
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

39

Flexibility Point of Customer Relationship Management

System based on User Perspective

Hema Subramaniam
PhD Student

1
, Lecturer

2

1
Universiti Putra Malaysia (UPM)
2
Universiti Selangor (UNISEL)

Marzanah A. Jabar

Senior Lecturer
Faculty of Computer Science and Information

Technology
Universiti Putra Malaysia (UPM)

Hazura Zulzalil
Senior Lecturer

Faculty of Computer Science and Information
Technology

Universiti Putra Malaysia (UPM)

Saadah Hassan

Senior Lecturer
Faculty of Computer Science and Information

Technology
Universiti Putra Malaysia (UPM)

ABSTRACT

Software is an essential asset of an organization in organizing

business process. Thus, demand for software gradually

increase from day-to-day. However, due to the complex

structure of a software and tedious software design has cause

delays in making it to be available in market. Consequently it

increases the needs for customizing software from existing

system. Under those circumstances, software customization is

influenced by the flexibility of software that indicates how

easy the software is modified to suit the current environment.

Thus, the easiness is determined by the flexibility point that

resides in software. Since flexibility is a desirable software

quality characteristic, determination of flexibility point is

essential. In this case, user role transformation from one

domain to another domain has been viewed as flexibility point

that triggers changes into the software. To demonstrate

flexibility point exist at the user role, this study emphasize on

the change of class design from Customer Relationship

Management System (CRMS) to Tuition Centre Management

System (TCMS). As a result, some slight modification on the

user oriented class attributes and methods effect the changes

on other associated classes. Certainly, slight modification only

can be made if the user-oriented class definition is written as

general purpose rather than dedicated to one system.

Therefore, proper definition of user-oriented class assists in

promoting flexibility and at the same time it has been view as

software flexibility point.

General Terms

Software Quality, Flexibility Measurement

Keywords

software flexibility; flexibility point; software quality.

1. INTRODUCTION
General purpose functions is the essential part of any software

that lead to easier customization[1]. Minimal changes or

modification is required by these general purpose program in

converting functionality from one environment to another[2].

However, software customization cannot be realized unless

software internal structure is created in such a way to be

flexible to adapt any new changes. Initially, flexibility is

known as one of the software quality characteristics and it is

categorized under product revision factor. Under this

category, flexibility is viewed as the ease of making changes

required by changes in the operating environment [3].

Comparatively, IEEE has defined flexibility as the ease of

software to change its component to be worked in the

environment other than it was specifically designed [4]. Thus,

flexibility can be viewed in two different perspectives,

changes within the domain and changes between the domains.

Despite flexibility role in customizing software, questions

have been raised about how to make software to be flexible

since application or system is not a tangible product[5].

Furthermore, as far as we have concern there is no clear

explanation on the flexibility point that resides in software.

Most studies in software flexibility concentrate on the

assessment of it but fail to identify the flexibility point of

software or application. The aim of this study is to examine

flexibility point of software by demonstrating how the

component of Customer Relationship Management System

(CRMS) has been customized to develop Tuition Centre

Management System (TCMS). Based on the study, user

perspective is viewed as flexibility point in promoting easier

customization.

The paper begins by outlining the importance of flexibility in

software quality models and coverage of software flexibility

assessment models. Then the discussion continues by

explaining about CRMS and TCMS. Discussion on TCMS

and CRMS based on the class design changes in terms of user

view. Depth of user perspective in flexibility point

determination is covered at result and discussion section.

2. RESEARCH BACKGROUND

2.1 Software Flexibility point based on

software quality models
A flexibility term has been introduced by McCall Quality

Model [3] as one of the factors influencing software quality.

The model categorized flexibility under product revision

factor together with testability and maintainability. It also

stressed that the ability to change software internal structure

indicates the flexibility of that product. In that case, the point

that triggers the change is considered as flexible point of

software. Significant to that, end user view trigger the changes

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

40

to the existing software since different end user need different

function into the system. Hence, end user view can be

considered as flexibility point that facilitates changes into

software[6].Identically, International Organization of

Standard (ISO/IEC 9126) had discuss flexibility in different

perspective by determining how easy to transfer software to

another environment. Moreover, the standard refers user and

maintainer behavior towards system as a point that triggers

the modification. In other words ISO considers maintainer’s

and user’s effort as flexibility point [7]. In contrast, a

considerable amount of literature [8], [9], [10] had discussed

flexibility in different context. For instance, FURPS model

stressed product functional and non-functional requirements

as support tools that trigger changes[8]. Although FURPS

model stressed on functional requirement while measuring

flexibility, yet requirement are gathered from user. In that

case, user perspective towards system is again considered as

flexibility point. Different from that, software product

properties such as correctness, internal, contextual and

descriptive used in evaluating the software quality

characteristics especially on flexibility and maintainability

assessment. In general software product properties mostly

related to program source code like source code correctness,

source code internal standard compatibility, source code

context and descriptive nature of software[9]. In other words,

code level mechanism used as flexibility point of software.

However, varieties in coding style lead to inconsistence and

difficulties in identifying flexibility point.

2.2 Software Flexibility point based on

software flexibility assessment models
The models or framework that covers on software flexibility

assessment have been widely investigated since 2002. Zeng

and Zhao [11] reported that software flexibility can be

achieved with the existence of data and process independence.

They incorporated workflow and agent technique during the

process of the redesigned [11]. Such incorporation promotes

software flexibility at the process level instead of data level.

For this reason, existing and new business processes are

considered as flexibility point that triggers adaptability of

software. Additionally, Martinho and Domingos [12]

mentioned that people who are involved in the software

development such as system engineer and development team

(also known as process participant) can also trigger the

flexibility process[12]. Again this would affect process

flexibility instead of data flexibility. Even though

development teams are involved in the software process, users

are the real person who can inject the changes instead of

process participant. Although this may be true, but software

element such as business rules, controlled functions and

parameter settings in the user interface still can be viewed as

flexibility point that can change the functions of the

components. In that case, neural network method known as

Back-Propagation (BP) used to measure flexibility point [13].

Apart from that, Peng et al. [14] considered user action

towards system as software flexibility point [14]. Normally

user action triggers the changes into the system. In this case,

interface which cause changes to the system such as menu,

button, checkbox, component and templates is likely to be

flexible point. As a result, user action changes the input

interface, output interface, process logic, and information

structure of software However, the point in the user action

that causes the changes is unseen and hard to measure.

Significantly, 3-tier architecture which consists of

presentation, business and data layer are viewed as point

where the flexibility resides with it. In fact, different layer had

promoted different flexibility point. In this situation, data tier

considers design as flexibility point, presentation tier

considers interaction as flexible point and business tier

considers process as flexible point. Each of the layers is

coupled with the appropriate index to evaluate the software

flexibility rate[15]. Similarly, series of user operation such as

information and data setting in the user interface can causes

the function of the system changed. Hence, user operation are

again viewed as flexibility point that increases the

extensibility of software regardless of user role towards

system[16]. Based on the above discussion, considerable

amount of literature have been highlighted user perspective as

desirable flexibility point as compared to other viewpoint.

Other perspectives such as business process, functional

requirements, source code are also related with user

perspective. Most of the flexibility point have been

interrelated with user action towards the application.

Table 1 shows the discussion summary on the preferred

software flexibility point.

3. RESEARCH METHODOLOGY
The aim of study is to show that changes in user role leads to

the changes of software functionality. In other words, user

role has been viewed as flexibility point that can trigger the

changes of application. To demonstrate this concept,

Customer Relationship Management System (CRMS) and

Tuition Centre Management System (TCMS) were used as

subject of study. Customer relationship management is a

concept used in establishing great relationship between

organization and customer[17]. Meanwhile, CRMS help in

systematically keeps the record of customers and their

transactions. Report generation process becomes easy since all

the records being kept electronically[18]. Meanwhile, TCMS

aids in managing academic related activities. Since both

systems are totally from different domain, customization

becomes a challenge for the software developers. However,

clearly defined flexibility point would ease up the

customization process. In the first place, CRMS architecture

was retrieved from the system analyst. Then functionality

which is related to education domain (especially on

registration process) was extracted from existing CRMS

design. Experience developer’s view was taken into

consideration in this extraction process. Once done with that,

class components which related to shortlisted functionality

were derived from the overall system design. Among those

class components, existing name of user oriented classes were

modified into a new user role. For instance user oriented

classes in CRMS known as Customer been changed into

Student which is closely related to education domain.

Additionally, a considerable amount of changes were applied

into the classes which relate with user oriented classes. These

changes were based on user action towards system.

Accordingly, attribute and behavior of the classes were also

modified slightly to meet the education domain (TCMS)

instead of business domain (CRMS). Fig 1 shows the flow of

process involved while conducting the case study to determine

the flexibility point. Detail explanation on CRMS and TCMS

design architecture are provided in the next section.

.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

41

START

Analyze CRMS design document

Extract related functional

requirement

Educational domain

related functional

requirement

Extract related components
Educational domain

related classes

Change the user role on the user

oriented classes

Change the behaviour and attribute

of user oriented class to

accommodate education domain

Class diagram for

TCMS

Change the source code accordingly

END

Table 1. Flexibility point summary

Model Software Flexibility point Reference

Software Quality Model

International Organization of Standard (ISO/IEC

9126)

User / Maintainer behavior [7]

Boehm Model End user or user perspective [6]

FURPS model Product requirements [8]

Dromey model Code level mechanism [9]

Software Flexibility Assessment Model

Intelligent Workflow technique Business process [11]

Two step approach Process participant [12]

BP neural network Business rule, controlled

functions, parameter settings

[13]

User oriented measurement User action [14]

Grey evaluation model Software design, interaction

between component and business

process

[15]

Assessment model Information and data settings in

the interface

[16]

Fig 1. Flow in customizing CRMS into TCMS

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

42

+Account()

+add_account() : void

+edit_account() : void

+load_associated_contacts() : void

-account_id

-account_type

-account_created_date : Date

Account

-report_id : int

-report_type

Report

+Product()

+getProduct() : void

+setProduct() : string

-game_id : int

-game_name : string

-game_creator : string

-created_date : String

Product

+customer()

+register_user() : void

+edit_user() : void

+getUser() : void

+setUser() : void

-customer_id : int

-customer_name : string

-cutomer_address : string

-customer_num : int

Customer

User oriented class

+Registration()

+add_account() : void

+edit_account() : void

+load_associated_contacts() : void

-registration_id

-registration_type

-registration_created_date : Date

Registration

-report_id : int

-report_type

Report

+Subject()

+getSubject() : void

+setSubject() : string

-Subject_id : int

-Subject_name : string

-Subject_creator : string

-created_date : String

Subject

+Student()

+register_user() : void

+edit_user() : void

+getUser() : void

+setUser() : void

-Student_id : int

-Student_name : string

-Student_address : string

-Student_num : int

Student

User oriented class

 Similar to account

class

Remain

Removed

3.1 CRMS Design
System design is an important mechanism that can illustrate

the overall flow of the system. It can be based on any

modeling language that can increase the understanding

towards the system. In that case, Unified Modeling Language

(UML) used to design CRMS by creating sequence diagram

and class diagram. Since the company’s intention was to

promote flexibility in the software, most of the classes were

design as general usage. Moreover, there was no dedicated

classes had been used in CRMS. CRMS contain four core

classes that derive the system, namely Customer, Account,

Report and Product. Each class was build up based on the

assumption that it would serve the customer and their business

relationship matters. Among the classes, Customer class is a

user-oriented class that triggers the action on the other

associated classes. Fig 2 shows the CRMS class design that

emphasized on user-oriented class. However, only a portion

of classes, attributes and operations were extracted from the

overall class scheme. Based on the class diagram, Customer

class becomes the user oriented class which triggers the

behavior of other classes. Since Customer class is the central

focus of the CRMS, it was created to be general. Moreover,

the operation specified in the Customer class is used in other

system without much modification. Similarly, other classes

such as Account, Product and Report which closely related to

Customer class also can be modified easily. For instance,

register_user() method is aim to adding customer record into

database. Definition for this method can be used for any other

system which is needed to insert record to a database. Fig 3

shows the flexibility point segment of register_user() method.

In most of the cases, the modification involves the table and

field name.In this case, is not advisable to change class

function name since it involved in other related classes as

well. At the same time this ensures minimal changes into the

system.

3.2 TCMS class design
To demonstrate this, TCMS design mirror the CRMS design

with some minimal changes on the user oriented classes and

its associated methods and attributes. Since TCMS

categorized under education domain, student is the main user

of the system. Changes in user-oriented classes consequently

affect the other related classes that inherit the function of

CRMS. Student registration, subject registration, payment

process and administrative section are among the functions

related to TCMS. To emphasize the use of flexibility point,

only few classes from the overall TCMS are explained in this

section. Upon changes of the user role from Customer to

Student, classes such as Account and Product that are closely

related to Customer class need to be changed as well. The

changes are only involved at attributes name, database query

properties (table and field name) and associated link between

classes. Fig 4 shows the TCMS class diagrams that

emphasizes on student class as user-oriented class and at the

same time as flexible point of the system.

Based on the class diagram (Fig 4), Customer class from

CRMS is changed to Student class. This modification is

happened due to the nature of TCMS system which involve

student as user of the system. However, the behavior of

Student class towards the system still remain the same as in

the customer whereby Student class still can register_user,

edit_user, getUser and setUser. In detail, any associated

classes with Student class are derived similar function from

CRMS even though the user role had been changed. Indeed

certain modification is applied to existing Account and

Product classes, due to the user perspective towards the

system. For instance Student class only can be associated

with Registration class whereby it helps in registering the

subject instead of creating account. For this purpose, Account

class name is changed to Registration while the function

definition still remains the same. Fig 5 shows the

transformation of CRMS into TCMS in terms of interface.

.

Fig 2: CRMS class design

<cfscript>
<cffunction name=”register_user” access=”public”
returmtype=”void” hint=”adding customer record to
database”>

<cfquery name=”myquery” datasource=”myCRM”>
INSERT INTO customer
VALUES (“abc”, “rawang”, “0123312433”)
</cfquery>

</cffunction>

</cfscript>

Fig 3: register_user definition

Fig 4. TCMS class diagram

Element that need modification

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

43

Customer

Account Report

Product

1

*

1

*

1

*

h
a

d g
e

n
e

ra
te

c
o

n
ta

in

1

*

Assigned

Student

Registration Report

Subject

1

*

1

*

1

*

re
g

is
te

r

g
e

n
e

ra
te

c
o

n
ta

in

1

*

assigned

Flexibility

Point

Fig 6. CRMS and TCMS flexibility point

Fig 5: Interface transformation from CRMS into TCMS

ROLE: STUDENT ROLE: CUSTOMER

FLEXIBILITY POINT
= USER PERSPECTIVE

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

44

4. PROPOSED SOFTWARE

FLEXIBILITY POINT
Based on the CRMS and TCMS class design, we can say that

transformation from CRMS to TCMS is based on user

perspective. Hence, a comprehensive and flexible CRMS

class design contributes towards easier customization. At the

same time improper function in CRMS design can be easily

solved and adjust while implementing it into TCMS. For

instance, load_associated_contacts() function is not applicable

for TCMS hence is removed from Registration class. Under

those circumstances, the user view plays significant role in

deciding the modification of the existing system. At the same

time user role is determined by the domain where the system

resides on. As a result, Error! Reference source not found.

illustrates the proposed flexibility point for CRMS that trigger

the development of TCMS. As can be seen on the illustration,

changes in user oriented class (Customer and Student class),

are obviously effected by changes on user role into the

system. User holds a role as customer or student based on the

domain it’s belongs to. In other word, application domain

determines software flexibility point with regards to user role.

For this reason, user-oriented class definition need to be

equipped with generalize attributes therefore it can be suited

to any domain. Besides that, user class method also needs to

be in general purpose to serve any other domain.

5. CONCLUSION AND FUTURE WORK
Flexibility points become central discussion in making

software or application to be easily customizable. However,

software flexibility becomes an issue due to abstract nature of

software. Additionally, flexibility point is hard to be seen and

measure since it relies on the functionality of the system.

Based on the study, we can conclude that software flexibility

point is resided on user perspective towards system. Since,

the changes happened in the functionality of the system

always caused by the user reaction towards the system. This

assumption also is supported by a considerable amount of

literature that stressed on user-oriented measurement of

software flexibility. Moreover, software flexibility point

which is represented by user oriented classes is expected to

affect the overall system functionality and at the same time

support the modification on the existing applications.

Modification takes place with attention to user role in the

system. In order to realize that, user-oriented classes should

design to be general and customizable. Further experimental

researches are needed to estimate the flexibility point

measurement that is associated with user-oriented classes.

Additionally software flexibility measurement also needs to

be evaluated at the design level instead of coding level.

Considerably, more work need to be done in measuring

software flexibility such as design level measurement and

degree of flexibility in making software to be more

customizable.

6. ACKNOWLEDGMENT
This work was supported by FCSIT, University Putra

Malaysia (UPM). So, we would like to give our highest

gratitude to UPM for supporting us in determining the

flexibility point of software based on user perspective.

7. REFERENCES
[1] X. Zhu and S. Wang, “Software Customization

Based on Model-Driven Architecture Over SaaS

Platforms,” 2009 International Conference on

Management and Service Science, pp. 1–4, Sep.

2009.

[2] C. Rohleder and A. Sciences, “Software

customization with xml,” vol. VI, no. 2, pp. 345–351.

[3] J. A. Mccall and P. K. Richards, “Concept and

Definitions of Software Quality,” Quality, vol. I, no.

November, 1977.

[4] T. Committees, “IEEE Standard Glossary of

Software Engineering Terminology,” 1990.

[5] M. H. Meyer and R. Seliger, “Product Platforms in

Software Development,” Sloan Management Review,

vol. 40, no. 1, pp. 61–74, 1998.

[6] Boehm, “Software Quality Models and

Philosophies,” in Management, 1978.

[7] I. JTC 1/SC, “ISO/IEC 9126-2: Software

Engineering-Product Quality-Part 2: External

Metrics.” Canada, 2002.

[8] R. B. Grady, Practical Software Metrics for Project

Management and Process Improvement. Prentice

Hall, 1992.

[9] R. G. Dromey, “A model for software product

quality,” IEEE Transactions on Software

Engineering, vol. 21, no. 2, pp. 146–162, 1995.

[10] A. H. Eden and T. Mens, “Measuring Software

Flexibility,” Computer, vol. 153, no. 3, pp. 113–126,

2006.

[11] D. D. Zeng and J. L. Zhao, “Achieving Software

Flexibility via Intelligent Workflow Techniques,” in

Proceeding of the 35th Annual Hawaii International

Conference on System Sciences, 2002, vol. 00, no. c,

pp. 7–10,606–615.

[12] R. Martinho and D. Domingos, “A Two-Step

Approach for Modelling Flexibility in Software

Processes,” 23rd IEEE/ACM International

Conference on Automated Software Engineering, pp.

427–430, 2008.

[13] J. Niu, L. Shen, S. Peng, and F. Li, “A Measurement

Method of Software Flexibility Based on BP

Network,” International Workshop on Intelligent

Systems and Applications, pp. 1–4, 2009.

[14] S. Peng, L. Shen, H. Liu, and F. Li, “User-Oriented

Measurement of Software Flexibility,” in 2009 WRI

World Congress on Computer Science and

Information Engineering, 2009, vol. 7, pp. 629–633.

[15] S. Wang and X. Liu, “A Study on Flexibility of ERP

System Based on Grey Evaluation Model,”

Technology, pp. 3–6, 2010.

[16] Y. Wang, M. Jia, J. Guo, and B. Zhang, “Evaluating

Model of Software Flexibility of Domestic

Foundational Software,” in International Conference

on Electrical and Control Engineering, 2011, pp.

5906–5909.

[17] G. K. Agrawal, “The Development of Services in

Customer Relationship Management (CRM)

Environment from ‘Technology’ Perspective,” Journal of

Service Science and Management, vol. 02, no. 04, pp.

432–438, 2009.

[18] C. Shen, B. Han, Q. Zhou, and W. Song, “Design and

Implementation of Customer Relationship

Management System Based on Structured Object-

Oriented Methodology,” 2011 International

Conference of Information Technology, Computer

Engineering and Management Sciences, pp. 390–

393, Sep. 2011.

