
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

6

Efficient Virtual Machine Placement for On-Demand

Access to Infrastructure Resources in Cloud Computing

Sameer Kumar Mandal

Dept. of Computer Science & Engineering
National Institute of Technology Rourkela

Rourkela, Odisha, India

Pabitra Mohan Khilar
Dept. of Computer Science & Engineering
National Institute of Technology Rourkela

Rourkela, Odisha, India

ABSTRACT

Cloud computing is the utility computing that provides

virtualized resources, applications, and services using

distributed network and Internet. Cloud computing service

offers the ability to scale up and scale down your computing

requirements and most importantly to reduce the cost of

deployment. Many organizations are migrating to cloud

computing services to lower the risk and for better business

continuity.In case of on-demand access user requests

infrastructure services for immediate access and for a very

short interval of time, they have to pay certain charge

depending upon that duration.In cloud computing,

infrastructure requests are served by the allocation of virtual

machines to those requests; these virtual machines should be

placed on the underlying hardware infrastructure called

datacenter. In this paper we have proposed a model for the

efficient allocation of virtual machines on the cloud

infrastructure to reduce the allocation time and to optimize the

resource utilization. The proposed model is simulated and its

performance is compared with two other existing models.

General Terms

Cloud Computing, Virtual Machine andResource allocation

Keywords

Cloud Computing, Virtualization, Resource Allocation,

Resource Utilization, Scheduling, Infrastructure as a Service

(IaaS), Open Nebula, Eucalyptus

1. INTRODUCTION
Cloud computing is the utility computing that provides

unlimited virtualized resource to build a customized

infrastructureor platform to run applications or full phase

services as a pay-as-you-use basis. Cloud computing has

changed the paradigm of system deployment. The details of

complex system implementation are abstracted from the end

user and with the help of virtualization techniques resources

are virtualized that gives an illusion of infinitely scalable and

universally available resources [3][4]. In cloud

computingservices are offered with the help of Internet to the

end users as Something-as-a-Service. Three universally

accepted service models are Software as a Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a Service

(IaaS) [5]. Software as a Service provides a complete

environment with pre-installed applications along with user

interface. Client can access these applications using any

device capable of operating a web browser. Platform as a

Service provides a framework for the developers to create and

deploy their own application on a hosted infrastructure. The

customer does not have to bother about the

underlyinghardware; they only have to configure the

operating environment in the interface provided to them and

they can use any programing language supported by the cloud

service provider to build their application in that

environment.In Infrastructure as a Service computing model

client can borrow the fundamental hardware resources for

building their own framework. They can customize their

entire framework with the help of virtual machines, virtual

storage, virtual network etc. The client does not have to

manage the actual physical resources, as they are provided

with virtual resources which can be managed

programmatically.

Fig 1: Cloud Computing Service Models

In Infrastructure as a Service model the infrastructure requests

are served by allocating virtual machines to those requests

[4][10]. So on service providers side one of the primary

concern is to allocate the virtual machine images into the

actual physical resource i.e. the underlying hardware

infrastructure. This allocation should be efficient so that

resource utilization will be optimized and more requests can

be served in lesser time. The virtual machine placement

strategy in cloud computing can be classified into three

categories [6]; reservation, on-demand access and spot

markets. In case of reservation type a user has to pay a certain

fee for a particular period for each instance of a virtual

machine. In case of on-demand access user requests virtual

machine for immediate access for a very short interval of

time, and pay the charge depending upon that duration. While

in case of spot markets the users need to specify the amount

they are willing to pay for the requested virtual machines, as

in spot markets there is frequent fluctuation in provider’s

price. The users are allocated with virtual machines only when

the provider’s price is same or less than the user’s fee. This

allocation part is done by the hypervisor [2] of the service

provider. The hypervisor contains the list of all the physical

resources available in the datacenters and information about

their states. So the hypervisor has to design properly and a

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

7

robust resource allocation algorithm should run in the

hypervisor to do this work efficiently.Since clients or users

are provided with the computing resources only according to

their requirement so the rest of it can be provided to other

users. Many open source cloud computing solutions like Xen

Cloud Platform, Nimbus, OpenNebula, Eucalyptus,

TPlatform, Apache Virtual Computing lab, Enomaly etc. [12]

have addressed this issue. But the framework of OpenNebula

and Eucalyptus is quite impressive.

In this paper we have designed an efficient algorithm that

follows a best fit strategy for allocation of virtual machine

requests to the physical host. Because of the best fit strategy

the resource utilization is optimized to some extent. We have

also followed a tree based approach to represent the resource

list, instead of maintaining a resource queue for quick

allocation of virtual machine to the host machines.

The rest of this paper is organized as follows. In section 2 we

discuss prior works which address issues related to this topic.

Section 3 describes the proposed framework followed by

proposed algorithm in sub section 3.1. Section 4 presents the

performance evaluation of the proposed algorithm. Finally

Section 5 concludes the paper by summarization of the work.

2. RELATED WORK
OpenNebula is an open source toolkit used for deploying

cloud service over the underlying hardware devices, the

deployment can be either private, public or hybrid [7][14]. It

manages all the storage and computing requirements of the

deployed infrastructure. It uses the kernel based virtual

machine- KVM and can fit into any existing datacenter by

integrating it with storage and networking solution. The

virtual machine scheduler used in OpenNebula is known as

match making scheduler, which uses a predefined rank [9][12]

for prioritizing the available resources. Based on the priority,

this scheduler places the virtual machine on the host having

the highest priority [11]. This algorithm takes requirements

and predefined rank as its input and produces the resource

number in which to place the virtual machine as output. When

a virtual machine request arrives at the scheduler, first it

sweeps away the resources which are not befitting into the

requirement. The rank scheduling algorithm is delineated

below.

1: Start

2: for each Host Host_Listdo

3: if (Host satisfies the Requirements) then

4: add (Member_list, Host);

5: end

6: end

7: Priority_listSort_by_rank (Member_list, Rank);

8: Allocated_HostPriority_list(1);

9: end

Eucalyptus or ‘elastic utility computing architecture for

linking your program to useful systems’ is an open source

tool; used to build framework for a private cloud [15][16]. Its

interface is based on Amazon EC2 cloud platform. It was

contrived to endorse third party extensions. Eucalyptus

buttress virtual machines over Xen hypervisor. For placement

of a virtual machine on the underlying host Eucalyptus uses

Round robin resource selection and Greedy First fit algorithm

[9][12]. In first fit Greedy strategy whichever node that can

run the virtual machine found first is selected as the host for

virtual machine placement. However the Round Robin

resource selection strategy keeps on selecting the host nodes

until it finds a suitable host node that can run the virtual

machine. Both of these algorithms take virtual machine

requests as input and produce the resource number in which to

place the resource as output. The greedy virtual machine

placement algorithm is delineated below.

1: Start

2: Initialize res_id -1; slp_res_id-1; completed  0;

3: for all resource Res_List¬ completed

4: do

5: if(resource (Suspended_state || Waking_state)

 &res_id = -1) then

6: res_idcurr_res_id;

7: completed  completed+1;

8: end

9: if (resource Sleeping_state&res_id =-1) then

10: capacity find (remaing_res_capacity)

11: if (capacity  0) then

12: slp_res_idres_id;

13: end

14: end

15: end

16: if (res_id== -1&slp_res_id == -1) then

17: out_res_id -1;

18: return out_res_id;

19: else if (res_id = -1) then

20: fetch resource from Res_List having res_id;

21: out_res_id fetched res_id;22: end

23: else if (slp_res_id == -1) then

24: fetch resource from Res_list having slp_res_id

25: out_res_id fetched slp_res_id;26: end

27: else

28: if (resource Sleep_state) then

29: Start that resource;

30: out_res_id started res_id;

31: end32: end

33:return out_res_id;34: end

Gupta A. et al. [17] proposed a HPC aware scheduler for

Infrastructure as a Service cloud for improving performance

of HPC applications in cloud. They have addressed the

problem of adequate allocation of assorted range of

application by using monotonous pool of resources. Service

level agreement (SLA) is also taken into consideration. They

have designed a two-step process methodology; first process

discriminates applications based on the utilization of shared

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

8

resources in a multi core node, while in second process

applications are grouped based on their complementary

profile. A multi-dimensional online bin packing heuristic is

applied here to achieve optimal resource allocation by

considering high performance application. They have

implemented the proposed algorithm using Nova scheduler,

which is the scheduler for OpenStack (an open source cloud

computing framework) and have shown their algorithm is

performing 45% better compared to dedicated execution while

limiting jitter to 8%.

Zang Y. et al. [13] proposed a scheme for integration of on-

demand infrastructure resource by considering resource

consumption and allocation. They introduced two adoptive

control loops for managing infrastructure requests for PaaS

application: resource allocation loop and resource

consumption optimization loop. To improve the resource

utilization they used optimization loop which includes a

management function and to provide appropriate amount of

resource they used allocation loop. They have combined these

two loops for providing resource on-demand by running it

repeatedly. A framework called SmartRod is implemented to

verify the correctness of the scheme.

Kim H. et al. [10] designed a system based on Grid

middleware to improve performance and resource utilization

of cloud system. As the resource requests are dynamic and not

monotonous hence static configuration is not capable to serve

these requests. But by using virtualization reliability can’t be

guaranteed, hence they proposed three methods to solve this

limitation of virtualization. Xen and Globus toolkit is used to

simulate the framework. They performtwo kinds of

experiments: middleware overhead analysis and Grid

middleware utilization.

3. PROPOSED MODEL
Figure 2 elucidates the model for allocation of virtual

machines to physical host machines present in the datacenters.

Client/user can place their list of requirements for any service

in the interface provided with the help of a web browser, that

may require computational and storage infrastructure. That

request is communicated to the cloud service provider through

internet. The service provider will serve the requests by

placing individual requests to suitable virtual machines that

can perform the requisite operations. The virtual machine

specification is now forwarded to the hypervisor of the service

provider. Hypervisor uses the virtualization tools to create

virtual machines of the specified specification. The virtual

machine manager keeps track of the created virtual machines.

But the problem is to map the virtual machine requests to the

host machines. To resolve this problem virtual machine

manager sends the virtual machine specifications to the virtual

machine scheduler (VM Scheduler). But in this model instead

of sending that request directly, a binary search tree of the

requested virtual machines is created and that is sent to the

VM Scheduler. This is done to improve the resource

utilization, which is explained in the next sub section in the

algorithm. Now VM scheduler will take the maximum

requirement node from that virtual machine tree and will

search for a host that will best fit the requirement. For

implementing the best-fit strategy all the physical resources

are also logically organized in a binary search tree,

sincesearching a host using this data structure will take in

average O (log N) time where N is the number of physical

hosts. This will reduce the time for allocation. After getting

the proper host the scheduler will return the host number to

the virtual machine manager for placement of virtual machine

on that host.

Fig 2: Proposed framework for VM placement

Now the virtual machine manager has all information about

the virtual machine and its location; it will now send a service

activation message to the client/user. After that client/user can

access the service for the duration specified.

3.1 The VM Scheduler Algorithm
Let HostList= {H1, H2,H3,…Hn} is the list of physical hosts

available which have to process the virtual machine requests.

The virtual machine requests that have been made in a

particular time interval are collected at the virtual machine

manager and are stored in aVMQueue, VMQueue= {VM1, VM2,

VM3,…VMn}. The time interval is used to avoid the problem

of starvation and is very small (let’s say two seconds) to avoid

the delay. Here we have to do a mapping VMQueue →

HostList,the mapping should be done in such a way that it will

optimize the use of resources and should be faster. Figure 3

elucidate the flow chart of the proposed algorithm where best

fit is decided based on the following formula.

Here RVMS is required virtual machine specification, and

AHS is the available host specification. When a virtual

machine request arrives at the scheduler, it calcutes this value

at each host arranged in the binary search tree starting from

the root node traversing towards the leaf node, until it finds a

best fit. If it finds this value to 1 for a perticular host then that

is the perfect fit and that host nood is assigned as the best fit

node for that virtual machine. If the value calculated is greater

than 1 then that host is not a candidate host for that virtual

machine and the search will continues to its right child host

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

9

node.

Fig 3: Flow chart for VM Scheduling algorithm

If the value is less than 1 i.e. a fraction between 0 to 1 then the

search bigins in the direction of left host node and the value at

each left and right child node is calculated. If the value is

found less than the value that has been calculate at its parent

host node then it will stop searching further and declare it’s

parent node as the best fit node. For example let there are five

host nodesH1 to H5 present at the datacenter having memory

specification (in MB) 1024, 360, 525, 575, 680 respectively.

These host machines are organized in the host tree as shown

in the figurebelow.

Fig 4: Host representation

Suppose a virtual machine request having memory

specifacation 480 MB arrives at the scheduler. Now scheduler

will calculate the value at the root node i.e H5.

The value is found to be 0.71. Now the searchwill continue in

left direction i.e. H3. The value at H3 is 0.91. Next host node is

H2 and the value iscalculated to 1.33 which is greater than 1,

hence rejected. So the best fit host is its parent host node

having the calculated value 0.91. Hence host H3 is the best

host to run this virtual machine request. The purpose of

arranging the virtual machine requests in binary search tree is:

suppose two virtual machine (VM) requests arrive at a time

having memory requirment 510 MB and 400 MB. If the

allocation of 510 MB VM is processed first then it will get

allocated at the H3 host, and 400 MB request is allocated at H4

host. The remaining memory at H3 is 15 MBand at H4175

MB. But if the 400 MB request is processed first then first it

will get allocated to host H3, the remaining memory is 125

MB and 510 MB request is allocated to host H4, the remaining

memory at H4is 65 MB. So in the first case we are left with a

big fragment of memory i.e. 175 MB, which can be used to

allocate some new requests. In the second case we got two

fragments of memory but that may not get utilized (let’s say

when a VM request for 150 MB memory arrives). Hence this

technique improves the resource utilization. Also to insert a

new request in that time interval will take in average O(log

n)time. The VM scheduling algorithm takes VMTree i.e BSTVM

as input and returns allocated host machine as the output.

Thedetailed algorithm is delineated below.

1: while BSTVM ≠ do

2: VMmax Max(BSTVM);

3: HostAlloc Allocate(VMmax, BSTHost);

4: Update(BSTVM, VMmax);

5: Update(BSTHost, HostAlloc);

6: end

Algorithm Allocate(VMmax, BSTHost)

1: Begin

2: curr_threshold  0;

3: threshold 

 ;

4: Max_value 
 ;

5: if (threshold == 1)

6: return
 ;

7: end

8: if (threshold <1 & curr_threshold < threshold)

9: Allocate(VMmax,
);

10: curr_threshold  threshold;

11: end

12: else if (threshold > 1 & curr_threshold < threshold)

13: Allocate(VMmax,
);

14: curr_threshold  threshold;

15: end

16: else if (VMmax> Max_value)

17: return 0;

18: end

19: else

20: wait untill the time interval finish; 21:end

22: return
 ;23: end

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

10

4. PERFORMANCE EVALUATION
The proposed model is simulated using CloudSim toolkit [18];

an environment for simulating the cloud computing

applications. The proposed VM Scheduling algorithm is

compared with OpenNebula Ranking algorithm and

Eucalyptus Greedy algorithm, by simulating them using the

same toolkit. For simulating this environment we have

simulated one datacenter inside which seven host machines of

different specifications are running. We also have simulated

seven virtual machine requests of different specifications

which will be placed on the host machines. The specification

of the host machines and virtual machine requests are

depicted in table 1 and table 2 respectively.

Table 1. Host machines specification

Host ID Memory CPU core HDD BW

1 2048 4 50 10000

2 1024 4 50 10000

3 2048 4 50 10000

4 512 2 20 8000

5 1024 4 40 10000

6 1024 4 50 10000

7 512 2 30 8000

Table 2. Virtual machine requests specification

VM ID Memory CPU core HDD BW

1 256 1 10 500

2 2048 1 10 500

3 1024 1 10 500

4 512 1 10 500

5 1024 1 10 500

6 256 1 10 500

7 512 1 10 500

In this experiment we are only varying the memory

requirement (In MB) of virtual machine requests i.e. we are

considering memory intensive applications. All the three

algorithms are executed independently with the same host and

virtual machine instances shown in the above two tables. Fig

5 shows the mapping between host machine and virtual

machine request. Fig 6 depicts the available memory at each

host after all the virtual machines have been scheduled to

proper hosts, which shows the resource utilization of

threealgorithms. Finally Fig 7 shows the plotted graph

between the scheduling algorithms and time consumed by

each of them to perform the complete operation.

Fig 5: Host machine Vs. Virtual machine allocation

Fig 6: Available memory at each host after allocation

Above graph shows that the highest available memory at a

single host is at host H3 using the proposed algorithm, so host

H3 can serve a high memory request if any arrives at that

time. The proposed algorithm has two big peaks in the graph

at H3 and H6, whereas the other algorithms have multiple

small peaks which show that the resource utilization of

proposed algorithm is better than that of the other two.

Fig 7: Time taken to allocate the VM requests

5. CONCLUSION
In cloud computing infrastructure requests are served by

allocating virtual machines on the underlying physical

infrastructure. As in on-demand access user requests resources

for a short time interval and for immediate use, hence these

requests have to be served quickly by allocating them virtual

machines. These virtual machines have to beplaced on proper

host machines on the actual infrastructure, so that more

number of resource requests can be served in lesser time.

Hence a proficient resource allocation algorithm should run at

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

11

the hypervisor that can do this job in lesser time and optimize

the use of resources. In this paper our experimental results

shows that the proposed framework can improve the resource

utilization to serve more number of resource requests at a time

without compromising the allocation time.

6. REFERENCES
[1] Chunye, G., Jie, L., Qiang, Z., Chen, H. and Zhenghu, G.

2010. The Characteristics of Cloud Computing. 39th

International Conference on Parallel Processing

Workshop. IEEE Computer Society, 1530-2016.

[2] Boss, G., Malladi, P., Legregni, L. and Hall, H. 2007

how a business can use cloud computing to reduce cost.

IBM white paper.

[3] Zhang, S., Zhang, S., Chen, X. and Huo, X. 2010. Cloud

Computing Research and Development Trend. 2nd

International Conference on Future Networks.

[4] Sosinsky, B. 2012. Cloud Computing Bible. Wiley

Publishing Inc.

[5] Mell, P. and Grance, T. 2011. The NIST Definition of

Cloud Computing. NIST Special Publication, 800-145.

[6] Mills, K., Filliben, J. and Dabrowski, C. 2011.

Comparing VM-Placement Algorithms for On-Demand

Clouds. Third IEEE International Conference on Cloud

Computing Technology and Science. IEEE Computer

Society, 978-0-7695-4622-3.

[7] Endo, P. T. and Goncalves, G., E. 2010. A Survey on

Open-Source Cloud Computing Solutions. VIII

Workshop on Clouds, Grid Applications.

[8] Sadashiv, N. and Kumar, S. 2011. Cluster, Grid and

Cloud Computing: A Detailed Comparison. The 6th

International Conference on Computer Science &

Education (August 3-5).,SuperStar Virgo, Singapore.

[9] Sotomayor, B., Montero, R. S., Llorente, I. M. and

Foster, I. 2009. Internet Computing IEEE (Sept.-Oct.).

Volume 13, Issue: 5, page(s) 14-22.

[10] Kim, H., Kim, W., Lee, K., Newby, G. B. and Kim, Y.

2009. Experimental Study to Improve Resource

Utilization and Performance of Cloud Systems based on

Grid Middleware. KSII The first International

Conference on Internet (December 2009).

[11] Zhong, H., Tao, K. and Zhang, X. 2010. An Approach to

Optimize Resource Scheduling Algorithm for Open-

Source Cloud Systems. The Fifth Annual ChinaGrid

Conference. IEEE Computer Society, 978-0-7695-4106-

8.

[12] Patel, P. and Singh, A. K. 2012. A Survey on Resource

Allocation Algorithms in Cloud Computing

Environment. Golden Research Thoughts, Volume 2,

Issue. 4 (Oct 2012), ISSN: 2231-5063.

[13] Zhang, Y., Huang, G., Liu, X. and Mei, H. 2010.

Integrating Resource Consumption and Allocation for

Infrastructure Resource on-Demand. IEEE 3rd

International Conference on Cloud Computing. IEEE

Computer Society, 978-0-7695-4130-3/10.

[14] OpenNebula. http://opennebula.org/about:about.

[15] The Eucalyptus. http://www.eucalyptus.com/eucalyptus-

cloud.

[16] Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W. and

Li, Q. 2009. Comparison of Several Cloud Computing

Platform. Second International Symposium on

Information Science and Engineering. IEEE Computer

Society, 978-0-7695-3991-1/09.

[17] Gupta, A., Milojicic, D. and Balle, S. M. 2012. HPC-

Aware VM Placement in Infrastructure Clouds. Paralal

Programming Laboratory. Department of Computer

Science, University of Illinois.

[18] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,

C. A. F. and Buyya, R. 2011. CloudSim: A ToolKit for

Modeling and Simulation of Cloud Computing

Environment and Evaluation of Resource Provisioning

Algorithm.http://www.cloudbus.org/cloudsim/.

