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ABSTRACT 

In chemical engineering, deflection of beams and other area of 

engineering the two point boundary value problems with 

Neumann and mixed Robbin’s boundary conditions have 

great importance. It is not easy task to solve numerically such 

type of problems. In this study a B-spline finite element has 

been introduced to get the solution of two point boundary 

value problem. Some test examples are considered for the 

applicability of the purposed scheme. Further the results are 

compared with simple Galerkin-finite element method and 

with the exact solution of the problems. Throughout the 

discussion, it is observed that the proposed technique is 

performing well. 
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1. INTRODUCTION 

Two-point boundary value problems arise in a number of 

different applications which include, for example, deflection 

of beams and initial boundary value problem for partial 

differential equations. The problem is of considerable 

practical importance, for example, in determine the efficiency 

of solvent utilization or filtrate recovery in the washing of 

filter cakes (Brenner; 1962). Two-point boundary value 

problems are encountered in almost every branch of 

engineering and physical sciences. They have been widely 

studied and many numerical techniques have been developed 

for their solution. Several books deal with two-point boundary 

value problems and numerical techniques for their solution. A 

fairly comprehensive coverage of these topics can be found in 

Bellman and Kalaba (1965), Lee (1968), Keller (1968) and 

Fox (1957). 

Finite Element Method (FEM) is one of the most successful 

and dominant numerical method in the last century. It is 

extensively used in modeling and simulation of engineering 

and science due to its versatility for complex geometries of 

solids and structures and its flexibility for many non-linear 

problems. The FEM is regarded as relatively accurate and 

versatile numerical tool for solving differential equations that 

model physical phenomenon (Shabani and Mazahery, 2011; 

Pathak and Doctor, 2011).  Reddy (2005); Noye (1990) and 

Hutten (2004) explained the detail of the finite element 

method in their books. 

The Galerkin-finite element method is well known numerical 

technique for the numerical solution of differential equations. 

Sharma et al. (2012) studied the Galerkin finite element 

method and Modal Matrix method to solve the two-point 

boundary value problems. Jangveladze et al. (2011) studied 

the Galerkin finite element method for nonlinear integro-

differential equation associated with the penetration of a 

magnetic field into a substance. In this paper first type initial-

boundary value problem was investigated and convergence of 

the finite element scheme was also proved. Onath (2002) 

discussed the asymptotic behavior of the Galerkin and the 

Finite Element Collocation methods for a parabolic equation. 

The Galerkin method expressed in terms of linear splines and 

the Finite Element Collocation method expressed by cubic 

spline basis functions. Both methods considered in continuous 

time. 

Mittal and Jiwari (2009) proposed differential quadrature 

method for calculating the numerical solution of nonlinear 

one-dimensional Berger-Huxley equation with appropriate 

initial and boundary conditions. 

Chun and Sakthivel (2010) studied the Homotopy 

perturbation technique for solving linear and nonlinear two-

point boundary value problems. In this paper, the performance 

of the homotopy perturbation method was compared with 

extended Adomain decomposition method and shooting 

method. 

In the present work, we will investigate the efficacy of 

solution procedures utilizing Galerkin-finite element and B-

Spline Collocation methods for the numerical solution of two 

point boundary value problem of the form 
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2.  SEMIDISCRETE FINITE ELEMENT 

MODELS 
The semi discrete formulation involves approximation of the 

spatial variation of the dependent variable. The first step 

involves the construction of the weak form of the given 

problem over a typical element. In second step, we develop 

the finite element model by seeking approximation of the 

solution. 

2.1 Weak Formulation of the Problem 
 

The weak formulation of the given problem (1) over a typical 

linear element  ba xx ,  is given by 
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where w are arbitrary test functions and may be viewed as the 

variation in c . After reducing the order of integration, we 

arrive at the following system of equations 
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2.2 Finite Element Formulation of the 

Problem 

The finite-element model may be obtained from equations (3) 

by substituting finite element approximations in the decoupled 

form 
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Substituting  xw i and (4) in equation (3) to obtain the 

thi equation of the system, we have 
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The system (6) can be written in the matrix form 

        0
.
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The system (7) can be written as 
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Where      21 KKK   

We are now seeking an approximation to the solution of 

equation (1) where B-spline basis functions are chosen as for 

approximation . In the present work, quadratic B-spline basis 

functions will be used. 

2.3 Quadratic B-spline Approximation:  

The interval [0, 1] is divided into N finite elements with equal 

length Δ x such that 1...0 210  Nxxxx . 

The set of splines ,, 10 NN . . . NN  is taken to form as 

basis for the functions defined on [0, 1]. The Quadratic B-

spline basis functions are defined as [19] 
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Where mm xxh  1 ; Nm ...,1,0,1 form a basis 

over the solution domain and each interval ][ 1, mm xx is 

covered by three successive quadratic B-spline functions. 

Identifying each element with the interval ][ 1, mm xx with 

nodes mx  and 1mx .Taking quadratic B-spline basis 

functions (10), we have global approximation ),( txWN of 

the form  
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Where )(tcm are time dependent parameters yet to be 

determinded and )(xNm are quadratic B-spline basis 

function. We transfer the quadratic B-spline basis function 

over the finite interval [0, h] using the local co-ordinates 

system 0 ≤ π ≤ h. Quadratic shape functions in term of π over 

[0, h] can be written as 
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We use the linear piecewise approximation in the space 

variable and the Galerkin method to obtain the semi discrete 

approximation to equation (1) 
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 The quadratic B-spline Nm and its first derivative vanishes 

outside the inverval [xm-1, xm+2]. Then, the system (9) become 
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3. FULLY DISCRETIZED FINITE 

ELEMENT EQUATIONS 

We have the system of ordinary differential equations as 

follows 
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where  0C denotes the vector of nodal values of C at time 

0t whereas  0C denotes the column of nodal values 

0jc .  

3.1 Numerical Method 

As applied
 
to a vector of time derivatives of the nodal values 

the weighted average of approximation on the equation (13a), 

we have 

 
   

       01
1

1


















 


nn
nn

CKCK
t

CC
M 

                  (14)  

The equation (14) can be written in simple form as 
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The algebraic system (15) is solved by Gauss elimination 

method by taking Crank-Nicolson Scheme i.e. 
2

1
  in 

equation (15).  

4. NUMERICAL EXPERIEMNET AND 

DISCUSSION 

In this section, we have studied two test examples to check the 

accuracy of the proposed numerical scheme. 

Problem 1 

Consider a diffusion reaction problem with mixed boundary 

conditions as: 
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The problem is solved  by purposed method and 

then results are compared with Galerkin-finite element 

method. The problem is solved for different values of P and at 

different times up to t=2. Figure 1 shows the behavior of the 

numerical solution at P=5.0 for different values of t. It is 

observed that at smaller value of t=0.2 the behavior of the 

numerical solution is almost flat and with the increase of 

value of t the behavior shows significant changes and at t=2.0 
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it shows exponential behavior. Figure 2 shows the variation of 

the exact solution at P=5.0 for different values of t. Figures 3-

4 shows the behavior of numerical solutions and the exact 

solution at t=0.6 for different values of P. It is observed that 

numerical solutions (Galerkin and B-spline) and the exact 

solution are approximately same, which shows the validation 

of purposed method. 

Problem 2: 

In this problem, we have considered the problem (16) with the 

following initial and Dirichlet’s boundary conditions as 

follows 

1C , at 0t , for all x      

0C  at 0x ,     and        0




x

C
, at 1x , for all 

0t ,                  (17) 

The problem is again solved with the proposed 

methods. The results of the problem are shown in the Figures 

5-8. Figure 5 shows the behavior of numerical solution at P=5 

at different values of t. It is observed as the value of t 

increases the solution becomes exponential. Figure 6 shows 

the behavior of exact solution at P=5 at different values of t. 

Figures 7-8 show the behavior of numerical solutions and 

exact solution at t= 0.6 at different values of P. It is again 

observed that numerical solutions (Galerkin and B-spline) and 

the exact solution for example 2 are approximately same, 

which shows the validation of purposed method. 

5. CONCLUSION  

In this article, finite element is applied to two point boundary 

value problem using quadratic B-spline basis functions. As 

test problem, two different problems are considered. Firstly, 

the problem is solved with B-spline finite element method 

then the results are compared with both simple Galerkin finite 

element method and the exact solution of the problem. It is 

found that the proposed scheme has good accuracy. 
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Figure 1: The physical behavior of numerical solution of 

Example 1 for 0.5P  
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Figure 2: The physical behavior of exact solution of 

Example 1 for 5P  

 
Figure 3: Comparison of all the solutions of Example 1 for 

P=5 and t= 0.6. 
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Figure  4: Comparison of all the solutions of Example 1 

for P=10 and t= 0.6. 
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Figure 5: The physical behavior of numerical solution of 

Example 2 for 5P  

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

 

E
x

a
c
t 

S
o

lu
ti

o
n

x

 t=0.2

 t=0.4

 t=0.6

 t=0.8

 t=1.0

 t=1.5

 t=2.0

 
Figure 6: The physical behavior of exact solution of 

Example 2 for 5P  

 
Figure 7: Comparison of all the solutions of Example 2 for 

P=5 and t= 0.6. 

 

 
Figure 8: Comparison of all the solutions of Example 2 for 

P=10 and t= 0.6 
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