
International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

24 

Validation of Component based Software Development 

Model using Formal B-Method 

 
Asif Irshad Khan* 

Ph. D Scholar,  
Dept. of Computer 

Science,  
Singhania University, 

Jhunjhunu, Rajasthan, 
India 

 
 

Md. Mottahir Alam 
Dept. of  Computer 

Engineering, 
Faculty of Engineering, 

King Abdulaziz  
University, Jeddah,  

Saudi Arabia 
 
 

Noor-ul-Qayyum  
Faculty of Computing  

&  
Information Technology,  

King Abdulaziz  
University, Jeddah,  

Saudi Arabia 
 

 

Usman Ali Khan 
Faculty of Computing  

& 
 Information Technology,  

King Abdulaziz 
University, Jeddah, 

Saudi Arabia 
 

 

ABSTRACT 

IT industry in the present market situation faces high demand 

for performance and burgeoning user expectations; with the 

pressure manifesting itself in three forms – Development 

Cost, Time-to-market and Product Quality. One of the 

relevant techniques in this context is Component Based 

Software Development (CBSD) with a targeted and 

discriminative approach influencing all phases of 

development.  

Although this approach offers great benefits of reusing ready-

made components such as reducing time-to-market products 

and development costs, it also poses serious questions on the 

correctness of created systems. In this paper a methodology is 

proposed using a formal B-method approach, which supports 

formal stepwise development with refinement to model 

component-based systems in view of interaction among 

components. The proposed methodology is illustrated by a 

case study; Atelier B. is used to generate proof obligations 

and executable code automatically. 

Keywords  

Component Based Software Development, CBD, Formal B 

Method, Formal analysis, Software reuse and Model 

checking, interoperability, compatibility, adaptation, 

assembly. 

1. INTRODUCTION 

Now day’s software is being used in everywhere from airways 

to railways, healthcare, telecommunications, security systems, 

weather forecast, earth quake alarm etc, software’s are 

controlling every aspects of our life. Reliability and accuracy 

of software’s plays a very crucial role as failure of software 

results in human losses and properties damage. For instance, 

now a day, with inbuilt advanced software systems, airplanes 

can fly in auto flight and auto control mode with less human 

intervention during the flight. Therefore, it is very important 

to rigorously check the functionalities of safety critical 

software. Researchers have proposed several techniques to 

effectively deal with these conflicting scenarios and draw 

optimized output. For critical systems formal methods are 

used to reason rigorously about the correctness of the 

program. Formal methods are techniques that are based on 

mathematical techniques and tools for the development and 

analysis of software systems.  And can be applied at various 

points through the software development cycle.  Correctness 

of the resulting product can be checked by applying 

appropriate mathematical modeling and analysis tool.  

However, there is no 100 percentage assurance of the 

correctness of the resulting product, but formal method 

techniques increase the level of correctness of the resulting 

product. Mostly formal methods are used in the development 

of safety critical systems where the cost of faults is 

unacceptable and it is very high. 

The component-based development (CBD) uses 

independently developed components to build software. The 

motivation behind the re-use of software components is to 

reduce development costs and time-to-market and increase 

product quality. CBD if applied as per recommendation and 

consideration can reduce development costs remarkably and 

speed up the development process to meet the deadline, while 

enhancing the quality, flexibility and maintainability of the 

produced systems [1]. It is widely accepted that it is more 

reliable to reuse software than to create.  

A component is an encapsulated unit characterized by its 

interfaces (provide and require services) that is meant for 

straightforward composition. Moreover, it is usually believed 

that a component interacts with its environment solely through 

its interfaces, and is designed in a way that it knows nothing 

about the environment it becomes a part of, as it should be 

reusable in different contexts [1]. 

Components provide and require services through public 

interfaces. The provide services are the operations performed 

by the component. Require services are the operations that the 

component needs in order to complete it’s provide services 

and produce results. The interfaces of a component provide 

specification of the public services that are provide and 

require by the component [2]. Since the components are 

developed with no knowledge of their deployment context, 

the main issue is the correctness of the coordination and 

collaboration logic among components, focusing on 

interaction among components using their interfaces. 

In this paper software Atelier B [3] is used for writing formal 

approach to modeling component-based systems in view of 

interaction among components. Atelier B is one of the tools 

supporting the B Method and has facilities for automatic 

verification and code generation. Atelier B tool is helpful in 

system prototyping, project management and documentation.  

The paper is organized as follows: Section 2 covers brief 

overview of Formal Methods and Formal Specification 

Methods. Section 3 discussed related work. Section 4 provides 

an overview of Improved Component Based Software 

Development (ICBD) Model. Section 5 discussed about ICBD 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

25 

Model evaluation using formal B method and lastly, Section 6 

draws conclusions. 

2.  Formal Methods 

The idea of program verification is not a new concept, it is 

used in software engineering and other fields since mid of 

nineteenth century. The field has evolved dynamically and 

today, there are many intellectual and automatic tools and 

techniques available for program analysis and verification. 

Modern software development inevitably requires the design 

and analysis of a number of different artifacts. Formal 

methods allow the mathematically precise formulation of 

some of these artifacts. For instance, formulas in predicate 

logic capture operational requirements, state machines 

describe the behavior of code fragments and protocols, and 

object models capture static designs.  

The advantage of using these formal notations is that they 

typically improve the overall quality of the artifacts by reveal 

and remove ambiguity, inconsistency and incompleteness and 

enabling automatic analyses that establish desirable 

properties. Consequently, the use of formal methods is 

indicated in domains in which the software has to meet very 

high quality standards and failure cannot be tolerated such as 

air-traffic control.  

Moreover, the abstraction and automation capabilities of some 

formal techniques present a powerful weapon against the 

ever-increasing complexity of software. It is not necessary to 

apply formal methods to every aspects of a major system. 

Components that are safety critical should only be built using 

formal methods. 

Formal methods are not a guarantee of correctness. It is 

possible that the final system, even when developed using 

formal methods, may have small omissions, minor bugs, and 

other attributes that do not meet expectations. 

Mathematical models are used to describe the Systems and 

safety predictions can be analyzed and thoroughly verified.  

Formalizations can be categorized based on the Levels of 

Rigor, when chosen manually it is considered as low 

formalization, logical and discrete mathematics are used to 

reviews and inspections of the proposed mathematical model.  

Formal specification language with type checking is 

considered as Medium formalization and fully formal 

specification language with rigorous semantics and proof 

checking is considered Fully Formalizations. Formal 

Specification Methods are as follows: 

2.1 Formal Specification 

 The Purpose of Formal Specification is to state what system 

should do without describing how to do it. It is used mostly to 

translate the non-mathematical descriptions of a system like 

specifications written in natural language or using some 

diagrams, tables or pseudo code into formal specifications 

using mathematical notation with precisely defined 

vocabulary, syntax and semantics. Formal Specification also 

explains techniques that help discover problems in system 

requirements, the specification of a system uses a precise and 

unambiguous language like Z, B-method, VDM or CSP. 

Formal specifications may be used as a guide to the tester of a 

component in identifying appropriate test cases. In the early 

phases of software development Formal specification can be 

helpful in reducing requirements errors as it forces a detailed 

analysis of the requirements. Incompleteness and 

inconsistencies can be discovered and resolved.  

2.2 Formal Proofs  

In formal proof, formal notation and proof are written to 

reason about program correctness, instead of using a natural 

language to do the same. Most formal proofs are based in a 

"formal language" composed either of a subset of normal 

language or in symbols. A mathematical formal proof, for 

instance, is expressed using the symbols used in mathematics 

and does not rely at all on verbal language. In many cases, 

words are substituted for symbols so that even a non-

mathematical formal proof can be understood in the form of 

simple symbolic logic without the use of potentially-

ambiguous words. 

2.3 Model Checking 

Using Computer based tool to automatically perform model 

checking is done using Model Checker. Now days there are 

several Model checkers available, these model checkers have 

their own specific language for expressing the models, their 

properties and used special algorithm to implement the model 

checking. Some of the popular model checkers are SPIN, 

NuSMV and SAL. 

2.4 Formal B – Method 

B methods are specification method based on a mathematical 

formalism to build models. For refining, specifying and 

implementing software B method is considered as a right tool 

in the field of Formal methods.  B methods are used to prove 

that a model is consistent in every possible case and mainly 

used for systems specification and software development. [4] 

B methods follows an incremental approach in which first an 

abstract model of the system is defined which can be refined 

gradually step by step by adding further details until reached 

to implementation stage. [5]. The high degree of automation 

in verifying correctness improves scalability of B, speeds up 

development and, also, requires less mathematical training 

from the users. 

Abstract machines are used to describe the Software systems 

in B method. Each abstract machine is expressed by set of its 

variables and operations, operations are used for modifying 

the variables values as per the specification. Abstract machine 

encapsulates a state and operations on the state [4]. 

3. RELATED WORK 

Dorian et.al. [4] conducted an experimental study to merge 

software development approach using component-based 

methodology  in an effort to manage complexity and to 

maximize reuse employing the formal B-method. Software 

properties like behavior and attributes are expressed in the 

specifications. The authors developed a tool to generate code 

in the spirit of the component approach from B specifications. 

Xiaoli et.al. [5] proposed a framework for code generation 

using B formal specification based on component based 

method. Formal B abstract machines are used to derive 

software components according to their relativity. The derived 

software component can be translated into code directly by 

using proved translation rules. The whole system can be 

developed by applying assembly rules to software 

components [5]. Assembly strategies play an important role to 

produce the trustworthiness of generated code by the 

correctness of B abstract machines. 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

26 

Interoperability between the different components in 

component-based software and system development is an 

issue and is addressed by Hatebur et.al. [6]. The authors 

proposed a methodology to address this issue. Interoperability 

is guaranteed by the use of the B method with its underlying 

concept of refinement [6].  

To test and/or validate B-related experiments, open source 

and standardized format tools are easily available online [7] 

such as BRILLANT. This tool is helpful in validation 

formalisms (e.g., model-checking). All the necessary 

resources for building BRILLANT are available on the 

website dedicated to collaborative and free software 

development [7]. 

Zaremski et.al. [8] compare two software components to find 

if one component can be substituted by another. Components 

behavior is model using formal specification technique and 

Larch prover is used to prove matching components 

specification.   

Ledang H. [9] addressed the problem of modeling in B object-

oriented specifications in his research paper. He proposed a 

framework for software development based on objects and B 

from the requirements elicitation to the executable code. 

Moreover, B tool is used for the formal verification and 

analysis of object-oriented requirements models.  

Authors Liu and Xiaoli [10] proposed a lightweight 

framework which transforms requirement documents written 

in natural language to executable codes. For the correctness of 

software development, B formal method is used. 

In the framework [10], firstly elements and relations of the 

target system are acquired from the requirement documents 

through natural language analysis. Then modules are drawn 

using entities and relationship as per the composition clauses 

in B method. These modules are transformed in B 

specification which further refined into B implementation, and 

finally the B implementation is translated into executable 

codes. 

4. OVERVIEW OF THE IMPROVED 

COMPONENT BASED SOFTWARE 

DEVELOPMENT MODEL 

Reuse of existing artifacts is the essential aspect of the 

Component Based Software Development. These reusable 

artifacts have already been done with system requirement, 

architecture, components and case study. In this section we 

mentioned an overview of ICBD Model which has been 

empirically studied by Asif et.al.  [11]. 

4.1 Component Based Software 

Development Lifecycle 

The core phases of our improved CBSD model are: 

i. System Requirement and Analysis 

ii. System Design 

iii. Component Identification and Adaption 

iv. Component Integration Engineering 

v. System Testing and Acceptance 

vi. System Release and Deployment 

These phases are shown in Fig 1. Fig 2 shows the details view 

of our ICBD model. A brief discussion about the model is as 

follows: 

4.2 System Requirement, Specification 

and Decomposition 

The first crucial step in developing an application for 

stakeholders is to study the system requirements by a team of 

software analyst for requirement elicitation. In CBSD this step 

is conducted by reviewing existing system requirement 

documents if any, and having meeting with the stakeholders.  

After collecting the requirements comprehensively, 

requirement analysis process starts to identify common 

requirements of the system and subsystems, and to find 

potential reusable software components [12].  

The major outcomes of this phase include system 

requirements outline and identification of the components that 

can be reuse on the common requirements as system analysts 

has knowledge of available components in the in-house 

repository. 

4.3 Component Requirement and 

Selection 

Based on the collected system requirements, a system 

architecture model is designed by matching requirement 

approach. From the system requirements the software team 

determines that which of the software requirements can be 

considered to composition rather than building them from 

scratch.  

At this stage a complete cost benefit analysis is required to 

identify various cost factors involved in adopting the 

component. These cost benefits analysis assists in making a 

decision to reuse a component or to acquire COTS [13]. 

4.4 Component Adaptation and 

Verification 

As candidate component is selected, issues related to its 

capability and fitness in the architecture need to be addressed 

too. The selected component should be fit in the system 

architecture design, a study usually being done to know how 

far the selected component is compatible with the system 

architecture.   

Similarly verification of the component is being made through 

the software metrics and cost benefit analysis techniques [12]. 

Moreover the software architecture must be scalable so that 

the components can be easily integrated into the system.  



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

27 

 

 

Fig 1:  An Improved Model for Component Based Software Development [11] 

 

 

Fig 2: Detail view of Improved Model for Component Based Software Development [11] 

4.5 Component Assembly, Wrapping 

and Gluing 

Development of an application that involves integration of 

different components needs communication among the 

components through an interface or “glue”. Component 

wrappers help in isolating a component from rest of the 

system components. Additionally, component wrappers are 

also useful in mapping data representations. 

4.6 System Implementation  

During implementation phase, no coding is required 

theoretically, however in practical, coding is usually required 

because all functionalities are rarely found in a component. 

4.7 System Testing and Verification  

The purpose of testing an application is to investigate whether 

the software going to be delivered to the customer is a quality 

System Release and 

Deployment 

System Testing and 

Acceptance 

 

Component 

Integration  

Engineering 

 

 

System Requirement 

And Analysis 

 

System  

Design 

Component 

Identification and 

Adaption  

 

 

Repository 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

28 

product and it really works according to the given 

requirements and specifications. 

In case of CBSD, the lack of details about component source 

code and design make it very difficult to track the faults while 

using COTS components. This may cause difficulty in testing 

of individual components and integrated systems.  

4.8 System Deployment  

The system deployment phase involves successful release of 

the complete product to the customer in the specified 

environment so the software is made available to the customer 

for use. System deployment is a complex endeavour therefore 

it must be delivered using some specialized tool to make the 

deployment easy from the customer perspective.   

4.9 System Maintenance  

Up-gradation and substitution of components are the main 

tasks of the system maintenance in a CBD model. System up-

gradation usually occurs when a COTS supplier releases a 

new version of a component or when a new COTS component 

is outdated. Modifications to the code wrappers and glue code 

are required in this phase. 

5. CASE STUDY: A SIMPLE 

ELEVATOR CONTROL SYSTEM 

We illustrate our purpose of study with a case study of a 

simple Elevator (Car) Control System. 

5.1 System Requirement and Analysis 

A simple car has the basic functionality of all modern elevator 

systems have, such as car position, accept car calls, show car 

direction up or down, car door status open, closing, closed, 

opening, Door obstructed. Further, an elevator controller has 

provisions in the cases of emergency, and alarm notification. 

The car itself consists of several parts: A door, which can be 

opened and closed by a motor. Sensors inform the control 

system about the door position. A light sensor can detect 

objects while the door is closing. The elevator car engine 

moves the car up or down [14]. 

Passenger use car to move from one floor to another floor 

which is generally numbered from 0 to N, where N is the top 

floor and 0 is ground floor. Floor Number Displays indicate 

which floor an elevator is on. Each elevator cabin has one 

floor number display. The terminal floors and other selected 

floors shall be used by the controller to check the correct floor 

value.  

Passengers arrive at the car randomly and are served in 

queued request, they exits the car at Elevator arrived at floor, 

when the car is parked with the doors closed, the door opening 

cycle shall be initiated.  

There are car call buttons in the car corresponding to each 

floor. At the destination floor car must stop and door should 

open for a timed time, also, car door must be closed before the 

car starts her service. An open/close button is inside an 

elevator cabin and is used for opening and closing elevators 

doors. 

Passengers know the current moving direction of the car on a 

lantern. For any hazardous situation emergency brake should 

be triggered and the car should be forced to stop. 

 

 

Fig 3: Use case diagram of the system 

Fig 3 shows use case diagram model of the design view of the 

system. Use case diagrams are generally used to modeling the 

behavior of a system or a class or a subsystem. Mainly use 

case diagrams show actors their association relationships and 

dependency. 

Move Elevator: This is the main functionality of the car, the 

job of the car is to read the hall calls and move the car to that 

floor. The car serves the calls in sequence, stopping always at 

the nearest call floor. 

Indicate Floor number: This use case includes the passenger 

wish to go to a particular floor.  

Trigger Help Button: This is located inside the car and is 

used to make an alarm sound. This use case includes the 

passenger safety mechanisms in case of any emergency. 

Open / Close Door: The car should be able to open and close 

the door for the passenger to get in and out of the car. An 

open/close button is inside an elevator cabin and is used for 

opening and closing elevators doors.  

The door stays open for some defined time to allow 

passengers to enter or exit the car, If, while the door closes, 

the optical sensor is interrupted or the floor’s request button is 

pressed by a user, the door must open again. After a shorter 

specified waiting time the door closes again. If no hall calls is 

in memory, the car moves in waits state at the same floor.  

Indicate Position and Direction: This use case is helpful 

for the passenger to know the current movement direction of 

the car (up/down) as well as the floor position indicated via 

lantern.  

Trigger Emergency Break: This use case is used in case 

of any unusual things happened while the car is in operation.  

Passenger: Is someone who uses elevator to transport from 

one floor to another. 

5.2 System Design and overall 

Architecture of Elevator access 

control system 

We use the general model of an elevator system and map it to 

our elevator model. Fig 4 shows the resulting component 

structure. These components mapped to the elevator control 

system specification.  

Further, a partial view of the Architecture of 

Elevator access control system is shown in Fig 5. In the 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

29 

architecture we have illustrated main component 

ElevatorControl related to the system requirements. As 

mentioned earlier in the paper components interact with the 

environment using require and provide interface or in other 

words a component has its behavior defined in terms of 

require and provide interface.  

 

  

 

 

 

Fig 4: Component architecture of Elevator system 

 

 

Fig 5: Partial view of the architecture of Elevator control system 

 

Provide interface is the services which the components offers. 

It is what the component does, they are denoted by “socket” 

symbol, while require interface is what the component 

requires or needs to do its job. They are denoted by “lollipop” 

symbol. 

Two interfaces as shown in Fig 7 and Fig 8, 

modeled by class diagram with their behavior is mentioned in 

the class diagram. Elevtor_Provd corresponds to the provide 

interface of the ElevatorControl corresponding to the 

component identification and Elevtor_Req is the require 

interface.  

Enumeration data types are defined are as they are 

perfect for representing the state/status of the problem, further 

enumeration is a collection of variable constants and the 

business concept of the problem is reinforced because of the 

strong typing. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

30 

/* Elevator Control 

 * Author: Asif Khan 

 * Creation date: 2/10/2013 

 */ 

MACHINE 

    Elevator_Provd     

VARIABLES 

     elevator_Status , elevator_Floor, 

Num 

INVARIANT 

    elevator_Status ∈ ELEVATOR_STATUS ∧ 

    elevator_Floor ∈ ELEVATOR_NOS 

INITIALISATION 

    elevator_Status := Wait , 

    elevator_Floor := Ground 

OPERATIONS 

    doStart = 

      PRE   elevator_Status := Wait 

      THEN  elevator_Status := Ready 

      END 

 

    doAutoOpenDoor = 

      PRE   elevator_Status := Ready 

      THEN  elevator_Status := Open 

      END 

 

    doAutoCloseDoor = 

      PRE   elevator_Status := Open 

      THEN  elevator_Status := Close 

      END 

 

    doMove (Num)= 

      PRE   elevator_Status = Close ∧ 

            Num = ELEVATOR_NOS 

      THEN  elevator_Status := Busy ∧  

            elevator_Floor:= Num  

END 

END   

 

 

Fig 6: Provide interface Elevator_Provd 

 

/* Elevator Control 

 * Author: Asif Khan 

 * Creation date: 2/10/2013 

 */ 

MACHINE 

     Elevator_Req 

VARIABLES 

     up_button, down_button, elevator 

_status 

INVARIANT 

    up_button ∈ DIRECTION ∧ 

    down_button ∈ DIRECTION ∧  

    elevator_Status∈ ELEVATOR_STATUS 

INITIALISATION 

    up_button, down_button = Off, Off 

OPERATIONS 

    doMoveUp = 

      PRE up_button = Off ∧  

          down_button = Off  

      THEN   

          up_button = On 

      END 

  

     doMoveUp = 

      PRE up_button = Off ∧ 

                   down_button = Off 

      THEN   

          down _button = On 

      END 

    doReadFloor(Num) = 

      PRE   elevator_Status = Close 

      THEN   

           elevator_Status = Wait 

END 

END  

 

 

Fig 7:  Require interface Elevator_Provd 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

31 

5.3 Component Identification and adaptation 

(available components) 

Reusability of the component can be determined in terms of 

formal specifications that precise described component 

behavior. In addition, they are described in terms of a domain 

model that can be reused across applications [15].  

Component Identification result in a component that satisfies 

a problem specification. Selected component need to go 

through adaptation process in some cases multiple 

components need to be combined to solve the problem [15]. 

The interface between the control system and the 

environment is defined in this diagram. We identified 

available three components, namely 

EmergencyControlServices, Indicator, and Door. 

Functionalities of these three selected are known by their 

interface description as shown in Fig 8, 9 and 10. Formal B 

methods are used to validate their behavior and control 

specifications. 

 

Fig 8: Component Emergency Control Services and it’s 

require and provide interface. 

Component EmergencyControlServices:  

EmergencyControlServices component equipped with provide 

and require interface. In case of the emergency situation this 

component will be used to control the car and the job of the 

component is to make sure emergency break should be 

applied and Car moves to the closest floor and cancels all 

requests, Car open doors and keeps them open, and the system 

does not accept any more requests. 

EmergencyControlServices component require interface 

ECS_Req give information to its elevator controller by two 

defined methods as shown Fig 8. The provide interface of the 

component are applied using three methods 

applyEmergencyBreak, showWarningindicators and 

ApplyAutoOpenDoor. 

The component Door: As shown in Fig 9. This component 

is used to control the doors of the car. Door functionality of 

the car is handled by this component’s provide interface 

namely, Door_Provd which contains 3 behavior to make sure 

that door open or close safely and handle any interruption. 

The Door component require interface namely, Door_Req 

contains 5 methods and autocloseRequest behavior sends 

signals to close the door after allotted timeout is reached to 

expiry.  

 

Fig 9: Component Door and it’s require and provide 

interface. 

Component Indicators: As shown in Fig 10 this 

component is used to show direction of the car (up and down), 

also, this component provide services name Indicator_provd 

mainly the current car floor. Warning message is flashed on 

the lantern in case any problems detected by the car. 

Indicator_provd contains 3 Indicator_Req component contains 

2 methods. 

 

Fig 10: Component Indicator and it’s require and provide 

interface 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

32 

5.4 Component Integration and 

assembly 

Different components are assembled using a define 

architecture. Require and provide interfaces of the different 

component play a crucial role in component assembly.  

In general, deals with the different types of interfaces i.e. 

provide and require for all the candidate components those are 

connected to it. This component assembly realizes all the 

require interfaces of the considered components using their 

provide interfaces. A gluing algorithm is written to obtain the 

require attribute from the attribute of the provide interfaces. 

UML 2.0 architecture of the component assembly is show in 

Fig 11, and its refinement is shown in Fig 12. Some of the 

tasks performed by this component assembly architecture can 

be listed underneath: 

 It realizes the require interfaces Elevator_Req of 

ElevatorControl, 

 It realizes the require interfaces ECS_Provd of 

EmergencyControlServices, 

 It uses the provide interfaces of the existing components 

such as Door, Indicator,  EmergencyControlServices and 

Database 

 

Fig 11: UML 2.0 Component Assembly diagram 

 

 

 

Fig 12: B Architecture of Component Assembly Refinement 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

33 

5.4.1 A gluing priori correctness Algorithm 

The glue algorithm as shown in Fig 13 plays a vital role in the 

integration of different component in CBSD methodology. 

The glue algorithm helps in the integration of mismatching 

components and in the implementation of missing 

functionalities of the require specifications of the software 

system, to satisfy stakeholder requirements. This gluing 

algorithm addresses timely identification of possible 

mismatches between component interfaces and missing 

functionalities. The glue algorithm performs two checks: 

i. Check on Component interfaces using all the 

require and provide interfaces. 

ii. Component code specification and 

verification to identify mismatches between 

require and provide interfaces. 

With the help of component certification [16], we can 

determine the a priori correctness of the integrated 

solution. A certified component ensures that its 

interface is properly specified and its code should be 

verified against its specifications [17]. 

  

Algorithm:   A priori gluing algorithm 

 

1. Input Interfaces, code and specification of each component 

2. Output A priori correctness result ( in terms of 0 and 1) 

3. for i= 1 → n do                                                                         ▷ for each component 

4.                Ci  = check (Interfaces) ∧ verify (code, specification) 

5. end for  

6. result =     
      

7. if   result   == 1     then 

8.       return 1;       ▷ A priori correctness check : PASS 

9. else 

10.     return 0;       ▷ for each component check : FAIL 

11. end if 

 

Fig 13: A priori gluing algorithm 

 

5.5  Refinement in Component 

Assembly using Formal B-Method  

 

Refinement ensures that the resulting implementation 

conforms to the initial abstract specification. The basic 

principle of formal B method is refinement or incremental 

approach. The refinement process starts from creating an 

abstract albeit implementable specification and finishes with 

generating an executable code [18]. 

The intermediate stages yield the specifications containing a 

mixture of abstract mathematical constructs and executable 

programming artefacts [18]. Fig 14 shows Component 

Assembly Refinements. 

 

/* Elevator Control (Assembly_Comp_Ref) 

* Author: Asif Khan 

* Creation date: 2/16/2013 

*/ 

REFINEMENT 

    Assembly_Comp_Ref 

REFINES 

    Assembly_Comp 

SEES 

    Type 

INCLUDES 

    elevator.ElevatorControl_Prd 

    database.Database_Prod 

    light.Indicator_Prod 

 

    door.Door_Prod 

    ecs.EmergencyControlServices_Prod 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

34 

INVARIANT 

    (light.UpIndicator=ON ∧ 

    elevator.ElevatorStatus=ready ∧ 

    light.Indicator=ON ∧ 

    door.status ∈{open,close}) 

    ⇒ UP_Button=ON ∧ Down_Button=OFF ∧ 
light_indicator=FloorNO 

    ∧ (light.DownIndicator=ON ∧ 

    elevator.ElevatorStatus=ready ∧ 

    light.Indicator=ON ∧ 

    door.status ∈{open,close}) 

    ⇒ Down_Button=ON ∧ UP_Button=OFF ∧ 
light_indicator=FloorNO 

OPERATIONS 

    doorAutoClose=  

    BEGIN       

            timer.start(10);         

        IF  timer.expire() ∧ 
door.interference()=null  

        THEN        

            light.indicator=ON; 

            Elevator.Status=Busy; 

            door.autoclose();  

        END  

    END 

    floorRead= 

    BEGIN  

        IF  doorAutoClose()=true ∧ 
Elevator.Status=Busy  

        THEN  

            Elevator.Read=FLOOR_NO;  

        END  

    END 

    elevatorMove= 

    BEGIN  

        IF   doorAutoClose()=true ∧ 
Elevator.Status=Busy ∧ Elevator.Read=ℕ    

        THEN 

            ASSERT 

                ¬(FLOOR_NO ≠ℕ) ; 

            Elevator.doMove(FLOOR_NO); 

            light.indicator=FLOOR_NO; 

        END  

    END   

    endFloorReached=  

    BEGIN 

        IF 

            Elevator.Floor=FLOOR_NO 

        THEN  

            light.indicator=FLOOR_NO; 

            Elevator.Status=wait; 

        END 

    END  

    doorAutoOpen 

    BEGIN  

        IF Elevator.Status=wait ∧ 
Elevator.Floor=FLOOR_NO  

        THEN  

            door.autoopen();  

            timer.start(10);  

            Elevator.Status=Busy;  

        END  

    END  

END 

 

Fig 14: Component Assembly Refinements 

6. CONCLUSION 

In this paper we proposed a formal methodology based on the 

refinement paradigm to specify and validate our CBD model 

with a case study of a simple elevator control system. Under 

this approach, the components are selected based on the 

requirements, and then, a composition is defined using B 

method to validate the correctness of the created system. We 

also proposed a priori gluing algorithm which helps in the 

integration of mismatching components and in the 

implementation of missing functionalities of the require 

specifications of the software system. 

Further we proposed a refinement-based composition 

technique keeping a separation between use and realize 

components in order to build correct automated systems 

satisfying user requirements. The advantage of the refinement 

approach for verification is that properties which hold in 

abstraction are preserved by refinement. 

7. REFERENCES  

[1] B. Zimmerov´a 2008. Modelling and Formal Analysis  of 

Component-Based Systems in View of Component 

Interaction. PhD thesis, Masaryk University, Brno, 

Czech Republic. 

[2] Mubarak Mohammad & Vangalur Alagar (2011): A 

formal approach for the specification and verification of 

trustworthy component-based systems. J. Syst. Softw. 

84, pp. 77–104, doi:10.1016/j.jss.2010.08.048. 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.9, April 2013 

35 

[3] Atelier B, ClearSy System Engineering, Aix-en-

Provence, France, available for download [online] 

http://www.atelierb.eu/en/download-atelier-b/ 

[4] Petit, Dorian, Vincent Poirriez, and Georges Mariano 

2004. "The B method and the component-based 

approach." Journal of Design & Process Science: 

Transactions of the SDPS 8.1 (2004): 65-76. 

[5] Xiaoli, Liu, et al. 2007. Code Generation from B 

Specification based on Component Oriented Approach in 

Information Technologies and Applications in Education, 

2007. ISITAE'07. First IEEE International Symposium 

on. IEEE, 2007. 

[6] Hatebur, D., Heisel, M., Souquières, J. 2006. A method 

for component-based software and system development. 

In: Proceedings of the 32tnd Euromicro Conference on 

Software Engineering And Advanced Applications, pp. 

72–80. IEEE Computer Society Press, Los Alamitos 

(2006). 

[7] Colin, Samuel, et al. 2005. "BRILLANT: An open source 

and XML-based platform for rigourous software 

development." Software Engineering and Formal 

Methods, 2005. SEFM 2005. Third IEEE International 

Conference on. IEEE, 2005. 

[8] Zaremski, A.M., Wing, J.M. 1997. Specification 

Matching of Software Components. ACM TOSEM 

6(4):333-369, (1997) 

[9] Ledang H. 2001. Formal techniques in the object-

oriented software development： an approach based on 

the B  method[J].LORIA，2001，13（12）：1-5. 

[10] Liu, Xiaoli 2009. B Method Based Framework for 

Correct Software Development,  International 

Conference on Computational Intelligence and Software 

Engineering,CiSE, 1 - 4 , 2009 

[11] Asif Irshad Khan , Noor -ul-Qayyum , Usman Ali Khan 

2012.  An Improved Model for Component Based 

Software Development in Software Engineering, Vol. 2 

No. 4, 2012, pp. 138-146. doi: 10.5923/j.se.20120204.07. 

[12] Sajid Riaz 2012. Moving Towards Component Based 

Software Engineering in Train Control Applications, 

Final thesis, Linköpings universitet, Sweden, 2012. 

[13] Critical software practices, Pro-Concepts LLC,Online 

Available: 

http://www.spmn.com/www2/16CSP.html#system 

[14] Frank Strobl and Alexander Wisspeintner, Speciation of 

an Elevator Control System, TECHNISCHE 

UNIVERSITAT ,MUNCHEN , 1999 , available [Online] 

http://www4.informatik.tu-

muenchen.de/publ/papers/elevator.pdf 

[15] Penix, J. 1998. Automated Component Retrieval and 

Adaptation Using Formal Specifications. PhD thesis, 

University of Cincinnati. 

[16] Morris,  John, et al. 2001  Software  component  

certification.  Computer  34.9 (2001):  30-36. 

 

 

 

[17] K.-K.  Lau  and  M. Ornaghi 2001.  A Formal  Approach  

to Software Component Specification, Proceedings  of 

Specification and  Verification of Component- based 

Systems Workshop  at OOPSLA2001,  pages 88-96, 

Tampa, USA, Oc- tober 2001. 

[18] L. Laibinis and E. Troubitsyna 2004. Refinement of 

Fault Tolerant Control Systems in B. In M.Heisel, 

P.Liggesmeyer, and S.Wittmann, editors, Computer 

Safety, Reliability, and Security - Proceedings of 

SAFECOMP , number 3219 in Lecture Notes in 

Computer Science, pages 254-268. Springer-Verlag, Sep 

2004. 

Author’s Profile 

Asif Irshad Khan received his Bachelor and Master degree 

in Computer Science from the Aligarh Muslim University 

(A.M.U), Aligarh, India in 1998 and 2001 respectively. He 

has more than eight years experience of teaching as lecturer to 

graduate and undergraduate students in different universities 

and worked for four years in industry before joining academia 

full time. He has published more than 16 research papers in 

reputed International journals. Currently, he is a research 

scholar at Department of Computer Science, Singhania 

University, Jhunjhunu, Rajasthan, India. His current research 

interests include software engineering with a focus on 

Component Based and Agent Oriented Software Engineering. 

Md Mottahir Alam has around six years of experience 

working as Software Engineer (Quality) for some leading 

software multinationals where he worked on projects for 

companies like Pearson and Reader’s Digest. He is ISTQB 

certified software tester. He has received his Bachelors degree 

in Electronics & Communication and Masters in 

Nanotechnology from Faculty of Engineering and 

Technology, Jamia Millia Islamia University, New Delhi. He 

has several papers in international journals. 

He is presently working as a Lecturer in the Faculty of 

Electrical and Computer Engineering, King Abdul Aziz 

University, Jeddah, Saudi Arabia. His research interest 

includes Software Engineering, Component Based Software 

Engineering and Agent Based Software Engineering. 

Mr. Noor-ul-Qayyum received his Master degree in 

Information Technology from National University of Sciences 

and Technology, in 2009. He is currently working as a 

lecturer in King Abdul Aziz University. He has industry 

experience in SCORM based e-learning courseware 

development using ADDIE model. His research interest 

includes e-learning, software watermarking, and mobile agent 

security issues. 

Dr. Usman Ali Khan: is an Associate Professor in the 

Information Systems Department, Faculty of Computing and 

Information Technology, King AbdulAziz University, Jeddah, 

Saudi Arabia.  He received his Ph.D. in Software Engineering 

from the Integral, University, India. He has been working is 

the field of research and teaching at graduate and 

undergraduate level since 1995. He has published many 

research papers at national and international forums.   

 

http://www.spmn.com/www2/16CSP.html#system
http://www4.informatik.tu-muenchen.de/publ/papers/elevator.pdf
http://www4.informatik.tu-muenchen.de/publ/papers/elevator.pdf

