
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

32

The A-r-Star (
) Pathfinder

Daniel Opoku
Department of Electrical and

Computer Engineering

North Carolina Agricultural and
Technical State University

Greensboro, NC 27411

Abdollah Homaifar
Department of Electrical and

Computer Engineering

North Carolina Agricultural and
Technical State University

Greensboro, NC 27411

Edward Tunstel
Research and Exploratory
Development Department

Johns Hopkins University Applied
Physics Laboratory

Laurel, MD 20723

ABSTRACT
This paper presents a variant of the A-Star () pathfinder for

robot path planning called
 (pronounced A-r-Star)and

demonstrates that the
 algorithm outperforms in a

uniformly gridded sparse world and gives performance

matching that of in a uniformly gridded cluttered world.

This algorithm is simple to implement and understand. It

alsohighlights the performance advantages of the
 algorithm

and proves its properties experimentally and analytically

(where appropriate). Some challenges affecting the

performance of
 have been presented and some solutions to

these challenges have been developed and implemented. The

performance of
 has been compared to running on both

uniform and multi-resolution grids of different world

scenarios. Results show that on a sparse high-resolution

uniform grid world
 ’s search speed scales well and it

outperforms by an exponential factor.

General Terms
Artificial Intelligence, Algorithms, Pathfinder, Graph Search

Keywords
Pathfinder, Path Planning, A-r-Star, A-infinity-Star, Multi-

resolution, Path Smoothing

1 INTRODUCTION
Many researchers have studied path planning for robotics [1]

using occupancy grid map representations of the world. In this

context, the world is usually considered as a finite area within

which a robot will operate. Here the map is represented as a

mesh of nodes spread over the continuous space of locations

in the world. Each node, of the mesh is parameterized

by its occupancy , or probability of being occupied by an

object or obstacle. Thus, for the 2D binary occupancy grid

such as that used in this paper, expresses an occupied

node and expresses an unoccupied node. For robotic

path planning, the 2D grid is often used to represent a slice of

a 3D world. The path planning problem is stated as: Given a

start node and goal node belonging to a given grid world, find

the shortest unblocked path connecting them. This paper

presents a novel algorithm,
 (pronounced A-r-Star), a

modified version of the pathfinder for path planning in a

uniform grid world. This new algorithm outperforms path

planning in a sparse uniformly gridded world and matches

in a cluttered world. The
 algorithm essentially interweaves

the building of a non-uniform grid out of a uniform gridded

world with path-finding. When given a uniform grid world,

 decimates the nodes within a given radius/range (r) and

forms bigger nodes out of them. It has been shown both

experimentally and analytically (where appropriate) that

possesses most of the desirable features of . Besides, some

challenges that affect the performance of
 have been

identifiedand some strategies to mitigate them have been

developed thereby bringing
 ’s performance close to optimal.

The performance of
 has been compared to running on

both uniform grids and multi-resolution grids of different

world scenarios. Results show that, when running on sparse

high dimensional, high resolutiongrid worlds,
 ’s

performance scales well (linearly) with increasing grid size

and outperforms by an exponential factor.

The rest of the paper is organized as follows. Section 2

presents a literature review of related pathfinders. Section

3presentsthe motivation for developing the
 algorithm

followed by the description of in Section 4. The new

pathfinder
 is presented in Section 5 followed by the

description of its properties in Section 6, challenges in Section

7 and suggested solutions in Section 8. Section 9 presents

results of simulation experiments highlighting algorithm

properties followed by conclusion and future work in Section

10.

1.1 Nomenclature
 = finite set of all nodes to be searched, ;

 set of all unoccupied/unblocked nodes;

 set of all blocked nodes;

 set of all the nodes that ever make it to the

list, thus ;

 set of all the nodes on the list, thus
 ;

 cardinality of set ;

 an individual node, ;

 cost of traversing from node to its neighbor ;
 = starting node;

 = goal node

 cost of moving from to ;

 = estimated heuristic cost of moving from node

to ;

 = set of all the successors of ;

 = set of all the predecessors of ;

 parent of ,

2 LITERATURE REVIEW
The heuristic search method, [2] is by far the most

commonly used in artificial intelligence for solving minimum

distance path planning problems due to its simplicity and

ability to find an optimal obstacle-free path if and only if one

exists between a given start node and a goal node. Moreover,

if the heuristic function used for the cost modeling never

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

33

overestimates the actual minimal cost of reaching the goal

(i.e., it is admissible) then is admissible and thus always

optimal (i.e., it will explore/expand the minimum possible

number of nodes necessary) [3]. Subsequently, the use of the

 algorithm for path planning in both robotics and video

games has increasingly gained popularity. To use for path

planning given a 2D map of the environment, one first

reduces the robot size to a point robot and enlarges the

obstacles in the environment by the radius of the robot’s

cross-section (using configuration space computation) [4][5].

This ensures that the robot can traverse any path of empty

nodes returned by the search algorithm without colliding with

an obstacle. Given start and goal nodes, the algorithm

searches through continuous obstacle free 4-connected or 8-

connected nodes (depending on application) for a path with

minimum cost from the start to goal, where the cost of a path

is the sum of the costs of its arcs or segments.

The algorithm has limitations that make its application to

some especially large grid worlds unattractive. One of the

limitations is that the search time increases exponentially

with increasing grid size. This is so because finding adjacent

nodes with lowest cost, can be time consuming due to

the growing size of the OPEN list, a data structure storing the

nodes to be evaluated. Also, insertion of a node onto the

OPEN list involves computation of the node’s associated costs

which makes searching through many nodes very

computationally expensive. Various solutions have been

suggested in literature to mitigate this challenge such as the

following [6]:

(i)The OPEN list can be implemented with a priority queue

data structure sorted according to the cost function,).

Thus, determination of the node with lowest cost reduces to

simply popping the priority node of the queue. The priority

queue creation takes time[7]and thus the time scales

linearly with fast growing OPEN lists;

(ii) Instead of using a list/queue, if memory is not a limiting

resource, the OPEN list can be implemented with arrays using

memory allocation and access routines to reduce the time it

takes to find the node with lowest cost function to ;

(iii) A low resolution/coarse grid can be used with fewer

nodes to search, and hence permits faster run time. However,

coarse discretization of the continuous world can result in the

creation of unrealistic paths where an obstacle is close to the

boundary (see Figure 1) and it can also place a node beyond

reach especially in a cluttered environment (see Figure 2);

(iv) The use of a multi-resolution grid representation of the

environment is another way to solve this problem in a sparse

world. This involves preprocessing the world into a non-

uniform grid representation such as quadtrees. Using this

approach involves an initially high capital cost in building the

world map. However, once that is completed, it yields good

run time performance in terms of search speed. Hence, this

approach is suitable for planning in a static world.

Regarding solution (iv) described above,small obstacles and

protrusions from irregular obstacles in a region result in the

creation of small obstacle nodes due to the recursive nature of

the quadtree. These fragment the free space, giving rise to an

undesirable increase in the depth of the quadtree and the

number of leaf nodes and consequently increasing the cost of

the search [8].

 usually returns a ‘kinky’ path (path with many unnecessary

turns) making its direct usage by a robot impractical. Post

smoothing and interleaved smoothing techniques are usually

employed to remove these kinks [9].

 , being an offline search technique works on the assumption

that the world is fully known and unchanging. Whenever the

robot observes a discrepancy between the given map and the

navigation world that affects the planned path (e.g., a node on

the path is unexpectedly blocked), it has to re-plan a new path

starting anew from its current position. This becomes

unbearable in even a moderately slow changing environment

with high-dimension grid. Despite its optimality, the gross

inefficiency accumulating from multiple re-plans may require

a high-performance computer for real-time operation.

In effect, is best suited for offline path planning in a static

world. This has prompted the development of a vast number

of incremental path planning techniques. Anthony Stentz’s

 [10] is by far the most popular among the incremental

search techniques. is capable of planning paths across the

spectrum of fully known to unknown environments in an

efficient, optimal, and complete fashion. As in , the

environment is modeled as a graph, where each node

represents a robot state (e.g., a location in a house), and each

arc represents the cost of moving between two states (e.g.,

distance to travel). initially exploits the available

information contained in the map (if any) to plan a path from

the goal to the robot’s position in a way similar to . The

robot then starts navigating using this path while

simultaneously observing its environment through its sensors.

If the robot discovers that the path is blocked (path changes

are handled as arc cost changes), it calls on to plan a new

path. propagates information about the arc cost changes

minimally to all affected nodes in the graph to compute a new

optimal path[11]. The robot repeats this process until it

reaches the given goal or accrues enough information to

establish that the goal is unreachable. This makes its

application in a dynamic world attractive. However, the

initial planning of a takes longer time since it operates as a

Breadth-First Search. [12] is an extension of

that uses heuristics to focus the search to significantly reduce

(a) Continuous world
(b) The course
gridded world

(c)The fine gridded
world

Figure 1: How increasing resolution can help graph search

algorithms.

(a) Continuous

world
(b) The course gridded

world
(c)The fine

gridded world

Figure 2: How increasing resolution can help graph

search algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

34

the total time required for both the initial path calculation and

subsequent re-planning operations thereby making the

 algorithm a full generalization of for dynamic

environments. applies to

robot navigation in unknown terrain, including goal-directed

navigation in unknown terrain and mapping of unknown

terrain[13]. The algorithm is easy to understand and

analyze;it implements the same behavior as

Stentz’s but is algorithmically different. The

 [14,15] algorithm is a variant of that uses

interpolation to improve the smoothness of the path returned

both in the planning and the re-planning phase.

 is a fast version of that achieves exponential speedup in

a sparse grid map. Itachieves this by interleaving path finding

with multi-resolution gridding. This reduces the number of

nodes that need to be explored in a sparse grid map, the

computational intensity and hence the speedup.

3 MOTIVATION
Map building using fixed node decomposition (i.e., the

continuous world is tessellated into a discrete approximation

of the continuous map) is inexact resulting in the loss of

narrow passages in this transformation. The higher the

resolution of the grid, the closer the approximation is to the

continuous world. But increasing the resolution introduces

more free nodes and increases the search space leading to a

sparse grid. The map of most indoor environments can be

considered sparse if decomposed into nodes of high

resolution. Applying to a sparse grid is not attractive since

its run time is on the order . To solve this problem,

multi-resolution gridding [8, 16] is usually adopted so that

areas around obstacles receive high resolution gridding and

areas far from obstacles are represented by much courser

gridding. But building multi-resolution/adaptive grids

requires more work in the decomposition than building

uniform/fixed node grids. Besides, determining which node a

given position belongs to and finding the neighbors of a given

node in a multi-resolution grid is a non-trivial task [17]. The

motivation is therefore to develop a complete and correct

search algorithm that can plan paths in high-dimension, high-

resolution grid maps faster. This will enable us to handle

large grid sizes and thus encourage increasing the resolution

of the grid without the need for multi-resolution.

4 A-STAR () ALGORITHM

DESCRIPTION
 is a best-first search algorithm that finds the least costly

path from an initial configuration to a final configuration in a

given finite and static grid world. It uses an estimate of the

start distance and heuristic estimation of the goal

distance to define a cost/sorting function,

(i.e.,). Generally, the algorithm

maintains two lists namely list and list. The

 list is a priority queue of all the states which have at

least one of their predecessors already explored and as such

are potential candidates for next exploration. The

list holds the candidates that have been explored at least once

(and often the blocked nodes). The algorithm starts with an

empty list and populates it with the starting node. At

the beginning of every iteration, the node with the minimum

cost , is popped from the list. If that is the goal

node, the algorithm terminates and follows back pointers to

extract the shortest path (i.e., the path with minimum cost).

Else, that node is placed on the list and then

expanded (i.e., the neighbors are generated and conditionally

placed on the OPEN list).It proceeds with the iteration until

the goal node is expanded or the list becomes empty in

which case it returns ‘no path found’. The pseudocode is

shown in Algorithm 1.

5 A-R-STAR (
) ALGORITHM

5.1 Definitions
Node Distance of from is defined as the fewest

number of nodes that will be touched by a straight line

connecting s and (see Figure 3). This is equivalent to the

distance from to using the ‘chessboard’ distance metric.

Thus, two nodes with different Euclidian distances can have

the same node distances.

Level-R-Neighbors of a node comprise all nodes within

node distances equal to R from . This implies that the Level-

1-Neighbors of are its 8 contiguous neighbors (see Figure

3). Here Rrefers to the radius of the ‘ball’ (a box in the case

of square grid) formed by connecting the centers of all Level-

R-Neighbors.

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{13}

{14}

{15}

{16}

{17}

{18}

{19}

{20}

{21}

{22}

{23}

{24}

{25}

{26}

{27}

{28}

{29}

{30}

{31}

{32}

{33}

{34}

{35}

{36}

{37}

Algorithm 1: The A* algorithm Pseudo code

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

35

5.2 Algorithm Description and

Implementation
The

 algorithm is a modified version of the algorithm that

interweaves node decimation with path-finding in a uniform

grid/mesh. For a given node, counts only immediate nodes

(4- or 8- connected nodes) as its neighbors. This implies that

even when all the nodes in a particular area are similar, it will

still do some computation for all of them. The effect is that, if

an obstacle blocks the direct line of sight close to the goal, the

number of nodes needed to be explored more than doubles

(see Figure 4) which translates into increasing the search time.

Figure 3: Showing the Level-R-Neighbors for a given node

 All the nodes at a given level bear their node

distance and is the Euclidean distance and is the node

distance (). Here .

Using the idea from non-uniform mesh building[18], a cluster

of nodes with similar characteristics can be represented with a

bigger node with minimal loss of information (see Figure 5).

Figure 4: Showing (a) how responds to an obstacle; (b)

‘kinky’ path returned by and smooth path after post

process. The circles indicate the nodes that were explored

before the path was found.

The
 algorithm therefore allows collapsing of such nodes

into a single node with properties that are commensurate with

the union of those nodes (see Figure 5). For multi-level

terrain, one will use a distance transform [19, 20] to identify

changes in the nodes; but for the binary occupancy grid such

as the one used in this paper, the task reduces to identifying

the nearest obstacle to the current node. The overall effect is

reduction in the number of nodes needed to be explored,

computation cost and increased search speed in a sparse

uniform gridded world. The ‘star’ in the name does not

suggest that it always finds an optimal path, it is just intended

to retain its resemblance toits namesake, . The r stands for

radius (range) defined as the maximum allowable radius (in

node distance) of a ‘ball’ of nodes that can be counted as the

neighbors of a given node (see Figure 3). Thus, only Level-R-

Neighbors are considered during the search where .

Figure 5: The nodes at Level-1 to Level-3 decimated to

form one big node with the original Level-4-Neighbors of

 now forming the neighbors of the new node.

Let the node distance fromthe closestobstacle node to a given

node be , then at the end of the search
 . Implementation-wise, this is achieved by searching for

the minimum R such that at least one of the Level-R-

Neighbors of a node being expanded belongs to the set of

blocked nodes. Then all nodes in the neighborhood of such

that are tagged as skip nodes () and

nodes such that are returned as the Level-R-

neighbors.The pseudocode for the algorithm is similar to that

of with two modifications. The first modification is done

to the Expand subroutine and the resulting algorithm is

referred to as
 . This is achieved by replacing the

lines {21} to {28} in Algorithm 1 by the lines in Algorithm 2.

{21}

{22}

{23}

{24}

{25}

{26}

{27}

{28}

{29}

{30} and

{31}

{32}

{33}

{34}

{35}

{36}

{37}

{38}

Algorithm 2: First modification resulting in the Basic

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

36

Note that nodes that are tagged skip will never make it to the

 list (Algorithm 2 line {30}) but a node might make it

to the list before being tagged as skip. Thus, in the

 algorithm, tag open dominates/overwrites tag skip.

The second modification is to switch the tag dominance to

skipdominating open. Thus, nodes that made it to the

list from one node before being tagged as skip from another

node will not be expanded (i.e., they will stay on the

 list till the algorithm terminates). The resulting

algorithm after the last modification is called the

algorithm. The
 pseudocode can be derived from the

 by inserting the lines in Algorithm 3 after the line

{10} in Algorithm 1.

{11}

{12}

Algorithm 3: Second modification resulting in the

5.3 Finite Radius (r) vs. Infinite Radius (∞)
The choice of can be fixed from the start of the algorithm to

a finite value. For example, choosing reduces the

algorithm to
 which is essentially . But choosing an

appropriate finite value for requires absolute knowledge of

the environment since the choice of affects the performance

of the algorithm. The simplest solution is to allow the

algorithm toevolve and discover the valueof r during the

search. This is achieved by pegging the value of r at infinity

(i.e., choosing). This leads to what is referred to as the

 (A-Infinity-Star). Here, infinity (∞) is defined as

where is the radius of the biggest ‘ball’ of continuous free

nodes available in the search space. It is trivial to derive that

for an grid world, always holds (strictly less

because the node under consideration cannot be counted as

part of the radius and is undefined for).

5.4 Choice of Level-R-Neighbors Generator

(LRNG)
TheLRNG function is responsible for generating Level-R-

Neighborsof a given node . A good choice of the

LRNGfunction should return at everyLevel-R, all and only the

nodes at radius R from as the Level-R-Neighbors of . This

is a necessary condition for
 to be complete and correct. On

square grids, choosing the LRNGis a trivial task but this is not

trivial when other geometric shapes are used for the gridding.

5.4.1 Theorem 1
If the Level-R-Neighborhoodgeneration function of

 at every

Level-Rreturns all and only the nodes at radius from s for

 then the
 algorithm is complete and correct.

Proof:Let us assume the contrary that the path,

 returned by the algorithm is incorrect, thus

there exists at least one between and , , such

that . This will imply that a blocked node got

expanded by the algorithm which contradicts the line of

Algorithm 2 and therefore cannot be true. Similarly, let us

assume that a path actually exists but
 did not find a path.

This will imply at a certain Level-R, the algorithm failed to

return a node and hence assumed there was not a path

available. This is the necessary condition for a function to

qualify as an LRNG and hence poses a contradiction that

cannot surface.

6 PROPERTIES OF THE A-R-STAR

(
) ALGORITHM

6.1 Completeness
Like , the

 algorithm is complete meaning it will find a

path if one exists between the start and the goal node. The

condition for completeness solely depends on the as

stated in Theorem 1.

6.2 Correctness
The correctness property holds for the

 algorithm. This

implies that if
 does return a path for a given starting and

ending node, then that path is a truly unblocked path (that is,

the path exists and is correct).

6.3 Termination in Finite Time
The use of the CLOSED list and the tagging ensure that

expands (or tags) every node once. Since the world is

an grid, where is finite, it is implicit that the

algorithm will terminate in finite time.

6.4 Convergence to A*
The performance of the

 (and for that matter
)

approaches that of for worlds with increasing clutter. Let

us define a perfectly cluttered 2D world as a grid

configuration such that every Level-1-Neighbor of
 contains at least one . Given a perfectly

cluttered world, the
 will be forced not to tag any node as

skip. Thus,
 will implicitly operate as

 which is

essentially .

6.4.1 Theorem 2
In a perfectly cluttered world,

 and
 converge to

 for all positive integer values of .

Proof:Assume the set is a perfectly cluttered 2D

environment. Then every Level-R-Neighborhood of a free

cell will contain at least one and

thus ; from subsection 5.2,

 for all nodes. But the
 runs at Level-R = 1

throughout the search and so it is intuitive that after the

search, and hence the proof.

6.5 Any Angle Path Planning
Most of the grid-based path planning algorithms that operate

on a 2D world use discrete state transitions that are artificially

constrained to a small set of possible headings angles

(e.g.,

 etc.). The ramification is that the path returned by

even the optimal grid planner will not be the shortest possible

continuous path (see Figure 4). The
 algorithm is not

constrained to a finite set of angles. This means that it

sometimes returns a more natural and smooth path than .

The
 algorithm under sparse conditions can therefore be

considered as an‘any angle path planner’.

6.6 Reaction to Obstacle
The

 algorithm reacts to an obstacle by planning in small

steps till it avoids the obstacle. This mimics intuitive

navigating behavior. Much caution is taken when navigating

close to an obstacle than when navigating far from an

obstacle.

6.7 Definitions
Given two nodes, and , a node pathisdefined as any

chain of nodes , such that every belongs

to the Level-1-Neighbors of and iff and

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

37

 . A continuous path is an unbroken curve

drawn from the center of to the center of without passing

through a blocked node. Let be the set of all

continuous paths linking the centers of and , and let

 be a specific continuous path linking the centers of

and . Define . Thus, for a

given grid map, if (i.e.,

there is an unobstructed straight line path from to) then

 = a straight line.

7 CHALLENGES OF THE A-R-STAR

(
) ALGORITHM

7.1 Bulges

 usually returns a path with in it (see Figure 6).

This is a major challenge to the performance of
 . Given two

nodes, and , if and

 straight line, then is called a

path and, in general, any

 is said to be a bulged path. This definition implies

that a ‘kink’ is a type of bulge (see Figure 4). There are two

main causes of bulges in
 ; namely, angular constraint

(kinks)and premature tagging. Angular constraint occurs

around obstacles where the algorithm navigates in small steps;

the navigation angles are thus artificially constrained to a

small set of angles. Premature taggingoccurs due to local

minima. The greedy heuristic of
 is initially drawn into a

local minimum. This is accompanied by the tagging of nodes

as skip. When the algorithm bounces back from the local

minimum, these nodes which were prematurely tagged as skip

are not considered for expansion and this creates a bulge.

Figure 6: An example of a path planned by
 highlighting

the challenges posed by bulges and bulge elimination using

post smoothing.

7.2 Non-optimality
Due to bulges, the path returned by

 is not always optimal.

Bulges introduce extra cost into the sorting function by

increasing the estimated goal distance thereby placing some

nodes at a disadvantage. The goal distance becomes

dependent on the configuration of the obstacles in the

environment. Consequently, does not always

imply during the search (where is the

actual optimal path between and). Thus, unlike the

 algorithm,
 does not always guarantee an optimal path.

8 PROPOSED SOLUTIONS TO THE

CHALLENGES

8.1 Bulge Removal: Post Dissociative

Smoothing (PDS)
A Post Dissociation Smoothing (PDS) algorithm similar to

that outlined in [9]has been developed and implemented to

eliminate the bulges in the path returned by
 . This shortens

the path and gets it closer to the shortest possible path.

Algorithm 4 shows the pseudocode for the PDS.

Both and are derived from the

Bresenham line drawing algorithm similar to that in [9].

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{13}

{14}

{15}

{16}

Algorithm 4: Post Dissociative Smoothing Algorithm

8.2 Non-optimality: Interleave Smoothing

with Post Dissociative Smoothing (IS-

PDS)
Some path configurations cannot be smoothed into the

shortest possible/optimal path. To increase the chances of

returning a path that can be smoothed to optimal, the search

has been interleaved with the smoothing algorithm. This is

similar to the idea in [9]. The post dissociative smoothing is

then applied to the path as a post process. Note that PDS can

be applied iteratively from goal to start and vice versa until

subsequent application does not shorten the path by a distance

greater than (where is a user defined threshold). This

results in Interleave Smoothing with Iterative Post

Dissociative Smoothing (IS-IPDS). To implement the

interleave smoothing; replace the function of

the
 algorithm with Algorithm 5.

Bulge

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

38

9 SIMULATIONEXPERIMENT

RESULTS
In this section,simulation experiments have been used to

highlight the properties of the
 /

 pathfinder and

show its performance as compared to on different world

scenarios using both uniform and non-uniform gridding. The

simulations were developed using MATLAB (2011b, The

MathWorks) running on PC with the Windows 8 OS. The

simulation world comprises a grid of size (which

amounts to 65536 nodes). The performance parameters

include: (a) Search Time: the time it takes to plan a path; (b)

Number of cells on OPEN list: the total number of cells that

ever made it to the OPEN list throughout the search; (c)

Number of cells explored: the number of cells that were

actually explored before the goal was reached. In addition,

example pathfinder applications to maze solving and indoor

navigation are presented.

9.1 Effect of Congestion/Clutter on Performance of A-Star and Basic A-r-Star and A-r-Star
In the first experiment, the simulation environment was populated with obstacle nodes having congestion/clutter probability varied

from 0 to 0.75, and with and . Results are shown in Figure 7. It was observed that no path existed

beyond congestion probability of 0.6. Since over half of the nodes are occupied, it makes sense that searching from one extreme

corner of the world to another will not have an unblocked path. Secondly, as the clutter increases, the number of free nodes decreases

and this explains the sudden reduction in the graphs of performance parameter values after congestion probability of 0.55. The

simulation results in Figure 7 demonstrate that
 and

 converge to beyond some degree of congestion (Theorem 2).

(a) Search Time (b) Instance of the environment at clutter probability of 0.5

(c) Size of OPEN list (d) Number of nodes explored

Figure 7: The effect of congestion/clutter on ,
 and

 operating on a uniform grid world

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Se
ar

ch
 T

im
e

/s
e

c

Congestion Probability/clutter

A-Star

Basic-A-r-Star

A-r-Star-IS

0

5000

10000

15000

20000

25000

N
u

m
b

e
r

O
f

C
e

lls
 o

n
 O

P
EN

Li

st
/C

e
lls

Congestion Probability/clutter

A-Star

Basic-A-r-Star

A-r-Star-IS

0

5000

10000

15000

20000

25000

N
u

m
b

e
r

O
f

C
e

lls
 E

xp
lo

re
d

/C
e

lls

Congestion Probability/clutter

A-Star

Basic-A-r-Star

A-r-Star-IS

{38}

{39}

{40}

{41}

{42}

{43}

{44}

{45}

{46}

{47}

{48}

{49}

{50}

{51}

{52}

{53}

{54}

Algorithm 5: Interleave Smoothing (IS)

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

39

9.2 Effect of Changing Obstacle Configuration on Performance of A-Star and Basic A-r-Star

and A-r-Star (Sliding Obstacle)
This simulation experiment shows thatchanging the obstacle configuration has little effect on

 performance whereas it can drastically

degrade the performance of operating in a sparse world such as the one shown in Figure 8 (b). The obstacle is assumed to be a long

rigid wall in the environment separating the and . The horizontal position of this obstacle was

varied from 11 to 231 and the performances of the pathfinders were recorded after each run.

(a) Search Time (b) Instance of the environment

(c) Size of OPEN list (d) Number of nodes explored

Figure 8: The effect of changing obstacle configuration on ,
 and

 operating on a uniform grid world

9.3 Effect of Changing and Configuration on Performance of A-Star and Basic A-r-

Star and A-r-Star in the presence of a Concave Obstacle
This simulation experiment shows that

 can better handle a large concave obstacle than . The obstacle is assumed to be a large

rigid concave wall in the environment separating the and . Table 1 shows the nine different combinations of and

 used to generate the performance results shown in Figure 9. Different instances, where and are either symmetrical

or skewed towards one end of the obstacle were chosen as well as their combinations.

Table 1. The nine different Start and Goal combinations for the simulation in this section

Simulation START GOAL

 X Y X Y

1 5 5 251 5

2 5 5 251 128

3 5 5 251 251

4 5 128 251 5

5 5 128 251 128

6 5 128 251 251

7 5 251 251 5

8 5 251 251 128

9 5 251 251 195

0

20

40

60

80

100

120

140

160

180

11 31 51 71 91 111 131 151 171 191 211 231

Se
ar

ch
 T

im
e

/s
e

c

Obstacle Position

A-Star

Basic-A-r-Star

A-r-Star-IS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

11 31 51 71 91 111 131 151 171 191 211 231

N
u

m
b

e
r

o
f

ce
lls

 o
n

 O
P

EN

Li
st

/c
e

lls

Obstacle Position

A-Star

Basic-A-r-Star

A-r-Star-IS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

11 31 51 71 91 111 131 151 171 191 211 231

N
u

m
b

e
r

o
f

ce
lls

 E
xp

lo
re

d
/c

e
lls

Obstacle Position

A-Star

Basic-A-r-Star

A-r-Star-IS

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

40

(a) Search Time (b) Instance of the environment at simulation 5

(c) Size of OPEN list (d) Number of nodes explored

Figure 9: The effect of changing start and goal node position with respect to a large concave obstacle on ,
 and

operating on a uniform grid world

9.4 Effect of Increasing the Resolution of the Same Environment on Performance of A-Star,

Basic A-r-Star and A-r-Star
This simulation shows that increasing the resolution of the same environment degrades the performance of exponentially but that of

 only degrades linearly. The obstacle is assumed to be a long rigid wall in the environment separating and . The

resolution of the grid was varied from to . At each resolution, the performances of the pathfinders were recorded. This

confirms the assertion in Section 2 that search time increases exponentially with increasing the grid size.

(a) Search Time
(b) Instance of the environment at resolution of (i.e. at

scale)

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

Ti
m

e
 U

se
d

/s
e

c

Simulation

A-Star

Basic-A-r-Star

A-r-Star-IS

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

ce
lls

 o
n

 O
P

EN

Li
st

/c
e

lls

Simulation

A-Star

Basic-A-r-Star

A-r-Star-IS

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

ce
lls

 E
xp

lo
re

d
/c

e
lls

Simulation

A-Star

Basic-A-r-Star

A-r-Star

0

20

40

60

80

100

120

1

0.
95

0.
9

0.
85

0.
8

0.
75

0.
7

0.
65

0.
6

0.
55

0.
5

0.
45

0.
4

0.
35

0.
3

0.
25

0.
2

0.
15

0.
1

0.
05

Se
ar

ch
 T

im
e

/s
e

c

Scale

A-Star

Basic-A-r-Star

A-r-Star-IS

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

41

(c) Size of OPEN list (d) Number of nodes explored

Figure 10: The effect of changing the gridding resolution of a given continuous world on ,
 and

 operating on a

uniform grid world

9.5 Comparing the Performance of the A-r-Star with that of the A-Star Running on Quadtree
For this simulation experiment, an obstacle of size is placed between the start position and the goal

position . An instance of the world after quadtree decomposition is shown in Figure 11 (a) and that after the

 search in Figure 11 (b). The comparison in Figure 11 (c) and (d) shows that at certain obstacle configurations running on an

environment preprocessed into a quadtree almost always outperforms
 ;however, it must be noted that the preprocessing takes a

longer time in the quadtree case. Besides, as highlighted above in Section 2 and in [4], the performance of the quadtree approach

degrades drastically with increasing congestion.

(a) The world after quadtree decomposition (preprocessing).

White represents free nodes, gray represents node borders and

black represents obstacle.

(b) The multi-resolution grid built by A-r-Star during the search.

White represents free nodes, gray represents node borders and

black represents obstacle.

(c) The search time comparison (d) The preprocessing time for the quadtree

Figure 11: (a) Quadtree decomposition; (b)
 –derived multi-resolution grid (c) performance comparison for operating on a

quadtree and
 operating on a uniform grid of the same continuous environment; (d) associated quadtree processing time.

9.6 APPLICATION 1: Solving a Maze Problem with the A-Star and Basic A-r-Star and A-r-

Star Algorithms
Artificial intelligence search algorithms are often used to solve maze problems that are common in tortuous games such as the Pacman

Maze Game. Such maze problems are similar, and equivalent in some cases, to pathfinding problems faced by robots operating in

maze-like environments such as building floorplans and underground mines, for example. The first application is to use the three

pathfinder algorithms to solve a simple 256 x 256 maze problem. Figure 12 shows the maze and respective paths found between the

indicated start and goal nodes. The performances of the algorithms are summarized in Table 2. Here, the path length is measure using

0

5000

10000

15000

20000

25000

30000

35000

40000

1

0.
95

0.
9

0.
85

0.
8

0.
75

0.
7

0.
65

0.
6

0.
55

0.
5

0.
45

0.
4

0.
35

0.
3

0.
25

0.
2

0.
15

0.
1

0.
05

N
u

m
b

e
r

o
f

ce
lls

 o
n

 O
P

EN

Li
st

/c
e

lls

Scale

A-Star

Basic-A-r-Star

A-r-Star-IS

0

5000

10000

15000

20000

25000

30000

35000

40000

1

0.
95

0.
9

0.
85

0.
8

0.
75

0.
7

0.
65

0.
6

0.
55

0.
5

0.
45

0.
4

0.
35

0.
3

0.
25

0.
2

0.
15

0.
1

0.
05

N
u

m
b

e
r

o
f

ce
lls

 E
xp

lo
re

d
/c

e
lls

Scale

A-Star

Basic-A-r-Star

A-r-Star-IS

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

42

the Euclidean distance. Note that the paths returned by
 and

 have bulges that make the path suboptimal. These bulges can

be eliminated using the techniques proposed in Section 9, as shown in Figure 6.

Table 2. The Performance Comparison of the Three Algorithms for the Maze Problem Solving Problem

Algorithm Time Used (sec) Path Length (units)

Number of cells on

Open List (cells)

Number of cells

Explored (cells)

A-Star 122.45 779.39 37378 37142

Basic-A-r-Star 102.62 795.77 33011 31581

A-r-Star-IS 17.47 789.56 14980 14675

Figure 12: How ,
 and

 operating on a uniform grid world solves a maze problem

9.7 APPLICATION 2: Path planning in a Simulated Home using A-r-Star Pathfinder
The next application involves using

 for path finding in a simulated 3D home environment which was developed using Webots as

shown in Figure 13 (a). Webots [21] is commercial software for robotic systems prototyping and simulation. A prototype of the

Pioneer 2DX robot was run in this environment to build a binary occupancy grid map using a simulated SICK Laser Measurement

Sensor (LMS) 200. (The prototype for the robot and sensor come with Webots.) A 2D map representing the floorplan of the home

environment is then fed to
 to plan a path from a point in the fitness room to a destination in the living room. The result is shown in

Figure 13 (b).

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

43

(a) The Webots Prototype of the home environment

(b) A binary occupancy grid map of the environment showing the path

(center line), the obstacle zone (black nodes), the skip zones (gray

nodes) and the obstacle-free zone (white nodes).

Figure 13: Path planning in a prototype home environment using the
 pathfinder

10 CONCLUSION AND FUTURE WORK
This paper presents a new pathfinder called

 for offline path

planning that outperforms the pathfinder in a uniform

gridded sparse world. It also presents various demonstrations

of some of the desirable properties of this algorithm and

provesthat the performance of this new algorithm matches that

of the pathfinder running on a quadtree decomposed world.

More research is being performed to extend the algorithm to

operate on non-binary grid worlds and to develop an

incremental version of this algorithm, and the results will be

compared with the performance of the incremental pathfinders

(and its variants.

11 ACKNOWLEDGMENT
This material is based in part upon work supported by the

National Science Foundation (NSF) under Cooperative

Agreement No. DBI-0939454. Any opinions, findings and

conclusions are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

12 REFERENCES
[1] Cikes, M., Dakulovic, M., and Petrovic, I. 2011. The

path planning algorithms for a mobile robot based on the

occupancy grid map of the environment; A comparative

study.In Proceedings of the XXIII International

Symposium on Information, Communication and

Automation Technologies, 1-8.

[2] Hart, P. E., Nilsson, N. J., and Raphael, B. 1968. A

formal basis for the heuristic determination of minimum

cost paths.IEEE Transactions on Systems Science and

Cybernetics 4 (2), 100-107.

[3] Dechter, R. and Pearl, J. 1985. Generalized best-first

search strategies and the optimality of A*. J. ACM 32

(3), 505-536.

[4] Kambhampati, S. and Davis, L. S. 1986. Multiresolution

path planning for mobile robots.IEEE Journal of

Robotics and Automation 2 (3) (Sep 1986), 135-145.

[5] Verwer, B. J. H. 1990. A multiresolution work space,

multiresolution configuration space approach to solve the

path planning problem.In Proceedings of the IEEE

International Conference on Robotics and Automation

2103, 2107-2112.

[6] Botea, A., Muller, M., and Schaeffer, J. 2004. Near

optimal hierarchical path-finding. Computers and Games

3, 33–38.

[7] Fredman, M. L. and Willard, D. E. 1993. Surpassing the

information theoretic bound with fusion trees. Journal of

Computer and System Sciences 47 (3), 424-436.

[8] Cowlagi, R. V. and Tsiotras, P. 2012. Multi-resolution

path planning: theoretical analysis, efficient

implementation, and extensions to dynamic

environments. In Proceedings of the49th IEEE

Conference on Decision and Control. 1384-1390.

[9] Daniel, K., Nash, A., Koenig, S., and Felner, A. 2010.

“Theta*: any-angle path planning on grids. Journal of

Artificial Intelligence Research 39, 533-579.

[10] Stentz, A. 1995. Optimal and efficient path planning for

unknown and dynamic environments. International

Journal of Robotics & Automation 10 (3), 89-100.

[11] Stentz, A. 1994. Optimal and efficient path planning for

partially-known environments.In Proceedings of the

IEEE International Conference on Robotics and

Automation 3314, 3310-3317.

[12] Stentz, A. 1995. The Focussed D* algorithm for real-

time replanning.In Proceedings of the International Joint

Conference on Artificial Intelligence.

[13] Koenig, S. and Likhachev, M. 2002. D*lite.In

Proceedings of the Eighteenth National Conference on

Artificial Intelligence, Edmonton, Alberta, Canada, 476-

483.

[14] Ferguson, D. and Stentz, A. 2007. Field D*: an

interpolation-based path planner and replanner. In Thrun,

Kitchen

Living room

Bed Room

FitnessRoo
m

WashRoom

Goal Start

Robot

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

44

S., Brooks, R. and Durrant-Whyte, H., eds., Robotics

Research. Springer Tracts in Advanced

Robotics,Springer Berlin Heidelberg, 239-253.

[15] Carsten, J., Ferguson, D., and Stentz, A. 2006. 3D Field

D: improved path planning and replanning in three

dimensions.In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems. 3381-

3386.

[16] Shih-Ying, C., Tsui-Ping, C., and Zhi-Hong, C. 2012. An

efficient theta-join query processing algorithm on

MapReduce framework.In Proceedings of the

International Symposium on Computer, Consumer and

Control . 686-689.

[17] Aizawa, K. and Tanaka, S. 2009. A constant-time

algorithm for finding neighbors in quadtrees.IEEE

Transactions on Pattern Analysis and Machine

Intelligence 31 (7), 1178-1183.

[18] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. 1992.

Decimation of triangle meshes. SIGGRAPH Comput.

Graph. 26(2), 65-70.

[19] Huang, C. T. and Mitchell, O. R. 1994. A Euclidean

distance transform using grayscale morphology

decomposition.IEEE Transactions on Pattern Analysis

and Machine Intelligence 16 (4), 443-448.

[20] Chung, K.-L., Huang, H.-L., and Lu, H.-I. 2004.

Efficient region segmentation on compressed gray

images using quadtree and shading representation.

Pattern Recognition 37 (8), 1591-1605.

[21] Michel, O. 2004. Webots: professional mobile robot

simulation. International Journal of Advanced Robotic

Systems 1 (1), 39-42.

