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ABSTRACT
We study a batch arrival queueing system with service interrup-
tion and Extended server vacation based on Bernoulli schedule. A
single server provides essential service to all arriving customers
with service time following general distribution. After every ser-
vice completion the server has the option to leave for phase one
vacation of random length with probability p or to continue stay-
ing in the system with probability 1-p. The new assumption in this
paper is that the server go on extended vacation, as soon as the
completion of phase one vacation, the server undergoes phase two
and phase three vacation. On completion of three heterogeneous
phase of vacation the server return back to the system. The va-
cation times are assumed to be general. The server is interrupted
at random and the duration of attending interruption follows ex-
ponential distribution. Also we assume, the customer whose ser-
vice is interrupted goes back to the head of the queue where
the arrivals are Poisson. Using supplementary variable technique,
the Laplace transforms of time dependent probabilities of system
state are derived. From this we deduce the steady state results.
We also obtain the average queue size and average waiting time.
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1. INTRODUCTION
Vacation queues have been investigated for over two decades

as a very useful tool for modeling and analyzing computer sys-
tems, communication networks, manufacturing and production
systems and many others.

Queuing systems with server vacations and/or random sys-
tem breakdowns have been studied by numerous researchers in-
cluding the survey of Doshi [5], Kulkarni and Choi [6], Takagi
[9], Takine and Sengupta [10], Wang et al. [15], Madan et al.
[7], Tian and Zhang [13], Maraghi et al. [8] and Thangaraj and
Vanitha [11]. However, in these models, the server stops the orig-
inal work in the vacation period and can not come back to the
regular busy period until the vacation period ends.

In queueing theory periods of temporary service unavailability
are referred to as server vacations, server interruptions or server
breakdowns. Queueing models with service interruptions have

proved to be a useful abstraction in situations where a service fa-
cility is shared by multiple queues or where the facility is subject
to failure.

White and Christie [16] have studied queues with service inter-
ruptions. They consider an M/M/1 queueing system with expo-
nentially distributed interruptions. Generally distributed service
times and interruptions are considered by Avi-Itzhak and Naor
[1], Thiruvengadam [12], Baskar et al. [2], Balamani [3]. Vaca-
tion queues with c servers have been studied by Tian et al. [14].
Borthakur and Choudhury [4] have studied vacation queues with
batch arrivals. We assume that the customers arrive to the ser-
vice station in batches of variable size, but are served one by
one. We assume that the service times, vacation times, have a
general distribution while the time to interruptions is exponen-
tially distributed.

Most of the recent studies have been devoted to batch arrival
vacation models under different vacation policies because of its
interdisciplinary character. In this paper, we consider a batch ar-
rival queueing system M [X]/G/1 with service interruption, in
which we assume that after every service completion, the server
has the option to leave for a vacation of random length with prob-
ability p or to continue staying in the system with probability 1-p.
The vacation period has three heterogeneous phases. On comple-
tion of three vacation phases the server return back to the system.
Also we assume, the customer whose service is interrupted goes
back to the head of the queue where the arrivals are Poisson.

This paper is organized as follows. The mathematical descrip-
tion of our model is given in section 2. Definitions and Equations
governing the system are given in section 3. The time depen-
dent solution have been obtained in section 4 and corresponding
steady state results have been derived explicitly in section 5. Av-
erage queue size and average waiting time are computed in sec-
tion 6 and 7 respectively. Particular case is discussed in section
8. Conclusion are given in section 9.

2. MATHEMATICAL DESCRIPTION OF THE
MODEL

We assume the following to describe the queueing model of our
study.

a) Customers arrive at the system in batches of variable size in
a compound Poisson process and they are provided one by one
service on a first come - first served basis. Let λcidt (i = 1, 2, . .
.) be the first order probability that a batch of i customers arrives
at the system during a short interval of time (t, t + dt], where
0 ≤ ci ≤ 1 and

∑∞
i=1

ci = 1 and λ > 0 is the arrival rate of
batches.
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b) A single server provides service to all arriving customer, with
the service time having general distribution. Let B(v) and b(v)
be the distribution and the density function of the service time
respectively.

c) we assume interruptions arrive at random while serving the
customers and assumed to occur according to a Poisson process
with mean rate α > 0. Let β be the server rate of attending inter-
ruption. Further we assume that once the interruption arrives the
customer whose service is interrupted comes back to the head of
the queue. Let µ(x)dx be the conditional probability of comple-
tion of the service during the interval (x, x + dx] given that the
elapsed time is x, so that

µ(x) =
b(x)

1−B(x)
,

and therefore,

b(s) = µ(s)e
−
∫ s

0
µ(x)dx

,

d) As soon as the service is over, the server may take a vacation
with probability p or may continue staying in the system with
probability 1-p. After phase one vacation completion the server
undergoes phase two and phase three vacation. On completion
three heterogeneous phase of vacation the server return back to
the system.

e) The server’s vacation time follows a general (arbitrary) dis-
tribution with distribution function Vi(t) and density function
vi(t). Let γi(x)dx be the conditional probability of a comple-
tion of a vacation during the interval (x, x + dx] given that the
elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2, 3

and therefore,

vi(t) = γi(t)e
−
∫ t

0
γi(x)dxi = 1, 2, 3.

f) On returning from vacation the server instantly starts serving
the customer at the head of the queue if any.

g) Various stochastic processes involved in the system are as-
sumed to be independent of each other.

3. DEFINITIONS AND EQUATIONS
GOVERNING THE SYSTEM

We define
Pn(x, t) = Probability that at time t, the server is active
providing essential service and there are n (n ≥ 0) cus-
tomers in the queue excluding the one being served and the
elapsed service time for this customer is x. Consequently
Pn(t) =

∫ ∞
0
Pn(x, t)dx denotes the probability that at time t

there are n customers in the queue excluding one customer in
the essential service irrespective of the value of x.

V
(i)
n (x, t) = Probability that at time t, the server is un-

der vacation with elapsed vacation time x and there are n

(n ≥ 0) customers in the queue. Consequently V
(i)
n (t)=∫ ∞

0
V

(i)
n (x, t)dx denotes the probability that at time t there

are n customers in the queue and the server is under vacation
irrespective of the x for i = 1, 2, 3.
Rn(t)= Probability that at time t, the server is inactive due to
the arrival of interruption.
Q(t) = Probability that at time t, there are no customers in the
queue or in service and the server is idle but available in the
system.
According to the mathematical model mentioned above, the

system has the following set of differential-difference equations

∂

∂x
P0(x, t) +

∂

∂t
P0(x, t) + [λ+ α+ µ(x)]P0(x, t) = 0 (1)

∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + [λ+ α+ µ(x)]Pn(x, t) =

λ

n∑
k=1

ckPn−k(x, t), n ≥ 1 (2)

∂

∂x
V

(1)
0 (x, t)+

∂

∂t
V

(1)
0 (x, t)+[λ+γ1(x)]V

(1)
0 (x, t) = 0 (3)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V (1)

n (x, t) =

λ

n∑
k=1

ckV
(1)
n−k(x, t), n ≥ 1 (4)

∂

∂x
V

(2)
0 (x, t)+

∂

∂t
V

(2)
0 (x, t)+[λ+γ2(x)]V

(2)
0 (x, t) = 0 (5)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V (2)

n (x, t) =

λ

n∑
k=1

ckV
(2)
n−k(x, t), n ≥ 1 (6)

∂

∂x
V

(3)
0 (x, t)+

∂

∂t
V

(3)
0 (x, t)+[λ+γ3(x)]V

(3)
0 (x, t) = 0 (7)

∂

∂x
V (3)
n (x, t) +

∂

∂t
V (3)
n (x, t) + [λ+ γ3(x)]V (3)

n (x, t) =

λ

n∑
k=1

ckV
(3)
n−k(x, t), n ≥ 1 (8)

d

dt
R0(t) = −(λ+ β)R0(t) (9)

d

dt
Rn(t) = −(λ+ β)Rn(t) + λ

n∑
k=1

ckRn−k(t)

+ α

∫ ∞

0

Pn−1(x, t)dx (10)

d

dt
Q(t) = −λQ(t) + βR0(t) +

∫ ∞

0

γ3(x)V
(3)
0 (x, t)dx

+ (1− p)
∫ ∞

0

µ(x)P0(x, t)dx (11)

Equations are to be solved subject to the following boundary
conditions:

Pn(0, t) = λcn+1Q(t) + (1− p)
∫ ∞

0

µ(x)Pn+1(x, t)dx

+ βRn+1(t) +

∫ ∞

0

γ3(x)V
(3)
n+1(x, t)dx, n ≥ 0 (12)

V (1)
n (0, t) = p

∫ ∞

0

µ(x)Pn(x, t)dx, n ≥ 0 (13)

V (2)
n (0, t) =

∫ ∞

0

γ1(x)V̄ (1)
n (x, t)dx, n ≥ 0 (14)
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V (3)
n (0, t) =

∫ ∞

0

γ2(x)V̄ (2)
n (x, t)dx, n ≥ 0 (15)

we assume that initially there are no customers in the system and
the server is idle. So the initial conditions are

V
(i)
0 (0) = V (i)

n (0) = 0, Q(0) = 1, Rn(0) = 0

Pn(0) = 0 for n ≥ 0, and i = 1, 2, 3. (16)

4. GENERATING FUNCTIONS OF THE QUEUE
LENGTH: THE TIME-DEPENDENT
SOLUTION

In this section we obtain the transient solution for the above set
of dfferential-difference equations.
Theorem 4.1 The system of differential difference equations to
describe anM [X]/G/1 queue with essential service with service
interruption and three phases of vacation are given by equations
(1) to (15) with initial conditions (16) and the generating func-
tions of transient solution are given by equation (71) to (75).
Proof :We define the probability generating functions ,

P (x, z, t) =

∞∑
n=0

znPn(x, t), P (z, t) =

∞∑
n=0

znPn(t);

R(z, t) =

∞∑
n=0

znRn(t); C(z) =

∞∑
n=1

cnz
n (17)

V (i)(x, z, t) =

∞∑
n=0

znV (i)
n (x, t), V (i)(z, t) =

∞∑
n=0

znV (i)
n (t),

for i = 1, 2, 3. (18)

which are convergent inside the circle given by z ≤ 1 and define
the Laplace transform of a function f(t) as

f̄(s) =

∫ ∞

0

e−stf(t)dt, <(s) > 0. (19)

We take the Laplace transform of equations (1) to (15) and using
(16), we obtain

∂

∂x
P̄0(x, s) + (s+ λ+ α+ µ(x))P̄0(x, s) = 0 (20)

∂

∂x
P̄n(x, s) + (s+ λ+ α+ µ(x))P̄n(x, s) =

λ

n∑
k=1

ckP̄n−k(x, s), n ≥ 1 (21)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λ+ γ1(x))V̄

(1)
0 (x, s) = 0 (22)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ γ1(x))V̄ (1)

n (x, s) =

λ

n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (23)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λ+ γ2(x))V̄

(2)
0 (x, s) = 0 (24)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ γ2(x))V̄ (2)

n (x, s) =

λ

n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (25)

∂

∂x
V̄

(3)
0 (x, s) + (s+ λ+ γ3(x))V̄

(3)
0 (x, s) = 0 (26)

∂

∂x
V̄ (3)
n (x, s) + (s+ λ+ γ3(x))V̄ (3)

n (x, s) =

λ

n∑
k=1

ckV̄
(3)
n−k(x, s), n ≥ 1 (27)

(s+ λ+ β)R̄0(s) = 0 (28)

(s+ λ+ β)R̄n(s) = λ

n∑
k=1

ckR̄n−k(s)

+ α

∫ ∞

0

P̄n−1(x, s)dx, n ≥ 1 (29)

(s+ λ)Q̄(s) = 1 + βR̄0(s) +

∫ ∞

0

γ3(x)V̄
(3)
0 (x, s)dx

+ (1− p)
∫ ∞

0

µ(x)P̄0(x, s)dx (30)

P̄n(0, s) = λcn+1Q̄(s) + βR̄n+1(s) + (1− p)∫ ∞

0

µ(x)P̄n+1(x, s)dx+

∫ ∞

0

γ3(x)V̄
(3)
n+1(x, s)dx (31)

V̄ (1)
n (0, s) = p

∫ ∞

0

P̄n(x, s)µ(x)dx, n ≥ 0 (32)

V̄ (2)
n (0, s) =

∫ ∞

0

V̄ (1)
n (x, s)γ1(x)dx, n ≥ 0 (33)

V̄ (3)
n (0, s) =

∫ ∞

0

V̄ (2)
n (x, s)γ2(x)dx, n ≥ 0. (34)

Now multiplying equations (21), (23), (25), (27) by zn and sum-
ming over n from 1 to ∞, adding to equations (20), (22), (24),
(26) and using the generating functions defined in equations (17)
and (18) we get

∂

∂x
P̄n(x, z, s)+[s+λ−λC(z)+α+µ(x)]P̄ (x, z, s) = 0 (35)

∂

∂x
V̄ (1)
n (x, z, s) + [s+ λ− λC(z) + γ1(x)]V̄ (1)(x, z, s) = 0

(36)

∂

∂x
V̄ (2)
n (x, z, s) + [s+ λ− λC(z) + γ2(x)]V̄ (2)(x, z, s) = 0

(37)

∂

∂x
V̄ (3)
n (x, z, s) + [s+ λ− λC(z) + γ3(x)]V̄ (3)(x, z, s) = 0

(38)

(s+ λ− λC(z) + β)R̄(z, s) = αz

∫ ∞

0

P̄ (x, z, s)dx (39)

For the boundary conditions, we multiply both sides of equation
(31) by zn sum over n from 0 to∞, and use the equations (17)
and (18) to get

zP̄ (0, z, s) = λC(z)Q̄(s) + βR̄(z, s)− βR̄0(s)

+(1−p)
∫ ∞

0

µ(x)P̄ (x, z, s)dx− (1−p)
∫ ∞

0

µ(x)P̄0(x, s)dx
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+

∫ ∞

0

γ3(x)V̄ (3)(x, z, s)dx−
∫ ∞

0

γ3(x)V̄0(x, s)dx (40)

Using equation (30), equation (40) becomes

zP̄ (0, z, s) = [1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s)

+

∫ ∞

0

γ3(x)V̄ (3)(x, z, s)dx+ (1− p)
∫ ∞

0

µ(x)P̄ (x, z, s)dx.

(41)
Performing similar operation on equations (32) to (34), we get

V̄ (1)(0, z, s) = p

∫ ∞

0

µ(x)P̄ (x, z, s)dx (42)

V̄ (2)(0, z, s) =

∫ ∞

0

γ1(x)V̄ (1)(x, z, s)dx (43)

V̄ (3)(0, z, s) =

∫ ∞

0

γ2(x)V̄ (2)(x, z, s)dx (44)

Integrating equation (35) between 0 to x, we get

P̄ (x, z, s) = P̄ (0, z, s)e
−[s+λ−λC(z))+α]x−

∫ x

0
µ(t)dt (45)

where P̄ (0, z, s) is given by equation (41). Again integrating
equation (45) by parts with respect to x yields,

P̄ (z, s) = P̄ (0, z, s)

[
1− B̄(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(46)

where

B̄(s+λ−λC(z) +α) =

∫ ∞

0

e−[s+λ−λC(z)+α]xdB(x) (47)

is the Laplace-Stieltjes transform of the essential service time
B(x). Now multiplying both sides of equation (45) by µ(x) and
integrating over x we obtain∫ ∞

0

P̄ (x, z, s)µ(x)dx = P̄ (0, z, s)B̄[s+λ−λC(z)+α] (48)

Similarly, on integrating equations (36) to (38) from 0 to x, we
get

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

∫ x

0
γ1(t)dt (49)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

∫ x

0
γ2(t)dt (50)

V̄ (3)(x, z, s) = V̄ (3)(0, z, s)e
−[s+λ−λC(z)]x−

∫ x

0
γ3(t)dt (51)

where V̄ (1)(0, z, s), V̄ (2)(0, z, s), and V̄ (3)(0, z, s) are given
by equations (42) to (44). Again integrating equations (49) to
(51) by parts with respect to x yields,

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(52)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(53)

V̄ (3)(z, s) = V̄ (3)(0, z, s)

[
1− V̄3(s+ λ− λC(z))

s+ λ− λC(z)

]
(54)

where

V̄1(s+ λ− λC(z)) =

∫ ∞

0

e−[s+λ−λC(z)]xdV1(x) (55)

V̄2(s+ λ− λC(z)) =

∫ ∞

0

e−[s+λ−λC(z)]xdV2(x) (56)

V̄3(s+ λ− λC(z)) =

∫ ∞

0

e−[s+λ−λC(z)]xdV3(x) (57)

is the Laplace-Stieltjes transform of the first phase, second phase
and third phase of vacation time V1(x), V2(x) and V3(x) respec-
tively. Now multiplying both sides of equations (49), (50), (51)
by γ1(x), γ2(x) and γ3(x) and integrating over x we obtain∫ ∞

0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λ− λC(z)]

(58)∫ ∞

0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λ− λC(z)]

(59)∫ ∞

0

V̄ (3)(x, z, s)γ3(x)dx = V̄ (3)(0, z, s)V̄3[s+ λ− λC(z)]

(60)
Using equation (48) in equation (42), we get

V̄ (1)(0, z, s) = pB̄(s+ λ− λC(z) + α)P̄ (0, z, s) (61)

Now using equations (58) and (61) in (43), we get

V̄ (2)(0, z, s) = pV̄1(s+ λ− λC(z))

B̄(s+ λ− λC(z) + α)P̄ (0, z, s) (62)

By using equations (59) and (62) in (44), we get

V̄ (3)(0, z, s) = pV̄1(s+ λ− λC(z))V̄2(s+ λ− λC(z))

B̄(s+ λ− λC(z) + α)P̄ (0, z, s) (63)

Using equation (48), (60) and (63) in (41), we get

[z − pV̄1V̄2V̄3B̄ − (1− p)B̄]P̄ (0, z, s) = [1− sQ̄(s)]

+ λ(C(z)− 1)Q̄(s) + βR̄(z, s) (64)

From (39) and (45), we get

R̄(z, s) =
αz

s+ λ− λC(z) + β
P̄ (0, z, s)[

1− B̄(s+ λ− λC(z) + α

s+ λ− λC(z) + α

]
(65)

where B̄ = B̄(λ − λC(z) + α) , V̄1 = V̄1(λ − λC(z)),
V̄2 = V̄2(λ− λC(z)) and V̄3 = V̄3(λ− λC(z)).
Now using equation (65) in (64), we have

P̄ (0, z, s) =
f1(z)f2(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

dr
(66)

Similarly using equation (66), in equations (61), (62) and (63),
we get

V̄ (1)(0, z, s) =
pB̄f1(z)f2(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

dr
(67)

V̄ (2)(0, z, s) =
pV̄1B̄f1(z)f2(z)

dr

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (68)

V̄ (3)(0, z, s) =
pV̄1V̄2B̄f1(z)f2(z)

dr

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (69)

where

dr = f1(z)f2(z)[z − pV̄1V̄2V̄3B̄ − (1− p)B̄]− αzβ(1− B̄),
(70)
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f1(z) = s+ λ− λC(z) + β, and f2(z) = s+ λ− λC(z) +α.

Using equations (66) to (69) in equations (46), (52), (53), (54)
and (65), we get

P̄ (z, s) =
f1(z))[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)][1− B̄]

dr
(71)

V̄ (1)(z, s) =
[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

dr

pB̄f1(z))f2(z)

[
1− V1(s+ λ− λC(z))

s+ λ− λC(z)

]
(72)

V̄ (2)(z, s) =
[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

dr

pB̄V̄1f1(z)f2(z)

[
1− V2(s+ λ− λC(z))

s+ λ− λC(z)

]
(73)

V̄ (3)(z, s) =
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

dr

pB̄V̄1V̄2f1(z)f2(z)

[
1− V3(s+ λ− λC(z))

s+ λ− λC(z)

]
(74)

R̄(z, s) =
αz(1− B̄)[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

dr
(75)

where dr is given by equation (70). Thus
P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s) and R̄(z, s)
are completely determined from equations (71) to (75) which
completes the proof of the theorem.

5. THE STEADY STATE RESULTS
In this section, we shall derive the steady state probability distri-
bution for our queueing model. These probabilities are obtained
by suppressing the argument t wherever it appears in the time-
dependent analysis. This can be obtained by applying the well-
known Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t) (76)

In order to determine P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s)
and R̄(z, s) completely, we have yet to determine the unknown
Q which appears in the numerators of the right hand sides
of equations (71) to (75). For that purpose, we shall use the
normalizing condition

P (1) + V (1)(1) + V (2)(1) + V (3)(1) +R(1) +Q = 1 (77)

Theorem 5.1 The steady state probabilities for an M [X]/G/1
queue with service interruption and three phases vacation are
given by

P (1) =
λE(I)β[1− B̄(α)]Q

DR
(78)

V (1)(1) =
λpαβE(I)B̄(α)E(V1)Q

DR
(79)

V (2)(1) =
λpαβE(I)B̄(α)E(V2)Q

DR
(80)

V (3)(1) =
λpαβE(I)B̄(α)E(V3)Q

DR
(81)

R(1) =
λαE(I)[1− B̄(α)]Q

DR
(82)

where

DR = αβB̄(α)[1−λE(I)pE(V )]−λE(I)(α+β)[1−B̄(α)],
(83)

E(V)=E(V1)+E(V2)+E(V3), P (1), V (1)(1), V (2)(1), V (3)(1),
R(1) and Q are the steady state probabilities that the server
is providing essential service, first phase of vacation, second
phase of vacation, third phase of vacation and server under idle
respectively without regard to the number of customers in the
queue.
Proof: Multiplying both sides of equations (71) to (75) by
s, taking limit as s → 0, applying Tauberian property and
simplifying, we obtain

P (z) =
f3(z)(1− B̄)λ(C(z)− 1)Q

dr
(84)

V (1)(z) =
pf3(z)f4(z)B̄[V̄1 − 1]Q

dr
(85)

V (2)(z) =
pf3(z)f4(z)V̄1B̄[V̄2 − 1]Q

dr
(86)

V (3)(z) =
pf3(z)f4(z)V̄1V̄2B̄[V̄3 − 1]Q

dr
(87)

R(z) =
αz(1− B̄)λ(C(z)− 1)Q

dr
(88)

where dr is given by equation (70), f3(z) = λ − λC(z) +
β, f4(z) = λ− λC(z) + α,

Let Wq(z) denote the probability generating function of the
queue size irrespective of the state of the system. Then adding
equations (84) to (88)we obtain

Wq(z) = P (1)(z) + P (2)(z) + P (3)(z) + V (1)(z) + V (2)(z)

Wq(z) =
f3(z)(1− B̄)λ(C(z)− 1)Q

dr

+
pf3(z)f4(z)B̄[V̄1 − 1]Q

dr

+
pf3(z)f4(z)V̄1B̄[V̄2 − 1]Q

dr

+
pf3(z)f4(z)V̄1V̄2B̄[V̄3 − 1]Q

dr

+
αz(1− B̄)λ(C(z)− 1)Q

dr
(89)

We see that for z=1, Wq(1) is indeterminate of the form 0/0.
Therefore, we apply L’Hopital’s rule and on simplifying we ob-
tain the result (89), where C(1)= 1,C ′(1) = E(I) is mean batch
size of the arriving customers, −B̄′(0) = E(B), − V̄ ′i (0) =
E(Vi), i = 1, 2, 3.

Wq(1) =
λE(I)(α+ β)[1− B̄(α)] + λE(I)pαβB̄(α)E(V )Q

DR
(90)

and DR is given by equation (83). Therefore adding Q to equa-
tion (90), equating to 1 and simplifying, we get

Q = 1− ρ (91)

and hence the utilization factor ρ of the system is given by

ρ = λpE(I)E(V )− λE(I)

B̄(α)
(

1

β
+

1

α
)[1− B̄(α)] (92)

where ρ < 1 is the stability condition under which the steady
state exists. Equation (91) gives the probability that the server is
idle. Substituting Q from (91) into (89), we have completely and
explicitly determinedWq(z), the probability generating function
of the queue size.
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6. THE AVERAGE QUEUE SIZE
Let Lq denote the average number of customers in the queue
under the steady state. Then

Lq =
d

dz
Wq(z) at z = 1

Since this formula gives 0/0 form, then we write Wq(z) given
in (89) as Wq(z) = N(z)

D(z)
where N(z) and D(z) are numerator

and denominator of the right hand side of (89) respectively. Then
we use

Lq = lim
z→1

d

dz
Wq(z) = lim

z→1

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

(93)
where primes and double primes in (93) denote first and second
derivative at z = 1, respectively. Carrying out the derivative at z
= 1 we have

N ′(1) = λE(I)(α+ β)[1− B̄(α)] + λpαβE(I)B̄(α)E(V )
(94)

N ′′(1) = λ[1−B̄(α)][E(I(I−1))(α+β)+2E(I)(−λE(I)+α)]

+2λ2(E(I))2(α+ β)B̄′(α)− 2λ2(E(I))2pE(V )

[(α+ β)B̄(α) + αβB̄′(α)] + λpαβE(I(I − 1))B̄(α)E(V )

+λ2(E(I))2pαβB̄(α)[E(V 2
1 ) + 2E(V1)(E(V2) +E(V3))

+E(V 2
2 ) + 2E(V2)E(V3) +E(V 2

3 )] (95)

D′(1) = αβB̄(α)[1−λE(I)pE(V )−λE(I)(α+β)[1−B̄(α)]
(96)

D′′(1) = [−λ(α+ β)E(I(I − 1)) + 2λ2(E(I))2][1− B̄(α)]

− 2λE(I)(α+ β)[1− λE(I)pB̄(α)E(V ) + λE(I)B̄′(α)]

−λpαβE(I(I − 1))B̄(α)E(V )− 2λαβE(I)B̄′(α)

−λ2αβp(E(I))2B̄(α)[E(V 2
1 ) +E(V 2

2 ) +E(V 2
3 )]

−2λ2αβp(E(I))2B̄(α)[E(V1)E(V2) +E(V1)E(V3)

+E(V2)E(V3)] + 2λ2αβp(E(I))2B̄′(α)E(V ) (97)

where E(V 2) are the second moment of the vacation time.
E(I(I − 1)) is the second factorial moment of the batch
size of arriving customers. Then if we substitute the values
N ′(1), N ′′(1),D′(1),D′′(1) from equations (94) to (97) into
equations (93) we obtain Lq in the closed form. Further, we find
the mean system size L using Little’s formula. Thus we have

L = Lq + ρ (98)

whereLq has been found by equation (93) and ρ is obtained from
equation (92).

7. THE AVERAGE WAITING TIME
Let Wq and W denote the mean waiting time in the queue and in
the system respectively. Then using Little’s formula, we obtain,

Wq =
Lq
λ

(99)

W =
L

λ
(100)

Where Lq and L have been found in equations (93) and (98).

8. PARTICULAR CASE
If E(V2) = E(V3) =0, E(I)= 1, E(I(I-1))=0, our model re-
duces to a single server M/G/1 queue with service interruption
and Bernoulli schedule server vacation. In this case, the prob-
ability generating function of the number of customers in the
queue Wq(z), the idle probability Q and the average queue size
Lq can be simplified to the following expressions and the equa-
tions coincides with equation of Balamani [3].

Q = 1− λpE(V1)− λ

B̄(α)
(

1

β
+

1

α
)(1− B̄(α)) (101)

Wq(z) =
λ(z − 1)(1− B̄)[f1(z) + αz] + pf1(z)f2(z)B̄[V̄ − 1]

f1(z)f2(z)[z − pB̄V̄ − (1− p)B̄]− αzβ(1− B̄)
Q

(102)

Lq = lim
z→1

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (103)

N ′(1) = λ(α+ β)(1− B̄(α)) + λpαβB̄(α)E(V1) (104)

N ′′(1) = 2λ(−λ+ α)(1− B̄(α)) + 2λ2(α+ β)B̄′(α)

−2λ2pE(V1)[(α+ β)B̄(α) + αβB̄(α)]

+λ2pαβB̄(α)E(V 2
1 ) (105)

D′(1) = αβB̄(α)(1−λpE(V1))−λ(α+β)(1−B̄(α)) (106)

D′′(1) = 2λ2(1− B̄(α)) + 2λ2αβpB̄′(α)E(V1)

−2λ(α+ β)[1− λpB̄(α)E(V1) + λB̄′(α)]

−λ2αβpB̄′(α)E(V 2
1 )− 2λαβB̄′(α) (107)

9. CONCLUSION
In this paper we have studied a batch arrival, essential service
with interruption and three phases of vacation. This paper clearly
analyzes the transient solution, steady state results of our queue-
ing system. As a future work busy period analysis and reliability
analysis will be discussed.
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