary to 

use a state-observer to estimate the unmeasured velocities. In 

this section we will develop a novel observer based on the 

sliding mode technique. To this end, let 

2

21 )t(x̂),t(x̂  denote the estimated position and 

velocity of system (2), and the estimation errors 
2

11 )t(e),t(e   be defined, respectively, by 

,xx̂e 111              (11) 

111 xx̂e             (12) 

Let the signal )t(r be the sliding surface defined as 

)t(e)t(e.)t(r 11
          (13) 

where  is a positive scalar to be chosen, under assumption 

1,  so that 0t)),t(esgn())t(rsgn( 1  , where sgn(.) is 

the standard signum function.  

Assumption1. The initial conditions of the state vector of the 

system (2) 
T

0

T

0

T )]t(q)t(q[  and the control force u(t) 

are chosen so that the position and the velocity vector are 

bounded functions of time. 

By this assumption, the scalar   can be chosen such that 

1

2




  where 21,  are two positive constants 21,  

given by 
11e 


 and 

21e 


 .   

After an appropriate choice of the scalar , we can guarantee 

that 0t)),t(esgn())t(rsgn( 1  . 

In this section, the following assumption is required for our 

analysis. 

Assumption2. The term representing uncertainties 

)t.wcos(q)t(fe   is bounded by a positive constant  .  

Our objective is to ensure an asymptotic convergence of  

)t(e1 and )t(e1
  to zero as t . By assuming that he 

position x is the only variable system available for 

measurements, we propose the following dynamic observer 

for the estimation of the velocity signal of system (2)  


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 (14) 

where  321 ,, are the positive observer gains  to be 

given by theorem 1 as following   

 
1

2 1

3

18

( 18) 1

 

     

  

  (15) 

Proof: 

The proof of convergence of the observer (14) to the real 

system (2) is demonstrated in our work given in [16] and 

reported here. To demonstrate the asymptotically convergence 

of the estimation error dynamics to zero, we define, first, a 

definite positive Lyapunov function V(t). The proposed 

function is given by  

1

T

1

T e.e
2

1
r.r

2

1
V           (16) 

The objective is to find sufficient conditions 

on 321 ,,  so that the time derivative of V is negative 

definite which make the Lyapunov function continually 

decreasing. The time derivate of (16) gives  

1

T

111

T

1

T

1

T e.e)ee..(re.er.rV      (17) 

The second derivative of the output error )t(e1 leads to  

1122111 e).(xx̂xx̂e          (18) 

Let 222 xx̂e  be the velocity error of the oscillator. 

So, using (3) and (14), equation (18) can be rewritten as  

2

1 1 2

2 1 3 1 1 1

e (x 1)e q cos(wt)

e sgn(e ) ( )e

   

    
     (19) 

When replacing (19) into (17), we get 



T 2

1 2

T

2 1 3 1 1 1 1 1

V r (x 1)e q cos(wt)

e sgn(e ) e e .e

    

   
(20) 

Or, from (12), and (14), we have 
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1112 e)(ee      (21) 

and from (13), we have 

11 ere       (22) 

Using (21) and (22), the system (20) can be rewritten as  

T 2 T

1 1

2 T T T T

1 1 1 1 1 1 2 1

T T T

3 1 1 1

V r (x 1)r r r

(x 1)r e r e e r r e

r q cos(wt) r sgn(e ) e e

     

     

  
      (23) 

Using assumption 1, we have shown that a suitable choice of 

the scalar   gives 0t)),t(esgn())t(rsgn( 1  . 

So, using this property, the time derivate of the Lyapunov 

function leads, finally, to 

T 2 T

1 1

2 T T T T

1 1 1 1 1 1 2 1

T T T

3 1 1

V r (x 1)r r r

(x 1)r e r e e r r e

r q cos(wt) r sgn(r) e e

     

     

  

 

       (24) 

The system parameters were taken as 5.2,6  q , and 

3w . Besides, figure shows that, for these parameters, the 

system state 
1x  is always bounded inside the region 

1x ( 2,2)  . Then, the term 
2

1(x 1)  of equation (24) 

can be bounded by a positive constant equal to 18. Now, 

under assumption 1 and 2, and using the propriety 

xxsignx )(. , we can upper bound the right-hand side of 

(24) as follows:  

 

 

 

2

1

1 2 1

2

3 1

V r . 18

r . e . ( 18) 1

r . . e

   

        

   

  (25) 

From equation (25), we can clearly seen that if the following 

conditions are satisfied  

 
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2 1

3

18

( 18) 1

 

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  (26) 

 

then, we can easily obtain a negative semi definite function in 

a neighbourhood of the sliding surface defined by 

0ee 11    (i.e. in a neighbourhood of 0e2  ). By 

Lasalle Theorem, we can guarantee an attractive and invariant 

sliding surface: the global asymptotic velocity observation is 

then guaranteed.     

So, under conditions of system (26), V(t) is a positive-definite 

Lyapunov function whose time derivative )t(V  is negative 

definite. Now, the main result of this note is given in 

theorem1.   

Theorem1. Provided the conditions of system (26), and under 

assumptions 1 and 2, the observer (14) ensures a finite time 

global asymptotically convergence of estimated states to real 

states of the chaotic oscillator given by system (2), i.e. 

),()ˆ,ˆ( 2121 xxxx  in finite time. 

5. SIMULATION RESULTS 
For simulation results, the parameters q, and w are chosen 

as 5.2,6  q , and 3w . For these parameters, it was 

shown that the behaviour of the Van der Pol oscillator is 

chaotic in the absence of control as shown in Figure 1. Under 

theorem 1, the proposed observer gains are chosen as 

1 18  , 
2 32160, 3, 100      .  Gains 1k  and 

2k  are chosen to be equal to 10 and 15 respectively. The 

control objective is to drive the output system (2) to the 

desired trajectory chosen as )tsin(y*  . Simulations results 

given by figures 2, 3 4, and 5 show the efficiency of the 

proposed method using flatness based control law coupled to 

the sliding mode observer (14). In fact, we can see, firstly, 

that the observer provides, for system (2), a good estimation 

of the velocity signal as shown in figure 2. The finite time 

convergence of the velocity observation error is then 

guaranteed. Secondly, when applying the control law based on 

the concept of flatness and the estimated variables, we can 

show that the system (2) exhibits the behaviour of limit cycle 

(stable periodic orbits) as shown in figure 3. Finally, it is 

clearly seen, from figures 4 and 5, that the controller given by 

(6) forces the system to track the desired trajectory in a finite 

time despite existence of perturbing terms. Figure 4 displays 

the finite time convergence of the tracking position and 

velocity errors to zero. In figure 5, are shown both the output 

system and the desired trajectory.   
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Figure 2 . Velocity estimation error of Van der Pol 

oscillator 
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Figure 3. State trajectory of Van der Pol oscillator after 

control (limit cycle) 
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Figure 4. Tracking errors of Van der Pol oscillator: 

*

1x̂ y and 
*

2x̂ y   
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Figure 5. Output system and desired trajectory. 

6. CONCLUSIONS 

 
An observer based control law has been proposed, in this 

paper, to suppress (control) chaos in the forced Van Der Pol 

oscillator dynamics. The control scheme has been designed by 

coupling a novel sliding mode observer with a control law 

using the property of flatness of the system. The proposed 

method has shown excellent results. Firstly, it was 

demonstrated through simulations that our proposed approach 

provides a finite time estimation of the unmeasured velocity 

signal. Secondly, it has been shown that, when applying our 

control law, the system output tracks the desired trajectory 

and the oscillator exhibits the behaviour of stable periodic 

orbits despite presence of perturbations on the system 

dynamics. Further works will be done on suppression chaos in 

switching chaotic systems.  
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