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ABSTRACT
Biogeography Based Optimization (BBO) is a recently introduced
optimization technique based on science of biogeography, i.e.,
study of distribution of biological species over space and time.
In BBO, potential solutions of a problem are grouped in integer
vectors known as habitats. Feature, i.e., Suitability Index Variable
(SIV), sharing among various habitats is made to occur with migra-
tion operator where as exploration of new SIVs is done with muta-
tion operator. Different migration variants are proposed to increase
the diversity in the population, with objective of improved perfor-
mance of BBO algorithm. Yagi-Uda antenna is a widely used an-
tenna design due to various useful properties of high gain, low cost
and ease of construction. Designing a Yagi-Uda antenna involves
determination of element lengths and spacings between them to get
desired radiation characteristics. In this paper, various migration
variants of BBO algorithm, reported till date, are investigated to
optimize the lengths and spacings for Yagi-Uda antenna elements
for maximum gain. The results obtained with these migration vari-
ants are compared and the best results are presented in the ending
sections of the paper.
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1. INTRODUCTION
Antenna is an electrical device which converts electric signal
into free space radiations and vice-versa. The various radia-
tion characteristics that affect the design of an antenna are gain,
impedance, bandwidth, frequency of operation, Side Lobe Level
(SLL) etc. Yagi-Uda antenna is a widely used directional antenna
design due to various desirable features, i.e., high forward gain,
low cost and ease of construction. It is basically a parasitic lin-
ear array of parallel dipoles, one of which is energized directly
by transmission line while the others act as parasitic radiators
whose currents are induced by mutual coupling.

Yagi-Uda antenna was invented in 1926 by H. Yagi and S. Uda at
Tohoku University [31] in Japan, however, published in English
in 1928 [35]. The main objective, in design of Yagi-Uda antenna,
is to find an optimum structure that meet certain radiation criteria
like gain, impedance, SLL and beamwidth. However, due to its
parasitic elements, it is extremely difficult to obtain an optimum
design of Yagi-Uda antenna. Since its inception, Yagi- Uda an-
tenna has been optimized several times for gain, impedance, SLL
and bandwidth using different optimization techniques based on
traditional mathematical approaches [26, 5, 9, 27, 8, 7, 10] and
Artificial Intelligence (AI) techniques [16, 34, 33, 4, 18, 30, 29].
In 1949, Fishenden and Wiblin [15] proposed an approximate

design of Yagi aerials for maximum gain, however, the approach
was based on approximations. In 1959, Ehrenspeck and Poehler
proposed a manual approach to maximize the gain of the antenna
by varying various lengths and spacings of its elements [14].

Later on, with the availability of high performance computing, it
became possible to optimize antennas numerically. Bojsen et al.
in [5] proposed an optimization technique to find the maximum
gain of Yagi-Uda antenna arrays with equal and unequal spacings
between adjacent elements. Cheng et al. in [8] and [7] have used
optimum spacings and lengths to optimize the gain of a Yagi-Uda
antenna. In [10], Cheng has proposed optimum design of Yagi-
Uda antenna where antenna gain function is highly non-linear.
The performance of these gradient based techniques depends on
choice of initial solution.

In 1975, John Holland introduced Genetic Algorithms (GAs) as a
stochastic, swarm based AI technique, inspired from natural evo-
lution of species, to optimize arbitrary systems for certain cost
function. Since then many researchers have used GAs to opti-
mize Yagi-Uda antenna designs for gain, impedance and band-
width separately [1, 16, 11] and collectively [34, 32, 17]. Jones
et al. in [16] have used GA to optimize Yagi-Uda antenna for
various radiation characteristics and compared the result with
steepest gradient method. Baskar et al. in [4], have used Com-
prehensive Learning Particle Swarm Optimization (CLPSO) to
optimize Yagi-Uda antenna and obtained better results than other
optimization techniques. In [18], Li has optimized Yagi-Uda an-
tenna using Differential Evolution (DE) and illustrated the ca-
pabilities of the proposed method with several Yagi-Uda an-
tenna designs. In [30], Singh et al. have analyzed another useful,
stochastic global search and optimization technique known as
Simulated Annealing (SA) for the optimization of Yagi-Uda an-
tenna. In 2008, Dan Simon introduced a new optimization tech-
nique based on science of biogeography, in which information
sharing among various habitats, i.e., potential solutions, is ob-
tained via migration operator and exploration of new features is
done with mutation operator [28]. Singh et al. have presented
BBO as a better optimization technique for Yagi-Uda antenna
designs, as compared to other optimization techniques in [29].
In [19], Li has proposed the Bi-Swarm optimization technique to
optimize the Yagi-Uda antenna and produced better result than
GA, Particle Swarm Optimization (PSO) and Computer Intelli-
gence (CI) techniques. In 2011, Amaral et al. has applied El-
lipsoid algorithm to optimization of Yagi-Uda antenna for gain
maximization [2]. Li et al. in [20] have used Invasive Weed Op-
timization (IWO) technique to optimize a six element Yagi-Uda
antenna for maximum directivity.

In [13], Du et al. have proposed the concept of immigration re-
fusal in BBO aiming at improved performance.In [21], Ma and
Simon introduced another migration operator, i.e., Blended mi-
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gration, to solve constrained optimization problems and make
BBO convergence faster. In [24], Pattnaik et al. have proposed
Enhanced Biogeography Based Optimization (EBBO) in which
duplicate habitats, created due to migration of features, are re-
placed with randomly generated habitats to increase the exploita-
tion ability of BBO algorithm.

In this paper, various migration variants in BBO algorithm are
experimented to optimize fifteen-element Yagi-Uda antenna to
investigate their relative optimization performance. A method of
moments based programme, NEC2 (Numerical Electromagnet-
ics Code version 2), is used to evaluate the antenna designs for
gain.

After this brief introduction, the paper is structured as follows:
In Section 2, Yagi-Uda antenna is briefly discussed. Section 3 is
dedicated to biogeography terminology, BBO technique and its
migration variants. In Section 4, comparative simulation results
obtained with different migration operators, during optimizing
antenna designs, are presented. Finally, paper is concluded in
Section 5.

2. ANTENNA DESIGN PARAMETERS
Yagi-Uda antenna is basically made of three types of elements:
(a) Reflector (b) Feeder and (c) Directors. Reflector is longest
of all elements and blocks radiations in one direction. Feeder or
driven element is fed with the signal to be transmitted, directly
from transmission line. Directors are usually more than one in
number and are responsible for unidirectional radiations. Nor-
mally, there is no limit on number of directors, however, as the
number of directors are increased beyond a certain limit there is
a reduction in the induced current in the most extreme elements.
Figure 1 presents a basic Yagi-Uda antenna design where all el-
ements are placed along y-axis and parallel to x-axis. Middle
segment of the reflector is placed at origin and signal to be trans-
mitted is fed to the middle segment of the feeder element. An
incoming field induces resonant currents on all the antenna ele-
ments which causes parasitic (reflector and directors) elements to
re-radiate signals. These re-radiated fields are then picked up by
the feeder element, that makes total current induced in the feeder
equivalent to combination of the direct field input and the re-
radiated contributions from the director and reflector elements.
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Fig. 1. Basic Yagi-Uda Antenna Design

Element lengths and spacings between them are the vari-
ables/parameters which need to be determined for optimum de-
sign of Yagi-Uda antenna. An antenna with N elements requires
2N − 1 parameters, i.e., N wire lengths and N − 1 spacings, to
be determined. These 2N − 1 parameters, collectively, are rep-
resented as an integer vector referred as a habitat in BBO given
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Fig. 2. Migration Curves

as (1).

H = [L1, L2, . . . , LN , S1, S2, . . . , SN−1] (1)

where LN are the lengths and SN−1 are the spacings between
antenna elements.

3. BIOGEOGRAPHY BASED OPTIMIZATION
Biogeography Based Optimization is a population based global
optimization technique based on the science of biogeography,
i.e., study of the distribution of animals and plants among differ-
ent habitats over time and space. BBO results presented by re-
searches, to optimize Yagi-Uda antenna, are better than other op-
timization techniques like PSO, GAs, SA, DE etc. [16, 32, 4, 25].

Initially, biogeography was studied by Alfred Wallace [3] and
Charles Darwin [12] mainly as descriptive study. However, in
1967, the work carried out by MacAurthur and Wilson [22]
changed this perception by introducing a mathematical model
for biogeography which made it possible to predict the number
of species in a habitat. Mathematical models of biogeography
describe the migration, speciation and extinction of species in
various habitats.

A habitat or island is an ecological area inhabited by a particular
animal species which is geographically isolated from other habi-
tats. Each habitat is characterized by its Habitat Suitability Index
(HSI). Habitats which are well suited as living places for bio-
logical species are referred to have high HSI value. HSI is ana-
logues to fitness in other Evolutionary Algorithms whose value
is a function of many features of the habitat such as rainfall, di-
versity of vegetation, diversity of topographic features, land area,
and temperature etc. The features/variables that characterize hab-
itability are known as Suitability Index Variables (SIVs). In other
words, HSI is dependent variable whereas SIVs are independent
variables.

The habitats with high HSI have large probability of emigra-
tion (hence high emigration rate, µ) simply due to large number
of species they host and small probability of immigration (low
immigration rate, λ) as they are already saturated with species.
Immigration can be defined as the arrival of new species into
a habitat, while emigration is the process of leaving one’s na-
tive habitat. Similarly, habitats with low HSI tend to have low
emigration rate, µ, due to sparse population, however, they will
have high immigration rate, λ. Suitability of habitats having low
HSI value is likely to increase with more number of species ar-
riving from habitats having high HSI as suitability of a habitat
depends upon its biological diversity. For sake of simplicity, it is
safe to assume a linear relationship between HSI (or population)
and immigration and emigration rates. Also maximum emigra-
tion and immigration rates are assumed equal, i.e., E = I , as
shown graphically in Figure 2.
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For k-th habitat, values of emigration rate, µk, and immigration
rate, λk, are given by (2) and (3).

µk = E · HSIk
HSImax −HSImin

(2)

λk = I·
(
1− HSIk

HSImax −HSImin

)
(3)

Good solutions (habitats with high HSI) are more resistant to
change than poor solutions (habitats with low HSI) whereas poor
solutions are more dynamic in nature and accept a lot of new
features from good solutions. This addition of new features to
low HSI solutions from high HSI solutions may raise the quality
of those solutions.

In a global optimization problem with number of possible so-
lutions, each habitat or a solution in a population of size
NP is represented by M -dimensional integer vector as H =
[SIV1, SIV2, . . . , SIVM ] where M is the number of SIVs (fea-
tures) to be evolved for optimal HSI. HSI is the fitness criteria
that is determined by evaluating the cost/objective function, i.e.,
HSI = f(H). BBO consists of mainly two mechanisms: (A)
Migration and (B) Mutation, these are discussed in the following
subsections.

3.1 Migration
Migration is a probabilistic operator that improves HSI of poor
habitats by sharing information from good habitats. During Mi-
gration, immigrating habitat, ImHbt, use its immigration rate, λ,
given by (3), to probabilistically decide whether to immigrate or
not. In case immigration is selected, then the emigrating habitat,
EmHbt, is found probabilistically based on emigration rate, µ,
given by (2). The process of migration is completed by copying
values of SIVs from EmHbt to ImHbt at random chosen sites.
BBO employing above mentioned migration scheme is termed
as the standard BBO. The migration operator may lead to same
types of habitats in large number after few iterations. Different
migration variants are proposed to increase the diversity in the
population, with objective of improved performance of BBO al-
gorithm, whose pseudo codes are given in Algorithm 1 and ex-
plained in following subsections.

Algorithm 1 Pseudo Code of Migration with Variants

Select ImHbt with probability based on λ 

if ImHbt is selected then 

 Select EmHbt with probability based on µ 

 if EmHbt is selected then 

 Randomly select a SIV(s) from EmHbt 

 switch (Option) 

case 1: Standard 

 apply migration 

case 2: Immigration Refusal 

 if (fitness(ImHbt)>fitness(EmHbt)) 

 apply migration 

 end if 

case 3: Blended 

 ImHbt(SIV) = α·ImHbt(SIV) + (1 – α)·EmHbt(SIV) 

case 4: EBBO 

 apply migration 

 eliminate duplicates 

 end switch 

 end if 

end if 

3.1.1 Immigration Refusal BBO (IRBBO). In BBO, a habi-
tat with high emigration rate have high probability of emigra-
tion to other habitats and low probability of immigration from
other habitats. However, the low immigration probability does
not mean that immigration will never happen. Once in a while,
a highly fit solution may receive solution features from a low-fit
solution that may degrade its fitness. In such cases, immigration
is refused to prevent degradation of fitness, i.e., HSI values of
highly fit habitats. This BBO variant with conditional migration
is termed as IRBBO and gives good performance with testbed of
benchmark functions [13].

3.1.2 Blended Migration. Blended migration operator [21] is
a generalization of the standard BBO migration operator which
is inspired from blended crossover in GAs [23]. Here, SIVs of
immigrating habitat, ImHbt, are not simply replaced by SIVs
of emigrating habitat, EmHbt, like standard migration operation.
Instead, a new value for i-th SIV, SIVnew, is comprised of two
components given as (4)

SIVnew = α · ImHbt(SIV ) + (1− α) ·EmHbt(SIV ) (4)

where α is a random number between 0 and 1. The pseudo code
of blended migration is depicted as case 3 in Algorithm 1.

3.1.3 Enhanced Biogeography Based Optimization. Standard
BBO migration operator tends to create duplicate solutions
which decreases the diversity in the population. To prevent this
diversity decrease, duplicate habitats are replaced with randomly
generated habitats, as depicted as case 4 in Algorithm 1. This
leads to increase exploration of new SIV values. In EBBO, clear
duplicate operator is integrated in basic BBO to improve its per-
formance [24].

3.2 Mutation
Mutation is another probabilistic operator that alters the values
of randomly selected SIVs of some habitats that are intended
for exploration of search space for better solutions by increasing
the biological diversity in the population. Here, higher mutation
rates are investigated on habitats those are, probabilistically, par-
ticipating less in migration process. Elitism approach is generally
used along with mutation to preserve features of the best habitat.
The mutation rate, mRate, for k-th habitat is calculated as (5)

mRatek = C ×min(µk, λk) (5)

where µk and λk are emigration and immigration rates, respec-
tively, given by (2) and (3) corresponding to HSIk. Here C is a
scaling constant and its value is equal to 1. The pseudo code of
mutation operator is given in Algorithm 2.

Algorithm 2 Standard Pseudo Code for Mutation

 kkCmRate  ,min  where C = 1  

for i = 1 to NP do 

for j = 1 to length(H) do 

Select Hj(SIV) with 𝑚𝑅𝑎𝑡 
 If Hj(SIV) is selected then 

Replace Hj(SIV) with  randomly generated SIV 

end if 

end for 

end for 

4. SIMULATION RESULTS AND DISCUSSIONS
Fifteen-element Yagi-Uda antenna designs are optimized for
maximum gain using BBO with different migration variants,
discussed in Section 3.1, and standard mutation operator. Each
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Table 1. Results of Gain Optimized Fifteen-Element Yagi-Uda Antenna Designs with different Migration Variants

 Standard BBO  Blended BBO IRBBO EBBO 

Element Length Spacing Length Spacing Length Spacing Length Spacing 

1(λ) 0.4815 - 0.4831 - 0.4840 - 0.4863 - 

2(λ) 0.4760 0.2821 0.4765 0.2552 0.4647 0.2818 0.4896 0.2487 

3(λ) 0.4470 0.2064 0.4420 0.2160 0.4458 0.1856 0.4425 0.2153 

4(λ) 0.4293 0.3504 0.4277 0.3722 0.4294 0.3512 0.4285 0.3766 

5(λ) 0.4172 0.4274 0.4192 0.4090 0.4172 0.4541 0.4217 0.3741 

6(λ) 0.4090 0.4360 0.4113 0.4465 0.4126 0.4135 0.4110 0.4574 

7(λ) 0.4080 0.4467 0.4078 0.4256 0.4065 0.4611 0.4087 0.4285 

8(λ) 0.4036 0.4395 0.3967 0.4873 0.4051 0.4377 0.3984 0.4830 

9(λ) 0.3962 0.5214 0.4006 0.5149 0.3995 0.4973 0.3987 0.4979 

10(λ) 0.4048 0.4195 0.4043 0.4050 0.3998 0.4573 0.3964 0.4408 

11(λ) 0.3952 0.4779 0.4009 0.4506 0.4008 0.4411 0.3964 0.4613 

12(λ) 0.3977 0.4467 0.3927 0.4651 0.3963 0.4677 0.3950 0.4992 

13(λ) 0.3949 0.4818 0.3973 0.5172 0.4008 0.4693 0.4055 0.4420 

14(λ) 0.4000 0.4835 0.4096 0.3984 0.4032 0.4535 0.3950 0.4442 

15(λ) 0.4141 0.3984 0.4187 0.4404 0.4127 0.4245 0.4183 0.4323 

Gain (dBi) 18.42 18.40 18.44 18.38 

design is optimized with 30 habitats and 500 iterations. Aver-
age of 10 monte-carlo simulations for each migration operator
is presented here for fair comparative study of stochastic algo-
rithm variants, viz. standard migration, blended migration, im-
migration refusal and EBBO as depicted in Figure 3. The C++
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Fig. 3. Convergence Performance of BBO with Migration Options

programming platform is used for coding of BBO algorithm,
whereas, a NEC2 [6] is used for evaluation of antenna designs
based on method of moments. Each potential solution in BBO is
encoded as vector with 29 SIVs as given by (1). The universe of
discourse for the search of optimum values of wire-lengths and
wire-spacings are 0.35λ−0.50λ and 0.10λ−0.55λ, respectively,
however, cross sectional radius and segment sizes are kept same
for all elements, i.e., 0.003397λ and 0.1λ respectively, where λ
is the wavelength corresponding to frequency of operation, i.e,
300 MHz. Typically, the best antenna designs obtained during
process of optimization are tabulated in Table 1.

From Figure 3, it can be seen that blended migration option
yields the poorest solutions in initial iterations and later im-
proves significantly than EBBO. Immigration refusal and stan-
dard migration variants are the fastest converging migration vari-
ants with immigration refusal option giving slightly better con-
vergence performance than standard migration option. It can be
concluded that immigration refusal is the best migration variant
in term of convergence performance for Yagi-Uda antenna de-
sign problem.

It can be seen from Table 1 that IRBBO gives the highest and
EBBO provides the lowest gain among all migration variants.
Standard BBO and blended BBO gives the mediocre perfor-
mance with standard BBO yielding higher gain than blended
BBO.

5. CONCLUSIONS AND FUTURE SCOPE
In this paper, BBO algorithm is applied to optimize fifteen-
element Yagi-Uda antenna designs for gain maximization. Here,
BBO is experimented with different migration variants, viz., (1)
Standard migration, (2) Blended migration, (3) Immigration Re-
fusal and (4) EBBO, along with standard mutation operator.
Here, it is observed that immigration refusal migration operator
is the best option for optimizing the antenna designs. Investiga-
tion of BBO algorithms for other types of antenna designs is next
on our agenda.
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