
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

33

How Crawlers Aid Regression Testing in Web

Applications: The State of the Art

Shikha Raina

Computer Science and Engineering
Amity University

Noida, India – 201301

Arun Prakash Agarwal
Computer Science and Engineering

Amity University
Noida, India - 201301

ABSTRACT

In today’s world web applications have increasingly become

very popular, and with the same speed they are been upgraded

frequently. This poses a big challenge for web application

testing. To ensure web application quality, we must perform

adequate testing for the new features as well as regression

testing the web application in each of iteration. This requires

us to systematically identify/locate changes introduced in the

new iteration. This paper surveys various tools which

identify/locate new changes, which greatly facilitates web

application testing in short release cycles. Also we will

describe what are web crawler’s and show how crawlers can

aid in regression testing of web applications.

Keywords

Regression Testing, Web application testing, Web Crawlers.

1. INTRODUCTION
Dynamic Web Applications have become a popular business

application delivery model [1], shifting more and more

software applications to the web. However, its rapid release

cycles, typically 2-3 weeks, create a big challenge for web

application quality assurance. Under high release pressure,

developers can easily make mistakes during implementation

[1]. For example, a PHP web page developer adds a new field

into a search form, which may need to insert extra form

validation both at Client Side(i.e. through JavaScript) and at

Server Side also. In this case, if the front-end developer

forgets to add any form validation and also update the

database schema at the back-end, a system failure, typically in

a form of MySQL exception, would happen. With short

release cycles, good documentation is luxury. Consequently, it

is difficult for quality assurance engineers to systematically

identify/locate changes based on existing documents. To

efficiently test web applications, automated regression testing

[2] has been introduced to re-test existing features. This helps

to greatly reduce regression testing costs. Automated

regression testing tools have been widely used in software

industry, e.g., HtmlUnit [3] and Selenium [4]. However,

automated regression testing tools were not developed to

systematically identify and test changes introduced in a new

iteration, where defects can be easily introduced. Therefore,

adequate testing of newly introduced changes in each of

iteration can be a critical step to ensure web application

quality. The problem of adequately testing new changes, i.e.,

new features and their impacts, can be divided into two sub-

problems: (1) how to quickly and accurately identify/locate

new changes; and (2) how to effectively generate and run tests

for the new changes. The second sub-problem has been well

studied [2, 5]. However, little work has been reported on the

first sub-problem [1], this paper presents two tools, named

Zoomer and ReWeb/TestWeb that have been implemented to

automatically identify newly introduced changes in a new

iteration.

We will explain the usefulness of the tools Zoomer and

ReWeb/TestWeb, built by researchers to aid the regression

testing of web applications. The paper is organized as follows:

Section 2 presents the background of web applications and its

architecture. In Section 3, we will discuss what a web crawler

is and give a brief intro of various crawling strategies, their

use and limitations. The tools developed to support regression

testing in web applications are described in Section 4. Finally,

Section 5 concludes this paper and discusses future work.

2. BACKGROUND
The aim of this section is to give a brief insight into the web

application background. The chapter is organized as follows:

Section 2.1 tries to answer the question what Web

applications are and gives an overview of the overall Web

application architecture.

2.1 What is a Web application?

A Web application is a special case of application, designed to

be executed in a Web-based environment. More precisely a

(dynamic) Web application is a mix of programs that

dynamically generate hyper-documents (dynamic Web pages)

in response to some input from the user, and static hyper-

documents [6]. A (static) Web site is simply a collection of

static hyper-documents (static Web pages). While a Web

application is basically a program running on a Web server

and a set of fixed Web pages, there is much more to be

considered in the activities of regression testing [6]. The

behavior and the quality of a Web application depend on all

its components. Web applications contains many components

that are linked together to deliver the desired usability of the

application [6].

The fundamental elements of Web applications are:

Client/Server model: a browser (client) sends a request

asking for a Web page over a network (Internet, via the

protocol HTTP) to a Web server (server), which returns the

requested page as response of the request [6]. These web

pages that are being requested for can be either static pages or

dynamic pages. The dynamic pages are computed on run time

by web application depending upon the user input at that time.

And the content of a static page is fixed and mainly stored in a

cache or some directory on the server. The programs that

generate dynamic pages at run-time (called server programs),

as for example CGI (Common Gateway Interface) scripts and

servlets, run on the application server and can use information

stored in databases and other resources [6].

HTML language: Web pages are written principally in HTML

language (HTML stands for the HyperText Markup

Language). A Web page consists of text, which is an

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

34

unstructured sequence of characters, and HTML elements.

Elements are enclosed within a start-tag and an end-tag

notation. This is an HTML element: < p> my paragraph starts

here. < /p> Where the HTML element starts with a start tag

(<p>), the content of the HTML element is “My paragraph

starts here" and the HTML element ends with an end tag

(</p>). The power of HTML is in its links to other HTML

resources. In specific tags of an HTML document (for

example the anchor <a> tag), the URL (Uniform Resource

Locator) of another HTML document can be accessed. If the

user clicks the mouse button on the text of an anchor element,

the browser automatically retrieves a new Web page and then

displays it. The language HTML is defined precisely in [6].

Client/server interactions: The HTML code can activate the

execution of a server program by means of a SUBMIT input

within an HTML element of type FORM or anchor. Data

flows from a server program to the HTML code are achieved

by embedding values of variables inside the HTML code, as

the values of the attributes of some HTML elements. In the

opposite direction, the basic mechanism for data value

propagation is by means of form parameters. Hidden

parameters are constant values that are just transmitted to the

server (possibly recording the values of some previous

computation), while non hidden input parameters are gathered

from the user. Parameter passing is strictly by value and the

invocation of the server program is a control transfer without

return [6]. Server programs can exploit persistent storage

devices (such as databases) to record values and to retrieve

data necessary for the construction of the HTML page.

Moreover, session specific data (session variables) can be

stored at the server side and maintained across successive

executions. Cookies act similarly to session variables, with the

only difference of being stored at the client side instead of the

server. Such data are used to identify the ongoing interaction

and to record data that need to survive past the end of

execution of server programs [6].

Finally, there are several server side languages that are

available for the construction of Web applications (e.g., PHP,

Java, Perl, VBscript, etc.). The same is true for the client side

code (e.g., Java, Javascript, jQuery etc.).

3. OVERVIEW OF WEB CRAWLER
WebCrawler is a Web service that assists users in their

navigation by automating the task of hyperlink traversal,

creating a repository of the searched web pages, and fulfilling

user’s request from the repository. Conceptually, WebCrawler

is a node in the Web graph that contains links to many sites on

the net, shortening the path between users and their

destinations. Such a simplification of the Web experience is

important for several reasons:

First, WebCrawler saves users time when they search instead

of trying to guess at a path of links from page to page. Often,

a user will see no obvious connection between the page he is

viewing and the page he seeks. For example, he may be

viewing a page on one topic and desire a page on a completely

different topic, one that is not linked from his current location.

In such cases, by jumping to WebCrawler — either using its

address or a button on the browser — the searcher can easily

locate his destination page. Such time savings is especially

important given the increase in the size and scope of the Web:

between 1994 and 2000, the Web grew in size by four orders

of magnitude [7].

Second, WebCrawler’s simplification of the Web experience

makes the Web a more friendly and useful tool. Navigating

the Web by using keyword searches is often more intuitive

than trying to use a Uniform Resource Locator (URL) to

identify a Web page directly. If users have a good experience,

they are more likely to continue to use the Web, and such

repeat usage will continue to fuel the growth of the medium.

Arguably, search engines like WebCrawler have contributed

to the continued simplicity and growth of the Web.

Finally, WebCrawler is useful because it can provide some

context for a searcher’s particular query: by issuing a well-

formed query, a searcher can find the breadth of information

about that particular topic and can use that information to

further refine his goal. Searchers frequently issue a broad

query which they refine as they learn more about their

intended subject.

3.1 Various Crawling Strategies

3.1.1 Centralized Crawling
In [8, 9] researchers have tried to solve the problem of web

crawling by focusing on AJAX based applications. In [10, 11]

they have focused on web crawling for the purpose of search

and indexing. In [12], the aim is to make RIAs accessible to

search engines that are not AJAX-friendly. In [13] the focus is

on regression testing of AJAX applications, whereas [14] is

concerned with security testing of web widget interactions,

[15] focuses on invariant-based testing. However, except for

the work done in [8, 9] most of the research is concerned with

their ability to crawl RIAs and not the actual efficiency of

crawling. Crawling RIAs in its naive form seems to favor the

standard Breadth-First and Depth-First strategies, which have

been used in most of the published research with some

modifications. One of the earliest attempts for an AJAX

crawling algorithm and optimization is presented in [11]. The

authors proposed an AJAX crawler that crawls the application

based on user events and builds a model of the application.

The application is modeled using transition graphs which

contain all the application entities (states, events and

transitions). The crawler uses the Breadth-First search strategy

to trigger all the events present in the page. If the DOM of the

page changes then a new state and corresponding transition is

added to the transition graph. After a new state is reached, the

crawler uses a reset to go back to the initial state and invoke

the next event in the initial state. Once all the events in the

initial state have been explored, the crawler explores in a

similar fashion the discovered states in the order they are

discovered. In addition to the crawling strategy, the authors

also proposed few optimizations to improve the efficiency of

the crawling process. They suggested caching of JavaScript

function execution results to save expensive server calls. If the

same JavaScript function is invoked again along with the

same parameters, then the cached results are used instead of

executing the function again. In [10], the authors introduced

an AJAX aware search engine for indexing the contents of

RIAs. Similar to traditional search engines, it contains a

crawler, indexer and query processor, but the components are

adapted to handle RIAs. The AJAX crawler has the role of

identifying events in the application states. The crawler starts

with identifying and executing events on the first page. The

crawler uses a standard Breadth-First search. The crawler

identifies a new state if an event execution generated a new

DOM tree and the content of the DOM is different from

already discovered states. The result of the crawling process

is maintained in a special application model which is

annotated with new information as the crawling proceeds. The

authors recommended the exploration of a limited number of

different events and different states or having a maximum

limit on the depth of the crawl. The other components of the

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

35

search engine, such as the indexer, read the information from

the application model discovered by the crawler.

3.1.2 Distributed Crawling
Due to the large size of the web, it is often the case that

crawlers use several nodes (i.e. computers) to crawl the web

simultaneously. Distributed crawling of the web has been

extensively described in the literature [22]. [16] classifies

distributed crawlers based on their work assignment method

into three classes: Independent Assignment: Different

crawlers start from different URLs and crawl the web

independently. This approach may lead to overlap and

duplication of work. Dynamic Assignment: This approach is

based on one or more units that keep track of discovered and

executed tasks. Upon discovering a task, the node will inform

these units and if it is a new task, the unit will add it to the

task queue. Nodes then ask the unit for workload, and the unit

assigns tasks to the probing nodes [17]. The first prototype of

Google roughly followed this architecture: A centralized unit,

called URLserver, stores the list of URLs and orders a set of

slave nodes to download each URL. All downloaded pages

are stored in a unit, called Storeserver. The retrieved pages are

then indexed distributive-ly. Both the downloading and

indexing tasks requires centralized units of coordination [18].

Static Assignment: In this approach a set of homogeneous

workers are allocated unique IDs. The mapping function maps

each task to one of the assigned IDs. Upon encountering a

task the crawler examines the task and decides whether the

task falls under its jurisdiction or belongs to another node. In

the first case, the node takes care of the task autonomously.

Otherwise, the node will inform the node responsible for the

task [16]. Different proposals suggest different matrices and

algorithms to derive the mapping function. In [19] the

distribution of the task of crawling of the different URLs is

performed by hashing the URL (either only the host-name

part, or the entire URL) and distributing the resulting hash

values to the different crawlers, for instance, using the

distributed hash table (DHT) of a peer-to-peer system. [20]

also includes the geographic information about the crawlers

and the searched servers into the task distribution algorithm in

order to allocate a crawler that is geographically close to the

server to be crawled. Ubi-Crawler [21] uses the so-called

consistent hashing approach to allocate the tasks to the

different crawlers in such a way that there are only minimal

changes when crawlers are reconstructed after some time

period. This approach among the web crawlers is used to

obtain better error tolerance.

4. TOOLS USING WEB CRAWLER

4.1 Zoomer Overview
Zoomer was implemented using Java. It analyzed the web

pages in a web application to identify/locate new changes. To

retrieve web pages from a web application, it integrated

Tansuo [1], a tool to explore web pages in web applications

(Web Crawler). It also integrated HtmlUnit [1], a tool for

constructing the HTML DOM tree representation for a web

page. Firstly, it retrieved web pages from a new iteration.

Secondly, for each web page, Zoomer constructed its HTML

DOM tree representation with XPaths [1]. Thirdly, Zoomer

compared HTML DOM tree representations in the new

iteration with saved HTML DOM tree representations in the

previous iteration. This comparison worked will capture

changes introduced in the new iteration, e.g., element changes

and element properties changes. In the following, we will

introduce its architecture, workflow and function features.

4.2 Zoomer Architecture
As shown in Fig 1, Zoomer consists of six components:

Driver, Tansuo, Parser, Repository, Comparator, and

Presenter [1].

4.2.1 Driver
Being the main component in this tool, it was responsible for

coordinating other components to identify/locate changes

introduced in a new iteration. Driver decides which

component should be used at each step [1].

4.2.2 Tansuo
This component was responsible for exploring the web pages

in a web application. It worked in a recursive process. For

example, it retrieves the home page, by following the URL

provided by a user. If there were links and forms in a web

page, Tansuo will handle them, e.g., by clicking links or

submitting forms, to reach more web pages. This process was

repeated until the whole web application has been explored

[1].

4.2.3 Parser
This component was responsible for parsing web pages.

Parser obtains the HTML DOM tree of a web page through

the HtmlUnit library [4]. Then, it traversed the generated

HTML DOM tree in a depth-first-search manner. When a new

element was encountered, it constructed an XPath [1] for the

new element and saveed this new XPath for future

comparison [1].

4.2.4 Repository
This component was responsible for saving the elements and

their properties. An element was identified by its web page

URL and its XPath in the web page. Meanwhile, it also saved

comparison results. All the information was saved in a set of

files that was accessed by Driver in the future [1].

4.2.5 Comparator
This component was responsible for comparing web pages

and their elements in two iterations. Comparator received

elements and their property information from Driver and

compared them to identify/locate the changes. In other words,

for each element in the new iteration, Comparator checked

whether it existed in the previous iteration. For each element

in the previous iteration, Comparator also checked whether it

still existed in the new iteration [1].

4.2.6 Presenter
This component was responsible for presenting comparison

results to users. It used JFreeChart [1] to generate pie charts

that show change percentage of web pages, elements and

element properties. Presenter also inserted links of changed

web pages, elements, and properties into comparison result

web pages, so that users could easily navigate to the changed

web pages and elements that they were interested in [1].

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

36

Fig 1: Zoomer’s Architecture

4.3 ReWeb and TestWeb Overview
The two tools ReWeb and TestWeb that were developed to

support analysis and testing of Web applications. ReWeb was

used to download and analyzes the pages of a Web application

with the purpose of building a UML model of it, in

accordance with the Meta Model. TestWeb generated and

executed a set of test cases for a Web application whose

model was computed by ReWeb [23]. The whole process was

semiautomatic, and the interventions of the user are indicated

within diamonds in Fig 2.

4.4 ReWeb Architecture
The ReWeb tool consisted of three modules: a Spider, an

Analyzer and a Viewer [23].

The Spider downloads all pages of a target web site starting

from a given URL. Each page found within the site host was

downloaded and marked with the date of downloading. The

HTML documents outside the web site host were not

considered. The pages of a site were obtained by sending the

associated requests to the Web server. The result of such

requests was always an HTML page, so it was not possible to

discriminate between dynamic and static pages [23].

The Analyzer used the UML model of the web site to perform

several analyses [23], some of which were exploited during

static verification.

The Viewer provided a Graphical User Interface (GUI) to

display the Web application model as well as the output of the

static analyses. The graphical interface supported a rich set of

navigation and query facilities including zoom, search, focus

and HTML code display. Among the available views, the

history view showed the structure of the site over time, the

system view represented the organization of pages into

directories. The data flow view was used to display the

read/write accesses of pages to variables. They used

incoming/outgoing edges linking pages to variables

respectively [23].

4.5 TestWeb Architecture
TestWeb contained a test case generation engine (Test

generator); able to determine the path expression from the

model of a Web application, and to generate test cases from it,

provided that a test criterion is specified. Generated test cases

were sequences of URLs which, once executed, granted the

coverage of the selected criterion. Input values in each URL

sequence were left empty by the Test generator, and the user

had to fill in them, possibly exploiting the techniques

traditionally used in black box testing (boundary values, etc.)

[23].

TestWeb’s Test executor was used to provide the URL

request sequence of each test case to the Web server, attaching

proper inputs to each form. The output pages produced by the

server, marked in the UML model with a non empty use

attribute, were stored for further examination. After execution,

the test engineer intervened to assess the pass/fail result of

each test case [23]. For such evaluation, user opened the

output pages on a browser and checked whether the output

was correct for each given input. During regression check

such user intervention was no longer required, since the oracle

(expected output values) were the one produced (and

manually checked) in a previous testing iteration [23].

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

37

Fig 2: ReWeb and TestWeb Tool Architecture.

5. CONCLUSIONS AND FUTURE

WORK
The tools and techniques explained in this paper were

successfully applied to several real world Web applications,

among which are Wordnet, Amazon and Bookstore web

application [1, 23].

We discussed Zoomer’s architecture. The previous results

have shown that Zoomer can effectively identify/locate

changes introduced in a new iteration [1]. ReWeb’s views

were useful to understand the site organization, both in terms

of navigation paths (history view) and of variable usage (data

flow view) [23]. TestWeb’s generator and executor of test

cases were exploited to exercise the two sites up to a

satisfactory level of coverage. An anomalous behavior of

Amazon was revealed during the testing activity. It was

highlighted by the sequence of operations to be performed

during the execution of one of the automatically generated test

cases [23].

Our future work will be devoted to the building our own tool

written in PHP Language, mainly for PHP based web

applications, we will use crawler as an input to tool and

provide comparison results of two versions of Web

application as an output, which will provide an aid in

regression testing of those web applications.

6. REFERENCES
[1] Wenhua Wang and Yu Lei, Zoomer: An Automated Web

Application Change Localization Tool, in: Journal of

Communication and Computer 9 (2012) 913-919.

[2] V. Kettunen, J. Kasurinen, O. Taipale, K. Smolander, A

study on agility and testing processes in software

organizations, in: Proceedings of the 2010 International

Symposium on Software Testing and Analysis, 2010, pp.

231-240

[3] HtmlUnit, DOI: http://htmlunit.sourceforge.net/.

[4] Selenium, DOI: http://seleniumhq.org.

[5] R. Binder, Testing Object-Oriented Systems, Addison

Wesley, 2000.

[6] HTML Working Group. Transitional Document Type

Definition, HTML 4.01, W3C Recommendation 24

December 1999.

[7] Matrix Information and Directory Services, Inc.

Matrix.Net Home http://www.mids.org/.

[8] K. Benjamin, G. v. Bochmann, M. E. Dincturk, G.-V.

Jourdan, and I. V. Onut, “A strategy for efficient

crawling of rich internet applications,” in Proceedings of

the 11th international conference on Web engineering,

ICWE’11, 2011.

[9] M. E. Dincturk, S. Choudhary, G. v. Bochmann, , G.V.

Jourdan, and I. V. Onut, “A statistical approach for

efficient crawling of rich internet applications,” in

Proceedings of the 12th international conference on Web

engineering, ICWE’12, 2012.

[10] C. Duda, G. Frey, D. Kossmann, and C. Zhou,

“Ajaxsearch: crawling, indexing and searching web 2.0

applications,” Proc. VLDB Endow., vol. 1, pp. 1440–

1443, Aug. 2008.

[11] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou,

“Ajax crawl: Making ajax applications searchable,” in

Proceedings of the 2009 IEEE International Conference

on Data Engineering, ICDE ’09, pp. 78–89, IEEE

Computer Society, 2009.

[12] A. Mesbah, E. Bozdag, and A. v. Deursen, “Crawling

ajax by inferring user interface state changes,” in

Proceedings of the 2008 Eighth International Conference

on Web Engineering, ICWE ’08, pp. 122–134, IEEE

Computer Society, 2008.

[13] D. Roest, A. Mesbah, and A. van Deursen, “Regression

testing ajax applications: Coping with dynamism.” in

ICST, pp. 127–136, IEEE Computer Society, 2010.

http://htmlunit.sourceforge.net/
http://seleniumhq.org/
http://www.mids.org/

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.14, April 2013

38

[14] C.-P. Bezemer, A. Mesbah, and A. van Deursen,

“Automated security testing of web widget interactions,”

in Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software

engineering, ESEC/FSE ’09, 2009.

[15] A. Mesbah and A. van Deursen, “Invariant-based

automatic testing of ajax user interfaces,” in Software

Engineering, 2009. ICSE 2009. IEEE 31st International

Conference on, pp. 210 –220, may 2009.

[16] J. Cho and H. Garcia-Molina, “Parallel crawlers,” in

Proceedings of the 11th international conference on

World Wide Web, WWW ’02, 2002.

[17] D. H. Chau, S. Pandit, S. Wang, and C. Faloutsos,

“Parallel crawling for online social networks,” in

Proceedings of the 16th international conference on

World Wide Web, WWW ’07, 2007.

[18] S. Brin and L. Page, “The anatomy of a large-scale

hypertextual web search engine,” in Proceedings of the

seventh international conference on World Wide Web 7,

WWW7, 1998.

[19] B. T. Loo, L. Owen, and C. S. Krishna murthy,

“Distributed web crawling over dhts,” 2004.

[20] J. Exposto, J. Macedo, A. Pina, A. Alves, and J. Rufino,

“Information networking. towards ubiquitous networking

and services,” ch. Efficient Partitioning Strategies for

Distributed Web Crawling, pp. 544–553, Springer-

Verlag, 2008.

[21] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,

“Ubicrawler: a scalable fully distributed web crawler,”

Softw. Pract. Exper., vol. 34, pp. 711–726, July 2004.

[22] C. Olston and M. Najork, “Web crawling,” Found.

Trends Inf. Retr., vol. 4, pp. 175–246, Mar. 2010.

[23] Filippo Ricca and Paolo Tonella, Analysis and Testing of

Web Applications, in: 2001 IEEE.

