
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.19, April 2013

1

Architecture of a Software Configuration

Management System for Globally Distributed

Software Development Teams

Muhammad Wasim Bhatti

Engineering Management Department
CASE, Center for Advanced Studies in Engineering,

Islamabad, Pakistan

Irfan Anjum Manarvi
Engineering Management Department

CASE, Center for Advanced Studies in Engineering,
Islamabad, Pakistan

ABSTRACT

The phenomenon of global software development has

changed the traditional methods of software engineering.

Along with several benefits, globalization brings lot of

challenges for practitioners of global software development.

Among all challenges, establishment of a configuration

management system for distributed teams is one of the major

technical challenges. Therefore, in this study, it has been

investigated that what type of configuration management

system should be established and what should be its

architecture for globally distributed software development

teams. It has been proposed that a centralized configuration

management system, designed on the principles of multi-

tenancy is the appropriate architecture for configuration

management system for globally distributed software

development teams.

General Terms

Global Software Engineering, Configuration Management.

Keywords

Global Software Development, Configuration Management

System, Software Architecture

1. INTRODUCTION
Global software development is a process of software

development through globally distributed software

development teams. This phenomenon was initially observed

in the start of 1990, now numerous organizations have

adopted it (Sahay, 2003) [1]. The teams involved in this

process are dispersed across the globe. A simple scenario of

team dispersion may include the possibility of teams located

in USA, Europe and in Asia. Several structures were formed

to exist for such teams. It could include sub-teams working on

different modules and components of project, or teams based

on functional roles such as designers, programmers, business

analyst and quality control teams (Carmel, 1999) [2]. Global

software development environment in which teams are

distributed on the basis of functional roles may be shown in

Figure 1. In such environment; software Team Lead may

work in USA, Software Architect may work in Pakistan,

while Software Developers could work in China. All such

teams have different functional role and are connected

through virtual private network (VPN) to achieve the common

goals of software project development.

Researchers of global software development posited several

reasons of adoption of global software development. Corbett

(2012) [3] believed that reduced cost of software development

is the main reason of dispersion of software development

teams across the globe. Cheng and Atlee (2007) [4] believed

that round the clock development, need of highly skilled

resources and being geographically closer to the customer are

main reasons of adoption of global software development.

Herbsleb (2007) [5] believed that certain investment

requirements, merger of large organizations and need to

explore new market opportunities are main motivation factors

behind adoption of global software development.

Figure 1, Globally distributed teams on the basis of

functional roles

Despite the reduction of cost and other benefits of globally

distributed teams, globalization brings several challenges for

practitioners of global software development.

Communication, coordination, trust and weak management of

distributed teams were found as core challenges of

globalization (Sabahat et al., 2010; Yousaf et al., 2008) [6,7].

However, besides these management and process related

challenges, configuration management of globally distributed

teams was reported as a major technical challenge that was

faced by software engineers of globally distributed teams

(Pilatti et al., 2006; Dwivedi, 2013, Komi-Sirvio & Tihinen,

2005) [8-10]. The inappropriate identification and

management of configuration items (produced by distributed

teams) leads to several inconsistencies and delays in overall

completion of work products. Therefore, it is important to

investigate the possibilities to minimize the risk of

inappropriate handling of remote configuration items during

development of software through globally distributed teams.

Hence this study is designed to investigate the answer of

following research questions;

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.19, April 2013

2

Research Question #1: What should be the architecture of a

configuration management system for globally distributed

software development teams?

2. CONFIGURATION MANAGEMENT

SYSTEM

2.1 Software Configuratoin Management
Software configuration management involves the

development of software work products under controlled

environment, where every change is traceable to its source

(Berczuk & Appleton, 2002) [11]. It helps to manage the

development of large software systems. Fujieda and Ochimizu

(2003) [12] posited following main activities of configuration

management process;

i. Establishment of configuration management system

ii. Identification of configuration items

iii. Management of configuration items under version

controlled repository

iv. Management of access rights of users

v. Status tracking of various configuration items

Conradi and Westfechtel (1998) [13] believed that a

configuration management system comprises of configuration

items, users of repository and access rights details of

repository users. According to Scott and Nisse (2001) [14], a

configuration management system consists of following

components;

i. Management of configuration process

ii. Identification of configuration items

iii. Software configuration control

iv. Software configuration status accounting

v. Software configuration auditing

vi. Software release management and delivery

Several techniques (e.g. branching, merging etc.) are used to

manage the work products of a software project on

configuration management repository. Configuration items

consist upon deliverables and non-deliverables of a project.

The deliverable work products are important configuration

items; hence, those require extra considerations during their

development. The delay in completion or any conflict in such

work products leads to more risky state of project. Scott and

Nisse (2001) [14] believed that all items, on which multiple

practitioners are expected to work on, should be maintained

under configuration control to manage the changes in

controlled manners. Software project developed by collocated

teams usually consists upon single configuration management

server. Multiple, collocated members of software

development team interact with configuration management

server to accomplish their day to day tasks. Access rights are

implemented on repositories of configuration management

system by providing certain rights to users of configuration

management system. These rights are managed by

configuration engineer or configuration administrator. A

simplified example of a configuration management system is

shown in Figure 2.

According to Conradi and Westfechtel (1998) [13], a

configuration management system serves several needs,

including the support for management and development

related activities. The version control mechanism of

configuration management system helps the practitioners to

manage and control the changes of management related work

products and development related source code of projects.

Figure 2, A typical model of a configuration management

system

2.2 Configuration Management System for

Globally Distributed Teams

Globally distributed teams require different processes of

software development and management as compared to those

of collocated teams (Carmel, 1999) [2]. Scott and Nisse

(2001) [14] posited that before planning about configuration

management system, there is need to understand the

organizational structure and formation of software

development teams. Because the configuration needs of

different team structures varies from each other. These

findings lead to following research question;

Research Question # 2: What type of configuration

management system should be established for globally

distributed software development teams?

There can be two possibilities for different types of a

configuration management system;

i. Centralized configuration management system

ii. Distributed configuration management system

In global software development environment, there are several

pros and cons of both types of systems. For example, it is

difficult to distinguish the team specific work products in a

centralized configuration management system. While

integration of parts of work products becomes very difficult,

when work products are integrated from distributed

configuration management systems. However, existing

literature helps us to investigate the answer of this research

question. Pilatti et al. (2006) [8] believed that there should be

single instance of a configuration management system for

globally distributed teams of a software project. This model

helps us to minimize the risk related to the loss of contents at

the time of integration of different parts of a work product.

Single and centralized repository makes sure that whole data

related to configuration items is stored and maintained under

single repository. But, this finding brings challenges of

distinguishing of different distributed teams and their work

products under single repository. This problem can be

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.19, April 2013

3

addressed by investigating the answer of first research

question of this study. Remaining section of this article is

based upon the findings for architecture of a configuration

management system for globally distributed software

development teams.

2.3 Existing Techniques of Configuration

Management System

2.3.1 Odyssey-VCS
Oliveira, Murta and Werner (2005) [15] proposed a version

management system (with the name of Odyssey-VCS) for

UML diagrams. They proposed that Odyssey-VCS stores

complex data elements of UML diagrams and provides

capabilities of versions and comparisons of UML work

products. The complex data elements include actors, classes,

methods, attributes, relations and different elements of UML

components. Versions are managed at two levels;

(1) Version management at element level

(2) Version management at component (composition of

elements) level

Provision of comparison is also available at both levels.

Odyssey-VCS provides the capability of concurrent access of

same component by several users. It also supports the merge

facility at commit operation. The overall architecture of this

system is based upon three layers of code;

(1) Client layer

(2) Transport layer

(3) Server layer.

2.3.2 Model Data Management
In Model Data Management solution, El-khoury (2005) [16]

integrated the software configuration management and

product development management together. In this system,

work products related to software development and mock-ups

of hardware can be configured into a single repository. This

proposed model is very helpful for the configuration of

complete system (infrastructure including hardware and

software).

2.3.3 Two-way Merge Algorithm
Hayase, Matsushita and Inoue (2005) [17] proposed a two

way merge algorithm to facilitate the merging of source code,

when concurrent changes on same line of code will be

committed by multiple programmers. They transform the

source code into intermediate XML form and then merging is

performed at XML level.

2.4 Proposed Architecture for

Configuration Management System

In global software development, different teams work from

geographically different locations. Therefore, based upon

distribution of teams, configuration items can be segregated

into two categories;

(1) Common configuration items for all teams

(2) Team specific configuration items

This segregation of items can be a guide for architecture of a

configuration management system for globally distributed

teams. Therefore, in this study, it has been proposed that, in

order to develop a centralized system of configuration

management for globally distributed teams, there is need to

design the data architecture, which should help to separate the

different information of different teams. Common

configuration items should be stored separately from team

specific configuration items. Technically, this separation can

be achieved in many ways.

2.4.1 Separate Databases
Separate Databases can be designed for each team to maintain

information of their configuration items separately. In this

case, a common database will also be required to maintain

information about common configuration items of distributed

teams. This model is simple to design, but difficult to

maintain. The number of complexities of management of such

system increases with increased number of distributed teams.

This approach is also expensive in terms of cost of space and

resources required to manage such system.

2.4.2 Single Database (Proposed Architecture)
To answer the first research question of this study, it has been

proposed that single database should be designed to maintain

the configuration items of different teams and common

configuration items of all teams. This model can be achieved

by using the multi-tenancy architecture (Azeez et al. 2010)

[18] as a reference for database design. Stating it more

precisely, it can be posited that the proposed architecture is

similar to the “shared database, shared schema” approach of

multi-tenancy architecture. The proposed design is presented

in Figure 3.

Figure 3, Proposed architecture of configuration

management system for globally distributed team

In this architecture, there will be singe database that will

maintain three types of tables;

2.4.2.1 Tables to maintain information about

distributed teams
There will be some tables to maintain Meta data of distributed

teams. These tables will maintain information about

identification of teams, locations of teams, culture and

functional roles of teams.

2.4.2.2 Tables to maintain team specific data
There will be some tables to maintain team specific data and

team specific configuration items. Every table in this

classification will maintain a reference of TeamID as a key

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.19, April 2013

4

column. This design will help to maintain data about

configuration items of all teams under single database.

2.4.2.3 Tables to maintain common data
There will be some tables to maintain common data of

configuration items for all distributed teams. These tables will

not contain any reference of teams as key column. Data and

configuration items stored in these tables will be common

across all distributed teams of a software project.

2.4.3 Configuration Model for Globally

Distributed Teams
Figure 4 shows the pictorial representation of a configuration

management system for globally distributed teams. Based

upon the proposed architecture of this study, a single

configuration management system can be established to serve

the configuration needs of all distributed locations. One

administrator can manage whole system from single location.

This model presents simplicity for practitioners of globally

distributed teams, where software engineers from all locations

interact with repository in consistent ways. Configuration

engineer also performs configuration related activities on

single server at centralized location.

Figure 4, A model of configuration management system

for globally distributed teams

2.5 Comparison with Existing Techniques
Odyssey-VCS [15] is a version control CASE tool that helps

to manage UML diagrams under configuration repository.

But, in SDLC, there exists several configuration items those

should be stored under the umbrella of configuration

management for better control and availability to all

stakeholders. Therefore, being limited for UML diagrams

only, Odyssey-VCS doesn’t help to manage all work products

of a software project developed by distributed teams or by

collocated teams.

Model Data Management [16] is not designed to ensure the

distinct configuration of work products of distributed teams. It

also doesn’t support concurrent access to the individual work

products.

Two-way Merge algorithm [17] is developed for Java

programming language only. It is not developed for C#, PHP

and for other programming languages. It is also not workable

for work products other than java code.

The architecture proposed in this paper doesn’t have any of

the limitations discussion in this section. Concurrent users can

access single work product, they can perform changes and can

commit their work back to repository. Database will ensure

the atomic commit of each user. All types of work products

will be handled by the proposed architecture. Single

repository will be capable to store all work products of all

distributed teams of a software project.

3. Conclusion
In this study, the first research question was about the

investigation of architecture of configuration management

system for globally distributed software development teams.

Second question was about the type of configuration

management system for such teams. The answer of second

research question was investigated first and it was proposed

that the centralized configuration management system was

more appropriate configuration management system for

globally distributed software development teams. To answer

the first research question, the concept of multi-tenancy was

linked with multiple teams of global software development

and architecture of configuration management system was

proposed that was similar in nature with multi-tenant based

database management system. The proposed architecture was

capable to store the data of all distributed software

development teams under the umbrella of single configuration

repository.

4. REFERENCES
[1] Sahay, S. 2003, “Global software alliances: the challenge

of ‘Standardization’”, Scandinavian Journal of

Information Systems, 15, pp. 3–21.

[2] Carmel, E. 1999, “Global Software Teams: Collaborating

Across Borders and Time Zones”. USA, Prentice Hall,

1999.

[3] Corbett, M., “The Strategic Outsourcing Study”.

http://www.corbettassociates.com [17 March 2013].

[4] Cheng, B.H.C. and Atlee, J.M. 2007, “Research

Directions in Requirements Engineering”. Future of

Software Engineering (FOSE 07), IEEE, 2007.

[5] Herbsleb, J.D. 2007, “Global Software Engineering: The

Future of Socio-technical Coordination”. Future of

Software Engineering, IEEE-CS Press, 2007

[6] Sabahat, N., Iqbal, F., Azam, F. and Javed, M.Y. 2010,

“An Iterative Approach for Global Requirements

Elicitation: A Case Study Analysis”. International

Conference on Electronics and Information Engineering

(ICEIE 2010).

[7] Yousaf, F., Zaman, Z. and Ikram, N. 2008,

“Requirements Validation Techniques in GSD: A

Survey”. IEEE, 2008.

[8] Pilatti, L., Audy, J.L.N. and Prikladnicki, R. 2006,

“Software Configuration Management over a Global

Software Development Environment: Lessons Learned

from a Case Study”

[9] Dwivedi, R. 2013, “Configuration Issues and Efforts for

Configuring Agile Approaches-Situational based Method

Engineering”, International Journal of Computer

Applications, 61(17): 23-27.

[10] Komi-Sirvio, S. and Tihinen, M. 2005, “Lessons Learned

by Participants of Distributed Software Development”,

Knowledge and Process Management, 12(2): 108-122.

[11] Berczuk, S. P., and Appleton, B. 2002. “Software

Configuration Management Patterns: Effective

Teamwork, Practical Integration”, Addison Wesley.

[12] Fujieda, K., and Ochimizu, K. 2003. “Investigation of

Repository Reprecation Models in Globally Distributed

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.19, April 2013

5

Configuration Management”. In Proc. of the Workshop

on Global Software Development at ICSE.

[13] Conradi, R. and Westfechtel, B. 1998, “Version Models

for Software Configuration Management”, ACM

Computing Surveys, 30 (2), 233-282.

[14] Scott, J.A. and Nisse, D. 2001, “Software Configuration

Management”, IEEE - Trial Version 1.0

[15] Oliveira, H., Murta, L., and Werner, C. (2005). Odyssey-

VCS: a Flexible Version Control System for UML

Model Elements. In Proceedings of the 12th International

Workshop on Software Configuration Management

(SCM 2005), Lisbon, Portugal.

[16] El-khoury, J. (2005). Model Data Management –

Towards a common solution for PDM/SCM systems. In

Proceedings of the 12th International Workshop on

Software Configuration Management (SCM 2005),

Lisbon, Portugal.

[17] Hayase, Y., Matsushita, M. and Inoue, K. (2005).

Revision Control System Using Delta Script of Syntax

Tree. In Proceedings of the 12th International Workshop

on Software Configuration Management (SCM 2005),

Lisbon, Portugal.

[18] Azeez, A., Perera, S., Gamage, D., Linton, R.,

Siriwardana, P., Leelaratne, D., Weerawarana, S. and

Fremantle, P. 2010 “Multi-Tenant SOA Middleware for

Cloud Computing”. 2010 IEEE 3rd International

Conference on Cloud Computing

