
International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

16 

Minimum CDT based Scheduling Algorithm versus FCFS 

in Grid Environment 

 
Deepti Malhotra, PhD. 

Assistant Professor 
Department of Computer Science  

Central University of Jammu, Jammu 

 

 

ABSTRACT 
To achieve the promising potentials of tremendous distributed 

resources, effective and efficient scheduling algorithms are 

fundamentally important. Unfortunately, scheduling algorithms 

in traditional parallel and distributed systems, which usually run 

on homogeneous and dedicated resources, e.g. computer 

clusters, cannot work well in the new circumstances. In this 

research paper, MJ_CDTmin [1] (multiple jobs based on the 

minimum cumulative departure time) algorithm is compared 

with the already existing FCFS (First Come First Serve) 

algorithm in terms of the execution time (in secs).Since there 

were no results for minimizing the execution time in for 

existing algorithms. Hence the comparison is done only for the 

proposed algorithms. This is achieved with the experimental 

test bed by specifying deadline, while submitting the jobs. 

Simulation was carried out by different number of jobs varying 

from 1000 to 10,000. In the experimental testing heterogeneous 

machines were used and tested for different number of 

tasks/jobs. During the experiment, the comparison was carried 

out by considering the six different values for the Service time 

(       of the jobs. The main aim of proposed scheduling 

algorithm is to increase the system efficiency and to satisfy the 

job requirements from the available resources. The 

experimental results showed a significant improvement in terms 

of a smaller makespan time as compared to the already existing 

FCFS scheduling algorithm. 

Keyword 

Grid Computing, Job Scheduling, Scheduler, makespan, 

MCDT, FCFS. 

 

1. INTRODUCTION 
A computational Grid is a hardware and software infrastructure 

that provides dependable, consistent, pervasive, and 

inexpensive access to high-end computational capabilities [2]. 

It is a shared environment implemented via the deployment of a 

persistent, standards-based service infrastructure that supports 

the creation of, and resource sharing within, distributed 

communities. Resources can be computers, storage space, 

instruments, software applications, and data, all connected 

through the Internet. Since multiple applications may require 

numerous resources which often are not available for them so 

that in order to allocate resources to input jobs, having a 

scheduling system is essential. Because of the vastness and 

separation of resources in the computational grid, scheduling is 

one of the most important issues in grid environment [3]. Vast 

investigations have been done in this scope, which have led to 

theories and practical results [4, 5, and 6]. However new 

scheduling algorithms have been offered with emergence of 

grid computing. Objectives of scheduling algorithm are 

increasing system throughput [6], efficiency, and decreasing job 

completion time. 

Scheduling systems for traditional distributed environments do 

not work in Grid environments because the two classes of 

environments are radically distinct. Scheduling in Grid 

environments is significantly complicated by the heterogeneous 

and dynamics nature of Grids. Compared to traditional 

scheduling systems such as clustering computing, Grid 

scheduling systems have to take into account diverse 

characteristics of both various Grid applications and various 

Grid resources. The different performance goals also place 

great impacts on the design of scheduling systems. To 

overcome the heterogeneous and dynamic nature of Grids, the 

information service plays a highly important role. A successful 

scheduling system should accommodate all these issues. 

 

The job of the grid scheduler is to automatically assign the 

suitable resources to the independent jobs to maximize the 

system utilization. It also reduces the average response time of 

the jobs. The efficient utilization of grid computing resources 

can improve the overall job-throughput due to load balancing of 

the tasks between the grid resources. A Grid scheduler is 

different from local scheduler in that a local scheduler only 

manages a single site or cluster and usually owns the resource. 

A Grid scheduler is in charge of resource discovery, Grid 

scheduling (resource allocation and task scheduling), and job 

execution management over multiple administrative domains. 

The jobs will take different execution time on different 

machines. So, job scheduling in grid environment is a problem 

to schedule a stream of applications from different users to a set 

of computing resources to minimize the total completion time. 

This scheduling requires the matching of different jobs with the 

machines that satisfy their resource requirement. There are two 

different goals for job scheduling:  

 

i. Increasing computing performance, its aim is to 

minimize the execution time of each application that 

is considered in parallel processing. 

ii. Increasing overall throughput, its purpose is to 

schedule a set of independent tasks in such a way that 

it increases the processing capacity of the systems for 

long period of time. 

 

There are relatively a large number of task scheduling 

algorithms to minimize the total completion time of the tasks in 

distributed systems [7, 8, 9, 10, 11, and 12]. These algorithms 

try to minimize the overall completion time of the tasks by 

finding the most suitable resources to be allocated to the tasks. 

It should be noticed that minimizing the overall completion 

time of the tasks does not necessarily result in the minimization 

of execution time of each individual task. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

17 

The rest of the paper is organized as follows. Section 2 presents 

the background and related work. Section 3 discusses the 

details of the proposed scheduling algorithm i.e MJ_CDTmin 

(multiple jobs based on the minimum cumulative departure 

time).Section4  provides the results of the experiment carried 

out using our own grid simulated environment.Section5 gives 

the comparison results of MJ_CDTmin based scheduling with 

the commonly used FCFS (first come first serve) algorithm. 

Finally Section 6 concludes the paper by summarizing our 

contributions and future works. 

 

2. RELATED WORK 
Due to relatively high communication costs in grid 

environments most of the well known scheduling algorithms 

are not applicable in large scale distributed systems such as grid 

environments [7, 13, 14 and 15]. There has been an ongoing 

attempt to build scheduling algorithms specifically within grid 

environments. Various algorithms have been proposed which in 

recent years each one has particular features and capabilities. In 

this section we review several scheduling algorithms which 

have been proposed in grid environment. In [16] a scheduling 

algorithm which is based on HQ-GTSM is presented. This 

algorithm not only takes into account the input jobs but also 

considers the resource migration time in deciding on the 

scheduling. One of the most important features of this 

algorithm is that it guarantees the grid quality of service. At the 

present time, job scheduling on grid computing is not only aims 

to find an optimal resource to improve the overall system 

performance but also to utilize the existing resources more 

efficiently.  

 

X. He et al. have presented a new algorithm based on the 

conventional Min-min algorithm [7].The proposed algorithm 

which is called QoS guided Min-min, schedules tasks requiring 

high bandwidth before the others. Therefore, if the bandwidth 

required by different tasks varies highly, the QoS guided Min-

min algorithm provides better results than the Min-min 

algorithm. Whenever the bandwidth requirement of all of the 

tasks is almost the same, the QoS guided Min-min algorithm 

acts similar to the Min-min algorithm. 

 

E. Elmroth et al. have proposed a user oriented algorithm for 

task scheduling in grid environments, using advanced 

reservation and resource selection [17]. The algorithm 

minimizes the total execution time of the individual tasks 

without considering the total execution time of all of the 

submitted tasks. Therefore, the overall makespan of the system 

does not necessarily get small. 

 

F. Dong et al. have proposed a similar algorithm called QoS 

priority grouping scheduling [18]. This algorithm, considers 

deadline and acceptation rate of the tasks and the makespan of 

the wholes system as major factors for task scheduling. In 

comparison with Min-min and QoS guided Min-min, the QoS 

priority grouping scheduling algorithm achieves better 

acceptance rate and completion time for the submitted tasks. 

 

K. Etminani et al. have proposed a new algorithm which uses 

Max-min and Min-min algorithms [12]. The algorithm 

determines to select one of these two algorithms, dependent on 

the standard deviation of the expected completion times of the 

tasks on each of the resources 

 

B. Yagoubi et al. have offered a model to demonstrate grid 

architecture and an algorithm to schedule tasks within grid 

resources [19]. The algorithm tries to distribute the workload of 

the grid environment amongst the grid resources, fairly. 

Although, the mechanism used in [19] and other similar 

strategies which try to create load balancing within grid 

resources can improve the throughput of the whole grid 

environment, the total makespan of the system does not 

decrease, necessarily. 

 

 

3 MINIMUM CDT BASED 

SCHEDULING ALGORITHM 

(MJ_CDTmin ) 
In this section, New Grid Job Scheduling algorithm MJ_CDTmin 

(multiple jobs based on the minimum cumulative departure 

time) is discussed in detail. The proposed algorithm allows 

multiple job requests to be processed on a single node i.e each 

node consists of four processors. The MJ_CDTmin is based on 

the rule that the cumulative arrival time of the next job arriving 

at the processor is compared with the minimum cumulative 

departure time of the processor. The main aim of proposed 

scheduling algorithm is to increase the system efficiency and to 

satisfy the job requirements from the available resources. 

 

3.1 Assumptions 
Let us consider the arrival time and service time of K jobs. Let 

these jobs be marked as                .Let the interarrival 

time     denotes the time gap between the arrivals of the 

        job and the      job into the system. These times will 

be generated randomly. Similarly, let      denotes the service 

time of the       Job. The service times are also generated 

randomly. 

 

 We will use         to denote the cumulative arrival time 

of the          
 

                   

              0  

 

Fig1: Cumulative Arrival time Representation 

We will assume that initially there is no queue, and all the 

processors are free. 

 

      is the time elapsed at the departure of the         

from processor. 

 

                  

 

Fig2: Cumulative Departure time Representation 

 

 Idle time is the amount of the time the processor spends 

while waiting for the Job no K to arrive. 

 

                            

 

Fig3: Idle time Representation 

 

 Wait time denote the waiting time of the kth  job in the 

queue. 

 

      MNDT-           
      

 

Fig4: Wait time Representation 

 

 QLk (Queue Length) = number of jobs waiting for 

processing scheduling in the queue. If the wait time 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

18 

for the job comes then the queue length is 

incremented by 1. 

 

3.2 Algorithm (pseudo code) 

Step1: cList= list of all individual requests by validating the 

client specification(s); 

Step2:  nodeList =list of all nodes. Each Grid node comprises a 

number of computational resources (processors, 

denoted by:  

                  
                             

    
); 

Step3: For each job do the following steps; 

Step4: Filter out the resources that do not fulfill the job 

requirements. Contact GRD (GridResource Database) 

to obtain a list of available resources; 

Step5:              

Step6: cat=0, nd=1, et=0; 

Step7:                      

{ 

                                         
} 

Step8:          
{ 

               ; 
} 

/* checking Jobs*/ 

Step9:                   

{ 

/*randomly take the values of arrival time and store them in 

array*/ 

  at[j] =               
                   

                       /*checking..... 

Processor with Min CDT (cumulative departure time)*/ 

Step10:                      
Step11:                    

   { 

                       
   { 

                  
          
   } /*End If */ 

        } /*End For */ 

Step12:                    /*Processor with Min CDT*/ 

Step13:                    
/* comparing the arrival time of the next job with the min CDT 

store in step 14*/ 

 

Step14:                

 { 

                     
 /* idle time for the processor*/  

                    
             * wait time for the job*/ 

                                 
  } /*End If */ 

 

 

 

 

 

 

 

 

 

      

 { 

              
   * idle time for the processor*/ 

                          
                    
    /* increment the queue length*/ 

                          
 } /*End Else */ 

Step15:                         
/* calculate the total Execution time for all the jobs*/ 

Step16:          

   { 

              /* execution time*/ 

 } 

                
 { 

              
   } 

} /*End For */ 

Step17:Total Execution Time = et 

Step18:exit 

 

3.3 Algorithm Description 
In step 1 of Algorithm given in section 3.3, the user’s request is 

processed and split into individual job requests. Step 2, consists 

of list of all nodes available in the grid. The actual scheduling 

process starts from step 3 that is repeated for each job request. 

In step 4, the scheduler discovers the available resources by 

contacting GRD (GridResource Database).Here resources are 

evaluated according to the requirements in the job request and 

only the appropriate resources are kept for further 

processing.Step5 gives the number of job request.Step8 

randomly take the values for the arrival times      of the jobs 

by calling the random function and store them in an 

array        .Step9 calculate the cumulative arrival time    ) 

for the jobs. Step10 take the random values for the services 

time   ) of the jobs and store them in an array       .Step 11, 

12, 13 check the processors with minimum cumulative 

departure time. Then the Processor with minimum value of 

cumulative departure time (min CDT) is stored in the 

Step14.The processor with          is selected for the 

allocation of the next job arriving. Step 15 calculates the 

cumulative departure time.Step16 compare the cumulative 

arrival time of the next job arriving with the min CDT store in 

step 14. If the value of cumulative arrival time is greater than 

the min CDT then the idle time for the processor comes i.e. 

        is the amount of idle time processor spends while 

waiting for the job to arrive. Otherwise wait time for the job 

comes i.e.        is the amount of time which job has to wait 

in the queue to be serviced by the processor. As a result of 

which queue length is incremented by one. In Step17 job is 

assigned to the processor.Step18 calculates the total execution 

time for executing the jobs. 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

19 

3.4 Flowchart 

   Fig5: Flowchart of MJ_CDTmin based scheduling 

algorithm 

 

4 EXPERIMENTAL RESULTS FOR 

(MJ_CDTmin ) 
Experiments have been carried out by using the simulated Grid 

computing environment by using, multiple jobs arriving at single 

node. In the simulation of the experiment, the arrival time and 

service time of jobs are generated randomly in the range of 

{0,100}. Figure6 and Figure7 shows the frequency distribution plot 

of arrival time (       and service time (     ) of the jobs 

respectively. For the experiments, all the machines are assumed to 

have four processing element only. Results have been obtained by  

scheduling independent sets of jobs generated randomly. First time 

the simulation has been carried out by varying the number of jobs 

from 1 to 1000.  

 

Fig6: Distribution of ATk 

 

Fig7: Distribution of STk 

 

Table 1 gives the results of the experiment carried out for 

MJ_CDTmin  based scheduling in Grid simulated environment. 

Graph in Figure 8 gives the experiment results of the MJ_CDTmin  

based scheduling. 

 

Fig8: MJ_CDTmin based Scheduling 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

20 

Table 1: Simulation Test Runs for MJ_CDT 

Job No AT 

(sec) 

CAT 

(sec) 

ST 

(sec) 

min CDT Processor CDT 

(sec) 

IDT 

(sec) 

WT 

(sec) 

QL PA 

Processor no MCDT 

(sec) 

1 40 40 46 1 0 86 40 0 0 1 

 

2 62 102 32 2 0 134 102 0 0 2 

 

3 83 185 19 3 0 204 185 0 0 3 

 

4 04 189 6 4 0 195 189 0 0 4 

 

5 27 216 92 1 86 308 130 0 0 1 

 

6 48 264 79 2 134 343 130 0 0 2 

 

7 69 333 66 4 195 399 138 0 0 4 

 

8 91 424 52 3 204 476 220 0 0 3 

 

9 12 436 39 1 308 475 128 0 0 1 

 

10 34 470 25 2 343 495 127 0 0 2 

 

 
 

 

5  COMPARISON BETWEEN MJ_CDTmin AND 

EXISTING ALGORITHM (FCFS) 
Next experiments were carried on to compare proposed MJ_CDTmin  

algorithm with the already existing FCFS (First Come First Serve) 

algorithm in terms of the execution time (in secs). Since there were 

no results for minimizing the execution time in for existing 

algorithms. Hence the comparison is done only for the proposed 

algorithms. This is achieved with the experimental test bed by 

specifying deadline, while submitting the jobs. Simulation was 

carried out by different number of jobs varying from 1000 to 10,000. 

In the experimental testing heterogeneous machines were used and 

tested for different number of tasks/jobs. During the experiment, the 

comparison was carried out by considering the six different values for 

the Service time (       of the jobs which are as given below:- 

 

5.1 i) Simulation with           
First time, the two scheduling algorithms were compared by 

taking      ,of integer point number generated randomly in the  

range       and the different simulated results were generated as 

shown in Table 2.       denote the service time of  kth job. 

 

Table2: Execution time (in secs) for MJ_CDTmin and FCFS with 

(             ) 
 

 

 

 

 

 
Fig 9: Comparison between MJ_CDTmin and FCFS (      

       ) 
 

Graph in Figure 9 depicts the comparison among proposed 

MJ_CDTmin scheduling algorithm and the existing FCFS 

algorithm in terms of execution time (in secs) with        in the 

range      . 
 

ii) Simulation with          
Next time the two scheduling algorithms were compared by 

taking      , of integer point number generated randomly in the 

range        and the different simulated results were generated 

as shown in Table 3 and Figure 10.It has been analyzed from the 

graph plotted in Figure10 that as the service time increases from 

50 to 100 the difference between the proposed MJ_CDTmin 

scheduling algorithm and the existing FCFS algorithm in terms of 

execution time (in secs) also increases. 

 

 

No. of 

Jobs MJ_CDTmin FCFS 

1000 13575 13576 

2000 13608 13611 

3000 13768 13770 

4000 13774 13779 

5000 14004 14008 

6000 13981 13987 

7000 14060 14063 

8000 14083 14087 

9000 14091 14099 

10000 14112 14117 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

21 

Table3: Execution time (in secs) for MJ_CDTmin and FCFS 

with (              ) 

No. of Jobs MJ_CDTmin  FCFS 

1000 13701 13727 

2000 13718 13770 

3000 14000 14054 

4000 14441 14498 

5000 14578 14635 

6000 14741 14803 

7000 14511 14571 

8000 14508 14572 

9000 14776 14841 

10000 15046 15113 

 

 

Fig 10: Comparison between MJ_CDTmin and FCFS (      

        ) 

iii) Simulation with            
In the third time, value of service time is changed from 100 to 

150. Table 4 and Figure 11 shows the different results generated 

during the experiment with           

Table 4: Execution time (in secs) for MJ_CDTmin and FCFS 

with (              ) 

No. of Jobs MJ_CDTmin  FCFS 

1000 13686 13713 

2000 13911 13968 

3000 13780 13836 

4000 14190 14253 

5000 14041 14102 

6000 14872 14943 

7000 14744 14815 

8000 14402 14472 

9000 15375 15452 

10000 15645 15724 

 

 
Fig11: Comparison between MJ_CDTmin and FCFS (      

        ) 
 

iv) Simulation with            
 

Table 5: Execution time (in secs) for MJ_CDTmin and FCFS 

with (              ) 

 

 
Fig12: Comparison between MJ_CDTmin and FCFS (      

        ) 

No. of Jobs MJ_CDTmin  FCFS 

1000 13832 13862 

2000 13847 13907 

3000 13820 13878 

4000 14111 14176 

5000 14326 14390 

6000 14434 14507 

7000 15009 15085 

8000 15342 15416 

9000 15404 15485 

10000 15524 15606 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

22 

Table 5 and Figure12 shows the experiment results generated 

during the simulation with the value of          . 

 

v) Simulation with            

Table 6: Execution time (in secs) for MJ_CDTmin and FCFS 

with (              ) 
 

No. of Jobs MJ_CDTmin  FCFS 

1000 14069       14109 

2000 14205 14275 

3000 14136 14201 

4000 15112 15190 

5000 15776 15852 

6000 15203 15292 

7000 15212 15303 

8000 15271 15369 

9000 15559 15670 

10000 15640 15765 

 

 

Fig13: Comparison between MJ_CDTmin and FCFS (      

        ) 
 

Graph in Figure13 shows that as the value of service time 

increases, the performance of proposed MJ_CDTmin based 

schedule also increase as compared to the already existing FCFS 

scheduling algorithm. 

 

 

 

 

 

 

 

 

 

 

 

vi) Simulation with            
 

Table 7: Execution time (in secs) for MJ_CDTmin and FCFS 

with (              ) 
 

 

Fig14: Comparison between MJ_CDTmin and FCFS (      

        ) 

Graphs  in Figure 9- 14 depicts that the  Execution time for the 

given number of jobs is shorter in case of proposed MJ_CDTmin 

based scheduling algorithm as compared to the already existing 

FCFS scheduling algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. of Jobs MJ_CDTmin  FCFS 

1000 14299     14354 

2000 14380 14461 

3000 14997 15075 

4000 15069 15168 

5000 15915 16002 

6000 15903 16015 

7000 15233 15354 

8000 16059 16189 

9000 16432 16577 

10000 16534 16691 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

23 

5.2 Performance Analysis of MJ_CDTmin and  

     FCFS at Different Values of  STK 

 

 

Figure15: Performance of MJ_CDTmin and FCFS with 

varying STK 

 

It is clear from the graphs shown in Figure 15 that for the same 

number of jobs, the difference between the execution time in the 

proposed minimum cumulative departure time based scheduling 

algorithm (MJ_CDTmin ) algorithm and existing FCFS algorithm 

always goes on increasing as the value of service time (STK ) 

increases. Graphs in the Figure 15 also depict that as the service 

time goes on increasing, the proposed algorithm works better than 

existing scheduling algorithm. Thus, (MJ_CDTmin ) shows a 

noticeable increase in performance than existing scheduling 

algorithm 

 

6. CONCLUSION AND FUTURE WORK 
Resource sharing in grid environment is an inevitable task and the 

scheduling concept is one of the most important issues in grid 

computing. In this paper a job scheduling algorithm in grid 

environment have been presented in order to enhance the average 

Makespan of input jobs.This newly proposed scheduling 

algorithm achieves high efficiency in the Grid computing. A 

simulation system was developed to test the minimum cumulative 

departure time based scheduling algorithm in a simulated Grid 

environment. We used the makespan/Execution time of batch 

jobs as the comparison criteria. This research paper also provides 

the experimental details of the comparison made between the 

results of MJ_CDTmin (minimum cumulative departure time) 

based scheduling algorithm and the already existing FCFS 

scheduling algorithm in the Grid environment. Results show that 

proposed meta-heuristic based algorithms perform better than the 

existing algorithms for Grid scheduling. The main aim of these 

implementations is to evaluate and validate the proposed 

algorithms against a benchmark to demonstrate their usability. As 

memory is an important resource, In future research can be done 

considering others factors such as memory as the resource 

requirement in task scheduling algorithm. 

 

7. REFERENCES 
[1] Deepti Malhotra, Devanand and Anik Gupta.2012. 

Simulation of MJ_CDTmin Based  Scheduling Algorithm in 

Grid Environment,International Journal of Computer 

Applications (0975 – 8887) Vol 42– No.11,pp.24-29 

March 2012. 

[2] I. Foster and C. Kesselman (editors).1999. The Grid: 

Blueprint for a Future Computing Infrastructure, Morgan 

Kaufmann Publishers, USA. 

[3] Rajkummar Buyya.2002.Economic-based Distributed 

Resource Management and Scheduling for grid 

computing.PhD thesis, Monash university, Melborn, 

Australia. 

[4] K. Al-Saqabi, S. Sarwar, and K. Saleh.1997. Distributed 

gang scheduling in networks of heterogeneous 

workstations, Computer Communications Journal, pp.338-

348. 

[5] Maheswaran M, Ali S, Siegel H J, et al.1999.Dynamic 

mapping of a class of independent tasks on to 

heterogeneous computing systems. In the 8th IEEE 

Heterogeneous Computing Workshop (HCW '99),San 

Juan, Puerto Rico,(Apr. 1999), pp.30-44. 

[6] XiaoShan He, XianHe Sun, and Gregor von 

Laszewski.2003.QoS Guided Min-Min Heuristic for Grid 

Task Scheduling, Computer Science and Technology, 

18(4):442-451. 

[7] X. He, X-He Sun, and G. V. Laszewski.2003.QoS Guided 

Min-min Heuristic for Grid Task Scheduling, Journal of 

Computer Science and Technology, Vol. 18, pp. 442-451.  

[8] M. Maheswaran, Sh. Ali, H. Jay Siegel, D. Hensgen, and 

R. F. Freund.1999. Dynamic Mapping of a Class of 

Independent Tasks onto Heterogeneous Computing 

Systems, Journal of Parallel and Distributed Computing, 

Vol. 59, pp. 107-13.  

[9] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni, M. 

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, 

and B. Yao.2001.A Comparison of Eleven Static 

Heuristics for Mapping a Class of Independent Tasks onto 

Heterogeneous Distributed Computing Systems,Journal of 

Parallel and Distributed Computing, Vol. 61, pp. 810-837.  

[10] F. Dong, J. Luo, L. Gao, and L. Ge.2006.A Grid Task 

Scheduling Algorithm Based on QoS Priority Grouping," 

In the Proceedings of the Fifth International Conference on 

Grid and Cooperative Computing (GCC’06), IEEE.  

[11] E. Ullah Munir, J. Li, and Sh. Shi.2007. QoS Sufferage 

Heuristic for Independent Task Scheduling in Grid. 

Information Technology Journal, 6 (8): 1166-1170.  

[12] K. Etminani, and M. Naghibzadeh.2007.A Min-min Max-

min Selective Algorithm for Grid Task Scheduling,The 

Third IEEE/IFIP International Conference on Internet, 

Uzbekistan. 

[13] Deepti Malhotra.2013. SCH_ACR and SCH_LD Based 

Job Scheduling Algorithm in Grid Environment, 

International Journal of Computer Applications (0975 – 

8887) Vol 64– No.13, pp.35-41 February 2013 

[14] B.T. Benjamin Khoo, B. Veeravalli, T. Hung, and C.W. 

Simon See.2007.A multi-dimensional scheduling scheme 

in a Grid computing environment," Journal of  Parallel and 

Distributed Computing, Vol. 67, pp. 659-673.  

[15] B. Yagoubi, and Y. Slimani.2007.Task Load Balancing 

Strategy for Grid Computing, Journal of Computer 

Science, Vol. 3, No. 3, pp. 186-194.  

[16] Huyn zhang, chanle wu, Q.xiong, and L.Wu,G. Ye. 2006. 

Research on an Effective Mechanism of Task Scheduling 

in Grid Environment. In IEEE, Fifth International 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

24 

Conference on Grid and Cooperative Computing 

(GCC’06). 

[17] E. Elmroth, and J. Tordsson.2008.Grid resource brokering 

algorithms enabling advance reservations and resource 

selection based on performance predictions, Journal of 

Future Generation Computer Systems, Vol. 24, pp. 585-

593.  

 

[18] F. Dong, J. Luo, L. Gao, and L. Ge.2006.A Grid Task 

Scheduling Algorithm Based on QoS Priority Grouping, In 

the Proceedings of the Fifth International Conference on 

Grid and Cooperative Computing (GCC’06), IEEE.  

[19] B. Yagoubi, and Y. Slimani.2007.Task Load Balancing 

Strategy for Grid Computing, Journal of Computer 

Science, Vol. 3, No. 3, pp. 186-194.  

 
 


