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ABSTRACT 
This paper presents a variant of the A-Star (  ) pathfinder for 

robot path planning called  
  (pronounced A-r-Star)and 

demonstrates that the   
 algorithm outperforms    in a 

uniformly gridded sparse world and gives performance 

matching that of    in a uniformly gridded cluttered world. 

This algorithm is simple to implement and understand. It 

alsohighlights the performance advantages of the  
 algorithm 

and proves its properties experimentally and analytically 

(where appropriate). Some challenges affecting the 

performance of   
 have been presented and some solutions to 

these challenges have been developed and implemented. The 

performance of   
 has been compared to  running on both 

uniform and multi-resolution grids of different world 

scenarios. Results show that on a sparse high-resolution 

uniform grid world  
 ’s search speed scales well and it 

outperforms    by an exponential factor.   

General Terms 
Artificial Intelligence, Algorithms, Pathfinder, Graph Search 

Keywords 
Pathfinder, Path Planning, A-r-Star, A-infinity-Star, Multi-

resolution, Path Smoothing 

1 INTRODUCTION 
Many researchers have studied path planning for robotics [1] 

using occupancy grid map representations of the world. In this 

context, the world is usually considered as a finite area within 

which a robot will operate. Here the map is represented as a 

mesh of nodes   spread over the continuous space of locations 

in the world.  Each node,     of the mesh is parameterized 

by its occupancy    , or probability of being occupied by an 

object or obstacle.  Thus, for the 2D binary occupancy grid 

such as that used in this paper,      expresses an occupied 

node and      expresses an unoccupied node.  For robotic 

path planning, the 2D grid is often used to represent a slice of 

a 3D world.  The path planning problem is stated as: Given a 

start node and goal node belonging to a given grid world, find 

the shortest unblocked path connecting them. This paper 

presents a novel algorithm,   
 (pronounced A-r-Star), a 

modified version of the    pathfinder for path planning in a 

uniform grid world. This new algorithm outperforms    path 

planning in a sparse uniformly gridded world and matches    

in a cluttered world. The   
 algorithm essentially interweaves 

the building of a non-uniform grid out of a uniform gridded 

world with path-finding. When given a uniform grid world, 

   
 decimates the nodes within a given radius/range (r) and 

forms bigger nodes out of them.  It has been shown both 

experimentally and analytically (where appropriate) that   
  

possesses most of the desirable features of  . Besides, some 

challenges that affect the performance of  
  have been 

identifiedand some strategies to mitigate them have been 

developed thereby bringing  
 ’s performance close to optimal. 

The performance of   
 has been compared to  running on 

both uniform grids and multi-resolution grids of different 

world scenarios.  Results show that, when running on sparse 

high dimensional, high resolutiongrid worlds,   
 ’s 

performance scales well (linearly) with increasing grid size 

and outperforms    by an exponential factor. 

The rest of the paper is organized as follows. Section 2 

presents a literature review of related pathfinders. Section 

3presentsthe motivation for developing the   
  algorithm 

followed by the description of   in Section 4. The new 

pathfinder   
  is presented in Section 5 followed by the 

description of its properties in Section 6, challenges in Section 

7 and suggested solutions in Section 8. Section 9 presents 

results of simulation experiments highlighting algorithm 

properties followed by conclusion and future work in Section 

10. 

1.1 Nomenclature 
  = finite set of all nodes to be searched,           ;   

   set of all unoccupied/unblocked nodes; 

    set of all blocked nodes; 

       set of all the nodes that ever make it to the      

list, thus           ; 

         set of all the nodes on the        list, thus   
       ;  

      cardinality of set  ;  

  an individual node,    ; 

         cost of traversing from node  to its neighbor   ;  
       = starting node; 

      = goal node 

           cost of moving from        to   ; 

          = estimated heuristic cost of moving from node   

to       ; 

       = set of all the successors of  ; 

        = set of all the predecessors of   ; 

           parent of  ,                      
 

2 LITERATURE REVIEW 
The heuristic search method,   [2] is by far the most 

commonly used in artificial intelligence for solving minimum 

distance path planning problems due to its simplicity and 

ability to find an optimal obstacle-free path if and only if one 

exists between a given start node and a goal node.  Moreover, 

if the heuristic function used for the cost modeling never 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.8, April 2013 

33 

overestimates the actual minimal cost of reaching the goal 

(i.e., it is admissible) then   is admissible and thus always 

optimal (i.e., it will explore/expand the minimum possible 

number of nodes necessary) [3].  Subsequently, the use of the 

   algorithm for path planning in both robotics and video 

games has increasingly gained popularity.  To use    for path 

planning given a 2D map of the environment, one first 

reduces the robot size to a point robot and enlarges the 

obstacles in the environment by the radius of the robot’s 

cross-section (using configuration space computation) [4][5].  

This ensures that the robot can traverse any path of empty 

nodes returned by the search algorithm without colliding with 

an obstacle.  Given start and goal nodes, the algorithm 

searches through continuous obstacle free 4-connected or 8-

connected nodes (depending on application) for a path with 

minimum cost from the start to goal, where the cost of a path 

is the sum of the costs of its arcs or segments. 

The    algorithm has limitations that make its application to 

some especially large grid worlds unattractive.  One of the 

limitations is that the  search time increases exponentially 

with increasing grid size.  This is so because finding adjacent 

nodes with lowest cost,      can be time consuming due to 

the growing size of the OPEN list, a data structure storing the 

nodes to be evaluated. Also, insertion of a node onto the 

OPEN list involves computation of the node’s associated costs 

which makes searching through many nodes very 

computationally expensive. Various solutions have been 

suggested in literature to mitigate this challenge such as the 

following [6]:  

(i)The OPEN list can be implemented with a priority queue 

data structure sorted according to the cost function,    ).  

Thus, determination of the node with lowest cost reduces to 

simply popping the priority node of the queue. The priority 

queue creation takes      time[7]and thus the time scales 

linearly with fast growing OPEN lists; 

(ii) Instead of using a list/queue, if memory is not a limiting 

resource, the OPEN list can be implemented with arrays using 

memory allocation and access routines to reduce the time it 

takes to find the node with lowest cost function to     ; 

(iii) A low resolution/coarse grid can be used with fewer 

nodes to search, and hence permits faster run time. However, 

coarse discretization of the continuous world can result in the 

creation of unrealistic paths where an obstacle is close to the 

boundary (see Figure 1) and it can also place a node beyond 

reach especially in a cluttered environment (see Figure 2); 

(iv) The use of a multi-resolution grid representation of the 

environment is another way to solve this problem in a sparse 

world. This involves preprocessing the world into a non-

uniform grid representation such as quadtrees. Using this 

approach involves an initially high capital cost in building the 

world map. However, once that is completed, it yields good 

run time performance in terms of search speed. Hence, this 

approach is suitable for planning in a static world.  

Regarding solution (iv) described above,small obstacles and 

protrusions from irregular obstacles in a region result in the 

creation of small obstacle nodes due to the recursive nature of 

the quadtree. These fragment the free space, giving rise to an 

undesirable increase in the depth of the quadtree and the 

number of leaf nodes and consequently increasing the cost of 

the search [8].  

   usually returns a ‘kinky’ path (path with many unnecessary 

turns) making its direct usage by a robot impractical. Post 

smoothing and interleaved smoothing techniques are usually 

employed to remove these kinks [9]. 

  , being an offline search technique works on the assumption 

that the world is fully known and unchanging.  Whenever the 

robot observes a discrepancy between the given map and the 

navigation world that affects the planned path (e.g., a node on 

the path is unexpectedly blocked), it has to re-plan a new path 

starting anew from its current position. This becomes 

unbearable in even a moderately slow changing environment 

with high-dimension grid. Despite its optimality, the gross 

inefficiency accumulating from multiple re-plans may require 

a high-performance computer for real-time operation.  

In effect,     is best suited for offline path planning in a static 

world. This has prompted the development of a vast number 

of incremental path planning techniques. Anthony Stentz’s 

  [10] is by far the most popular among the incremental 

search techniques.   is capable of planning paths across the 

spectrum of fully known to unknown environments in an 

efficient, optimal, and complete fashion.  As in  , the 

environment is modeled as a graph, where each node 

represents a robot state (e.g., a location in a house), and each 

arc represents the cost of moving between two states (e.g., 

distance to travel).    initially exploits the available 

information contained in the map (if any) to plan a path from 

the goal to the robot’s position in a way similar to    . The 

robot then starts navigating using this path while 

simultaneously observing its environment through its sensors. 

If the robot discovers that the path is blocked (path changes 

are handled as arc cost changes), it calls on   to plan a new 

path.   propagates information about the arc cost changes 

minimally to all affected nodes in the graph to compute a new 

optimal path[11].  The robot repeats this process until it 

reaches the given goal or accrues enough information to 

establish that the goal is unreachable. This makes its 

application in a dynamic world attractive.  However, the 

initial planning of   a takes longer time since it operates as a 

Breadth-First Search.           [12] is an extension of    

that uses heuristics to focus the search to significantly reduce 

   

(a) Continuous world 
(b) The course 
gridded world 

(c)The fine gridded 
world 

Figure 1: How increasing resolution can help graph search 

algorithms. 

   
(a) Continuous 

world 
(b) The course gridded 

world 
(c)The fine 

gridded world 

Figure 2: How increasing resolution can help graph 

search algorithms. 
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the total time required for both the initial path calculation and 

subsequent re-planning operations thereby making the 

  algorithm a full generalization of    for dynamic 

environments.       applies                      to 

robot navigation in unknown terrain, including goal-directed 

navigation in unknown terrain and mapping of unknown 

terrain[13]. The        algorithm is easy to understand and 

analyze;it implements the same behavior as 

Stentz’s           but is algorithmically different. The 

        [14,15] algorithm is a variant of   that uses 

interpolation to improve the smoothness of the path returned 

both in the planning and the re-planning phase.  

  
 is a fast version of  that achieves exponential speedup in 

a sparse grid map.  Itachieves this by interleaving path finding 

with multi-resolution gridding.  This reduces the number of 

nodes that need to be explored in a sparse grid map, the 

computational intensity and hence the speedup. 

3 MOTIVATION 
Map building using fixed node decomposition (i.e., the 

continuous world is tessellated into a discrete approximation 

of the continuous map) is inexact resulting in the loss of 

narrow passages in this transformation.  The higher the 

resolution of the grid, the closer the approximation is to the 

continuous world.  But increasing the resolution introduces 

more free nodes and increases the search space leading to a 

sparse grid.  The map of most indoor environments can be 

considered sparse if decomposed into nodes of high 

resolution.  Applying    to a sparse grid is not attractive since 

its run time is on the order      . To solve this problem, 

multi-resolution gridding [8, 16] is usually adopted so that 

areas around obstacles receive high resolution gridding and 

areas far from obstacles are represented by much courser 

gridding.  But building multi-resolution/adaptive grids 

requires more work in the decomposition than building 

uniform/fixed node grids.  Besides, determining which node a 

given position belongs to and finding the neighbors of a given 

node in a multi-resolution grid is a non-trivial task [17]. The 

motivation is therefore to develop a complete and correct 

search algorithm that can plan paths in high-dimension, high-

resolution grid maps faster.  This will enable us to handle 

large grid sizes and thus encourage increasing the resolution 

of the grid without the need for multi-resolution.  

4 A-STAR (  ) ALGORITHM 

DESCRIPTION 
  is a best-first search algorithm that finds the least costly 

path from an initial configuration to a final configuration in a 

given finite and static grid world.  It uses an estimate of the 

start distance      and heuristic estimation of the goal 

distance      to define a cost/sorting function,     

(i.e.,                ).  Generally, the   algorithm 

maintains two lists namely      list and       list. The 

     list is a priority queue of all the states which have at 

least one of their predecessors already explored and as such 

are potential candidates for next exploration.  The        

list holds the candidates that have been explored at least once 

(and often the blocked nodes). The algorithm starts with an 

empty      list and populates it with the starting node.  At 

the beginning of every iteration, the node with the minimum 

cost     , is popped from the      list.  If that is the goal 

node, the algorithm terminates and follows back pointers to 

extract the shortest path (i.e., the path with minimum cost).  

Else, that node is placed on the        list and then 

expanded (i.e., the neighbors are generated and conditionally 

placed on the OPEN list).It proceeds with the iteration until 

the goal node is expanded or the      list becomes empty in 

which case it returns ‘no path found’. The pseudocode is 

shown in Algorithm 1.   

5 A-R-STAR (  
 ) ALGORITHM  

5.1 Definitions 
Node Distance of     from   is defined as the fewest 

number of nodes that will be touched by a straight line 

connecting s and     (see Figure 3).  This is equivalent to the 

distance from   to     using the ‘chessboard’ distance metric.  

Thus, two nodes with different Euclidian distances can have 

the same node distances. 

Level-R-Neighbors of a node   comprise all nodes within 

node distances equal to R from  .  This implies that the Level-

1-Neighbors of   are its 8 contiguous neighbors (see Figure 

3).  Here Rrefers to the radius of the ‘ball’ (a box in the case 

of square grid) formed by connecting the centers of all Level-

R-Neighbors.   

 

{1}        

{2}                

{3}                          

{4}          

{5}                                           

{6}             

{7}                   

{8}                  

{9}                   

{10}                                   

{11}                       

{12}                               

{13}                              

{14}                

{15}                 

{16}               

{17}                       

{18}                      

{19}                                   

{20}      

{21}                  

{22}        

{23}                              

{24}                            

{25}                   

{26}                             

{27}                   

{28}     

{29}                  

{30}                               

{31}                         

{32}                  

{33}                            

{34}                     

{35}                     

{36}                                

{37}     

Algorithm 1: The A* algorithm Pseudo code 
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5.2 Algorithm Description and 

Implementation 
The   

 algorithm is a modified version of the   algorithm that 

interweaves node decimation with path-finding in a uniform 

grid/mesh. For a given node,    counts only immediate nodes 

(4- or 8- connected nodes) as its neighbors. This implies that 

even when all the nodes in a particular area are similar, it will 

still do some computation for all of them. The effect is that, if 

an obstacle blocks the direct line of sight close to the goal, the 

number of nodes needed to be explored more than doubles 

(see Figure 4) which translates into increasing the search time.   

 

Figure 3: Showing the Level-R-Neighbors for a given node 

         All the nodes at a given level bear their node 

distance and   is the Euclidean distance and   is the node 

distance ( ). Here            . 

Using the idea from non-uniform mesh building[18], a cluster 

of nodes with similar characteristics can be represented with a 

bigger node with minimal loss of information (see Figure 5). 

 

Figure 4: Showing (a) how    responds to an obstacle; (b) 

‘kinky’ path returned by    and smooth path after post 

process.  The circles indicate the nodes that were explored 

before the path was found. 

The   
 algorithm therefore allows collapsing of such nodes 

into a single node with properties that are commensurate with 

the union of those nodes (see Figure 5).  For multi-level 

terrain, one will use a distance transform [19, 20] to identify 

changes in the nodes; but for the binary occupancy grid such 

as the one used in this paper, the task reduces to identifying 

the nearest obstacle to the current node.  The overall effect is 

reduction in the number of nodes needed to be explored, 

computation cost and increased search speed in a sparse 

uniform gridded world.  The ‘star’ in the name does not 

suggest that it always finds an optimal path, it is just intended 

to retain its resemblance toits namesake,   .  The r stands for 

radius (range) defined as the maximum allowable radius (in 

node distance) of a ‘ball’ of nodes that can be counted as the 

neighbors of a given node (see Figure 3).  Thus, only Level-R-

Neighbors are considered during the search where       .   

 

Figure 5: The nodes at Level-1 to Level-3 decimated to 

form one big node with the original Level-4-Neighbors of 

       now forming the neighbors of the new node.  

Let the node distance fromthe closestobstacle node to a given 

node  be       , then at the end of the search               
     .  Implementation-wise, this is achieved by searching for 

the minimum R such that at least one of the Level-R-

Neighbors of a node being expanded belongs to the set of 

blocked nodes.  Then all nodes in the neighborhood of   such 

that         are tagged as skip nodes (           ) and 

nodes such that         are returned as the Level-R-

neighbors.The pseudocode for the algorithm is similar to that 

of    with two modifications.  The first modification is done 

to the Expand subroutine and the resulting algorithm is 

referred to as        
 .  This is achieved by replacing the 

lines {21} to {28} in Algorithm 1 by the lines in Algorithm 2. 

{21}                               

{22}        

{23}                 

{24}            

{25}                                

{26}                                  

{27}               

{28}                     

{29}              

{30}                    and            

{31}                               

{32}                    

{33}                             

{34}                                 

{35}                 

{36}        

{37}                   

{38}     

Algorithm 2: First modification resulting in the Basic   
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Note that nodes that are tagged skip will never make it to the 

     list (Algorithm 2 line {30}) but a node might make it 

to the      list before being tagged as skip. Thus, in the 

        
 algorithm, tag open dominates/overwrites tag skip.  

The second modification is to switch the tag dominance to 

skipdominating open.  Thus, nodes that made it to the      

list from one node before being tagged as skip from another 

node will not be expanded (i.e., they will stay on the 

    list till the algorithm terminates).  The resulting 

algorithm after the last modification is called the     
  

algorithm.  The   
 pseudocode can be derived from the 

       
  by inserting the lines in Algorithm 3 after the line 

{10} in Algorithm 1. 

{11}                      

{12}             

Algorithm 3: Second modification resulting in the   
  

 

5.3 Finite Radius (r) vs. Infinite Radius (∞)  
The choice of   can be fixed from the start of the algorithm to 

a finite value.  For example, choosing     reduces the 

algorithm to   
  which is essentially  . But choosing an 

appropriate finite value for   requires absolute knowledge of 

the environment since the choice of   affects the performance 

of the algorithm.  The simplest solution is to allow the 

algorithm toevolve and discover the valueof r during the 

search.  This is achieved by pegging the value of r at infinity 

(i.e., choosing    ).  This leads to what is referred to as the 

  
  (A-Infinity-Star).  Here, infinity (∞) is defined as      

where    is the radius of the biggest ‘ball’ of continuous free 

nodes available in the search space. It is trivial to derive that 

for an       grid world,        always holds (strictly less 

because the node under consideration cannot be counted as 

part of the radius and   is undefined for    ).  

5.4 Choice of Level-R-Neighbors Generator 

(LRNG) 
TheLRNG function is responsible for generating Level-R-

Neighborsof a given node  . A good choice of the 

LRNGfunction should return at everyLevel-R, all and only the 

nodes at radius R from   as the Level-R-Neighbors of   . This 

is a necessary condition for   
 to be complete and correct. On 

square grids, choosing the LRNGis a trivial task but this is not 

trivial when other geometric shapes are used for the gridding.  

5.4.1 Theorem 1 
If the Level-R-Neighborhoodgeneration function of   

 at every 

Level-Rreturns all and only the nodes at radius   from s for 

        then the   
  algorithm is complete and correct. 

Proof:Let us assume the contrary that the path, 

               returned by the algorithm is incorrect, thus 

there exists at least one    between    and  ,      , such 

that      .  This will imply that a blocked node   got 

expanded by the algorithm which contradicts the line      of 

Algorithm 2 and therefore cannot be true. Similarly, let us 

assume that a path actually exists but   
 did not find a path. 

This will imply at a certain Level-R, the algorithm failed to 

return a node      and hence assumed there was not a path 

available. This is the necessary condition for a function to 

qualify as an LRNG and hence poses a contradiction that 

cannot surface. 

 

6 PROPERTIES OF THE A-R-STAR 

(  
 ) ALGORITHM 

6.1 Completeness 
Like  , the   

 algorithm is complete meaning it will find a 

path if one exists between the start and the goal node.  The 

condition for completeness solely depends on the      as 

stated in Theorem 1. 

6.2 Correctness 
The correctness property holds for the   

 algorithm.  This 

implies that if   
  does return a path for a given starting and 

ending node, then that path is a truly unblocked path (that is, 

the path exists and is correct). 

6.3 Termination in Finite Time 
The use of the CLOSED list and the tagging ensure that     

  

expands (or tags) every node once.  Since the world is 

an       grid, where   is finite, it is implicit that the 

algorithm will terminate in finite time.  

6.4 Convergence to A* 
The performance of the   

  (and for that matter        
 ) 

approaches that of   for worlds with increasing clutter.  Let 

us define a perfectly cluttered 2D world as a grid 

configuration such that every Level-1-Neighbor of        
   contains at least one        .  Given a perfectly 

cluttered world, the   
  will be forced not to tag any node as 

skip.  Thus,   
  will implicitly operate as   

  which is 

essentially  . 

6.4.1 Theorem 2 
In a perfectly cluttered world,   

  and         
  converge to 

   for all positive integer values of .  

Proof:Assume the set   is a perfectly cluttered 2D 

environment.  Then every Level-R-Neighborhood of a free 

cell      will contain at least one          and 

thus               ; from subsection 5.2,    

          for all nodes. But the   
  runs at Level-R  = 1 

throughout the search and so it is intuitive that after the 

search,                   and hence the proof. 

6.5 Any Angle Path Planning 
Most of the grid-based path planning algorithms that operate 

on a 2D world use discrete state transitions that are artificially 

constrained to a small set of possible headings angles 

(e.g.,  
 

 
 
 

 
  etc.). The ramification is that the path returned by 

even the optimal grid planner will not be the shortest possible 

continuous path (see Figure 4).  The   
  algorithm is not 

constrained to a finite set of angles.  This means that it 

sometimes returns a more natural and smooth path than  . 

The   
  algorithm under sparse conditions can therefore be 

considered as an‘any angle path planner’.  

6.6 Reaction to Obstacle 
The   

  algorithm reacts to an obstacle by planning in small 

steps till it avoids the obstacle.  This mimics intuitive 

navigating behavior.  Much caution is taken when navigating 

close to an obstacle than when navigating far from an 

obstacle.  

6.7 Definitions 
Given two nodes,        and     , a node pathisdefined as any 

chain of nodes   ,             such that every     belongs 

to the Level-1-Neighbors of    and      iff    and   
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               .  A continuous path is an unbroken curve 

drawn from the center of   to the center of     without passing 

through a blocked node.  Let          be the set of all 

continuous paths linking the centers of   and     , and let 

      
    be a specific continuous path linking the centers of   

and   . Define                                  . Thus, for a 

given grid map, if                                (i.e., 

there is an unobstructed straight line path from   to    ) then 

          = a straight line. 

7 CHALLENGES OF THE A-R-STAR 

(  
 ) ALGORITHM 

7.1 Bulges 
  

  usually returns a path with        in it (see Figure 6). 

This is a major challenge to the performance of  
 . Given two 

nodes,   and   , if                   and           

           straight line, then           is called a        

path and, in general, any       
                   

    

          is said to be a bulged path. This definition implies 

that a ‘kink’ is a type of bulge (see Figure 4).  There are two 

main causes of bulges in   
 ; namely, angular constraint 

(kinks)and premature tagging.  Angular constraint occurs 

around obstacles where the algorithm navigates in small steps; 

the navigation angles are thus artificially constrained to a 

small set of angles. Premature taggingoccurs due to local 

minima. The greedy heuristic of   
 is initially drawn into a 

local minimum. This is accompanied by the tagging of nodes 

as skip. When the algorithm bounces back from the local 

minimum, these nodes which were prematurely tagged as skip 

are not considered for expansion and this creates a bulge.  

 

Figure 6: An example of a path planned by   
  highlighting 

the challenges posed by bulges and bulge elimination using 

post smoothing. 

 

7.2 Non-optimality 
Due to bulges, the path returned by  

  is not always optimal.  

Bulges introduce extra cost into the sorting function by 

increasing the estimated goal distance thereby placing some 

nodes at a disadvantage.  The goal distance becomes 

dependent on the configuration of the obstacles in the 

environment.  Consequently,             does not always 

imply               during the search (where        is the 

actual optimal path between        and   ). Thus, unlike the 

   algorithm,   
  does not always guarantee an optimal path. 

8 PROPOSED SOLUTIONS TO THE 

CHALLENGES 

8.1 Bulge Removal: Post Dissociative 

Smoothing (PDS) 
A Post Dissociation Smoothing (PDS) algorithm similar to 

that outlined in [9]has been developed and implemented to 

eliminate the bulges in the path returned by   
 .  This shortens 

the path and gets it closer to the shortest possible path.  

Algorithm 4 shows the pseudocode for the PDS.  

Both   and               are derived from the 

Bresenham line drawing algorithm similar to that in [9]. 

{1}              

{2}                               

{3}                   

{4}                     

{5}                     

{6}                      

{7}               

{8}                       

{9}              

{10}                      

{11}             

{12}                       

{13}           

{14}                        

{15}                   

{16}     

Algorithm 4: Post Dissociative Smoothing Algorithm 

 

8.2 Non-optimality: Interleave Smoothing 

with Post Dissociative Smoothing (IS-

PDS) 
Some path configurations cannot be smoothed into the 

shortest possible/optimal path.  To increase the chances of 

returning a path that can be smoothed to optimal, the search 

has been interleaved with the smoothing algorithm.  This is 

similar to the idea in [9].  The post dissociative smoothing is 

then applied to the path as a post process.  Note that PDS can 

be applied iteratively from goal to start and vice versa until 

subsequent application does not shorten the path by a distance 

greater than   (where   is a user defined threshold).  This 

results in Interleave Smoothing with Iterative Post 

Dissociative Smoothing (IS-IPDS). To implement the 

interleave smoothing; replace the            function of 

the   
 algorithm with Algorithm 5. 

 

Bulge 
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9 SIMULATIONEXPERIMENT 

RESULTS  
In this section,simulation experiments have been used to 

highlight the properties of the        
 /  

  pathfinder and 

show its performance as compared to    on different world 

scenarios using both uniform and non-uniform gridding.  The 

simulations were developed using MATLAB (2011b, The 

MathWorks) running on PC with the Windows 8 OS.  The 

simulation world comprises a grid of size         (which 

amounts to 65536 nodes).  The performance parameters 

include: (a) Search Time: the time it takes to plan a path; (b) 

Number of cells on OPEN list: the total number of cells that 

ever made it to the OPEN list throughout the search; (c) 

Number of cells explored: the number of cells that were 

actually explored before the goal was reached. In addition, 

example pathfinder applications to maze solving and indoor 

navigation are presented. 

 

 

 

9.1 Effect of Congestion/Clutter on Performance of A-Star and Basic A-r-Star and A-r-Star 
In the first experiment, the simulation environment was populated with obstacle nodes having congestion/clutter probability varied 

from 0 to 0.75, and with               and                .  Results are shown in Figure 7. It was observed that no path existed 

beyond congestion probability of 0.6.  Since over half of the nodes are occupied, it makes sense that searching from one extreme 

corner of the world to another will not have an unblocked path. Secondly, as the clutter increases, the number of free nodes decreases 

and this explains the sudden reduction in the graphs of performance parameter values after congestion probability of 0.55. The 

simulation results in Figure 7 demonstrate that        
 and  

 converge to   beyond some degree of congestion (Theorem 2). 

  

(a) Search Time (b) Instance of the environment at clutter probability of 0.5 

  

(c) Size of OPEN list (d) Number of nodes explored 

Figure 7: The effect of congestion/clutter on   ,         
  and   

  operating on a uniform grid world 
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9.2 Effect of Changing Obstacle Configuration on Performance of A-Star and Basic A-r-Star 

and A-r-Star (Sliding Obstacle) 
This simulation experiment shows thatchanging the obstacle configuration has little effect on   

 performance whereas it can drastically 

degrade the performance of    operating in a sparse world such as the one shown in Figure 8 (b).  The obstacle is assumed to be a long 

rigid wall in the environment separating the               and                . The horizontal position of this obstacle was 

varied from 11 to 231 and the performances of the pathfinders were recorded after each run.  

  

(a) Search Time (b) Instance of the environment 

  

(c)  Size of OPEN list (d) Number of nodes explored 

Figure 8: The effect of changing obstacle configuration on    ,         
  and   

  operating on a uniform grid world 

9.3 Effect of Changing        and       Configuration on Performance of A-Star and Basic A-r-

Star and A-r-Star in the presence of a Concave Obstacle 
This simulation experiment shows that   

 can better handle a large concave obstacle than  .  The obstacle is assumed to be a large 

rigid concave wall in the environment separating the        and      .  Table 1 shows the nine different combinations of        and 

      used to generate the performance results shown in Figure 9.  Different instances, where        and       are either symmetrical 

or skewed towards one end of the obstacle were chosen as well as their combinations.  

Table 1. The nine different Start and Goal combinations for the simulation in this section  

Simulation START GOAL 

 X Y X Y 

1 5 5 251 5 

2 5 5 251 128 

3 5 5 251 251 

4 5 128 251 5 

5 5 128 251 128 

6 5 128 251 251 

7 5 251 251 5 

8 5 251 251 128 

9 5 251 251 195 
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(a) Search Time (b) Instance of the environment at simulation 5 

  

(c) Size of OPEN list (d) Number of nodes explored 

Figure 9: The effect of changing start and goal node position with respect to a large concave obstacle on    ,         
  and   

  

operating on a uniform grid world 

9.4 Effect of Increasing the Resolution of the Same Environment on Performance of A-Star, 

Basic A-r-Star and A-r-Star 
This simulation shows that increasing the resolution of the same environment degrades the performance of    exponentially but that of 

  
 only degrades linearly.  The obstacle is assumed to be a long rigid wall in the environment separating         and     .  The 

resolution of the grid was varied from         to      . At each resolution, the performances of the pathfinders were recorded. This 

confirms the assertion in Section 2 that   search time increases exponentially with increasing the grid size. 
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(b) Instance of the environment at resolution of         (i.e. at 

scale    ) 

0 

50 

100 

150 

200 

250 

300 

350 

1 2 3 4 5 6 7 8 9 

Ti
m

e
 U

se
d

/s
e

c 

Simulation 

A-Star 

Basic-A-r-Star 

A-r-Star-IS 

0 

10000 

20000 

30000 

40000 

50000 

60000 

1 2 3 4 5 6 7 8 9 

N
u

m
b

e
r 

o
f 

ce
lls

 o
n

 O
P

EN
 

Li
st

/c
e

lls
 

Simulation 

A-Star 

Basic-A-r-Star 

A-r-Star-IS 

0 

10000 

20000 

30000 

40000 

50000 

60000 

1 2 3 4 5 6 7 8 9 

N
u

m
b

e
r 

o
f 

ce
lls

 E
xp

lo
re

d
/c

e
lls

 

Simulation 

A-Star 

Basic-A-r-Star 

A-r-Star 

0 

20 

40 

60 

80 

100 

120 

1 

0.
95

 

0.
9

 

0.
85

 

0.
8

 

0.
75

 

0.
7

 

0.
65

 

0.
6

 

0.
55

 

0.
5

 

0.
45

 

0.
4

 

0.
35

 

0.
3

 

0.
25

 

0.
2

 

0.
15

 

0.
1

 

0.
05

 

Se
ar

ch
 T

im
e

/s
e

c 

Scale 

A-Star 

Basic-A-r-Star 

A-r-Star-IS 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.8, April 2013 

41 

  
(c) Size of OPEN list (d) Number of nodes explored 

Figure 10: The effect of changing the gridding resolution of a given continuous world on  ,         
  and   

  operating on a 

uniform grid world 

9.5 Comparing the Performance of the A-r-Star with that of the A-Star Running on Quadtree 
For this simulation experiment, an obstacle of size                  is placed between the start position              and the goal 

position                . An instance of the world after quadtree decomposition is shown in Figure 11 (a) and that after the 

  
 search in Figure 11 (b).  The comparison in Figure 11 (c) and (d) shows that at certain obstacle configurations   running on an 

environment preprocessed into a quadtree almost always outperforms  
 ;however, it must be noted that the preprocessing takes a 

longer time in the quadtree case.  Besides, as highlighted above in Section 2 and in [4], the performance of the quadtree approach 

degrades drastically with increasing congestion.  

  

(a)  The world after quadtree decomposition (preprocessing). 

White represents free nodes, gray represents node borders and 

black represents obstacle. 

(b) The multi-resolution grid built by A-r-Star during the search. 

White represents free nodes, gray represents node borders and 

black represents obstacle. 

  

(c) The search time comparison (d) The preprocessing time for the quadtree  

Figure 11: (a) Quadtree decomposition; (b)   
 –derived multi-resolution grid (c) performance comparison for   operating on a 

quadtree and   
  operating on a uniform grid of the same continuous environment; (d) associated quadtree processing time. 

9.6  APPLICATION 1: Solving a Maze Problem with the A-Star and Basic A-r-Star and A-r-

Star Algorithms  
Artificial intelligence search algorithms are often used to solve maze problems that are common in tortuous games such as the Pacman 

Maze Game.  Such maze problems are similar, and equivalent in some cases, to pathfinding problems faced by robots operating in 

maze-like environments such as building floorplans and underground mines, for example. The first application is to use the three 

pathfinder algorithms to solve a simple 256 x 256 maze problem.   Figure 12 shows the maze and respective paths found between the 

indicated start and goal nodes. The performances of the algorithms are summarized in Table 2. Here, the path length is measure using 
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the Euclidean distance. Note that the paths returned by         
  and   

  have bulges that make the path suboptimal. These bulges can 

be eliminated using the techniques proposed in Section 9, as shown in Figure 6. 

Table 2. The Performance Comparison of the Three Algorithms for the Maze Problem Solving Problem 

Algorithm Time Used (sec) Path Length (units) 

Number of cells on 

Open List (cells) 

Number of cells 

Explored (cells) 

A-Star 122.45 779.39 37378 37142 

Basic-A-r-Star 102.62 795.77 33011 31581 

A-r-Star-IS 17.47 789.56 14980 14675 

 

Figure 12: How    ,         
  and   

  operating on a uniform grid world solves a maze problem 

9.7 APPLICATION 2: Path planning in a Simulated Home using A-r-Star Pathfinder 
The next application involves using  

  for path finding in a simulated 3D home environment which was developed using Webots as 

shown in Figure 13 (a).  Webots [21] is commercial software for robotic systems prototyping and simulation.  A prototype of the 

Pioneer 2DX robot was run in this environment to build a binary occupancy grid map using a simulated SICK Laser Measurement 

Sensor (LMS) 200. (The prototype for the robot and sensor come with Webots.) A 2D map representing the floorplan of the home 

environment is then fed to   
  to plan a path from a point in the fitness room to a destination in the living room.  The result is shown in 

Figure 13 (b).  



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.8, April 2013 

43 

 

 

(a) The Webots Prototype of the home environment 

(b) A binary occupancy grid map of the environment showing the path 

(center line), the obstacle zone (black nodes), the skip zones (gray 

nodes) and the obstacle-free zone (white nodes).  

Figure 13: Path planning in a prototype home environment using the   
  pathfinder 

 

10 CONCLUSION AND FUTURE WORK 
This paper presents a new pathfinder called   

  for offline path 

planning that outperforms the    pathfinder in a uniform 

gridded sparse world. It also presents various demonstrations 

of some of the desirable properties of this algorithm and 

provesthat the performance of this new algorithm matches that 

of the   pathfinder running on a quadtree decomposed world.  

More research is being performed to extend the algorithm to 

operate on non-binary grid worlds and to develop an 

incremental version of this algorithm, and the results will be 

compared with the performance of the incremental pathfinders 

(   and its variants.  
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