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ABSTRACT 

Randomized testing has been shown to be an effective method 

for testing software units. However, the thoroughness of 

randomized unit testing varies widely according to the input 

which is provided by the user. Such as the relative frequencies 

with which methods are called to be improved the 

thoroughness of randomized unit testing. In this paper the 

system, describes genetic algorithm based parameter finding 

for randomized unit testing that optimizes test coverage. Here 

the unit test data will be generated by nighthawk system. The 

system can be viewed as two levels, lower level and upper 

level. Randomized unit testing engine is a lower level, which 

tests a set of methods according to parameter values specified 

as genes in a chromosome, including parameters that encode a 

value reuse policy. The upper level is a genetic algorithm 

(GA) which uses fitness evaluation, selection, mutation and 

recombination of chromosomes in order to find out good 

values for the genes. Integrity is evaluated on the basis of test 

coverage and number of method calls performed. To find 

good parameters users can use Nighthawk and then perform 

with randomized unit testing based on those parameters. 

Many new test cases can quickly generate by randomized 

testing that achieve high coverage, and can continue to do so 

for as long as users wish to run it.  In this research the test 

coverage results of Nighthawk are compared with manual unit 

testing results [6]. The Nighthawk system produced maximum 

test coverage results in less timing based on the genetic 

algorithm comparing with manual unit testing results. 
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Software Testing, Unit testing, Genetic algorithms 

Keywords 

Randomized Unit Testing, Feature Subset Selection, 
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1. INTRODUCTION 
Software testing involves running a piece of software (the 

software under test, or SUT) on selected input data, and 

checking the outputs for correctness. The goals of software 

testing are to force failures of the SUT, and to be thorough. 

The more thoroughly tested an SUT without forcing failures, 

the surer produces the reliability of the SUT. Randomized 

testing is the practice of using randomization for some aspects 

of test input data selection [15]. Various research and studies 

have found that randomized testing for software products is 

very effective and efficient at forcing failures in even well-

tested units. However, the randomized testing is forcing 

failures in even well tested software units but the question will 

be raised it’s thorough enough or not. Using various code 

coverage measures to measure thoroughness, researchers have 

come to varying conclusions about the ability of randomized 

testing to be thorough. The thoroughness of randomized unit 

testing is highly dependent on parameters that control when 

and how randomization is applied. These parameters include 

the number of method calls to make, the relative frequency 

with which different methods are called, and the ranges from 

which numeric arguments are chosen. The manner in which 

previously returned value or previously used arguments are 

again used in new method calls, which referred to as the value 

reuse policy, is also a crucial factor. It will be very difficult to 

find out the optimum solutions of the parameter and the 

optimal value reuse policy by hand. 

1.1  Randomized Unit Testing 
Random testing is a form of functional testing that is useful 

when the time needed to write & run directed tests is too long 

(or the complexity of the problem makes it impossible to test 

every combination). Release criteria may include a statement 

about the amount of random testing that is required. For 

example, we have a requirement that there should be no 

random failures for 2 weeks prior to release (that is 2 weeks of 

continuous random testing on 50 workstations).One of the big 

issues of random testing is to know when a test fails. As with 

all testing, an oracle is needed. You could rely in assertions in 

the code as your sole oracle (i.e. you throw random inputs at 

the code, possibly from multiple threads, and if no GPF 

happens in 2 weeks then you assume it's OK). In other 

situations, common with hardware development, you have 

two different implementations of the same specification (one 

is 'the golden model’; the other is 'the implementation'. If they 

both agree to a defined accuracy then the test passes. When 

doing random testing you must, of course, ensure that your 

tests are sufficiently random, and that they cover the spec. 

repeating the same test for 2 weeks doesn't tell you anything. 

It is often claimed, correctly, that random testing is less 

efficient than directed testing. But you must consider the time 

needed to write random test generator vs. the time to write a 

set of directed tests (or generators). Once you have a random 

test generator, you computer(s) can work 24 hours a day 

generating new tests. 

The rest of the paper is organized as follows. Section 2 of this 

paper reveals previous work of genetic algorithms of testing. 

Section 3 focuses on the objectives of the study. Section 4 

discusses about the proposed system of nighthawk system and 

randomized testing level. In Section 5, methodology and 

algorithm to construct run test cases are explained. The results 

and findings comparison of the manual unit testing and 

nighthawk testing are dealt in Section 6. The work is 

concluded and possible future enhancements are discussed in 

Section 6. 
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2. LITERATURE REVIEW 

2.1 Genetic Algorithms for Testing 
Genetic Algorithms (GAs) are adaptive heuristic search 

algorithm premised on the evolutionary ideas of natural 

selection and genetic. The basic concept of GAs is designed to 

simulate processes in natural system necessary for evolution, 

specifically those that follow the principles first laid down by 

Charles Darwin of survival of the fittest. As such they 

represent an intelligent exploitation of a random search within 

a defined search space to solve a problem. This algorithm is 

purely used for random search in finding solutions and search 

too many complex problems. First pioneered by John Holland 

in the 60s, Genetic Algorithms has been widely studied, 

experimented and applied in many fields in engineering 

worlds. Not only does GAs provide alternative methods to 

solving problem, it consistently outperforms other traditional 

methods in most of the problems link. Many of the real world 

problems involved finding optimal parameters, which might 

prove difficult for traditional methods but ideal for GAs. 

However, because of its outstanding performance in 

optimisation, GAs has been wrongly regarded as a function 

optimiser. In fact, there are many ways to view genetic 

algorithms. The review of Rela’s describes 122 applications 

of metaheuristic search in software engineering, 44% of the 

software applications related to testing. Approaches to GA 

test suite generation can be black-box (requirements-based) or 

white-box (code-based); here this paper focus on white-box 

approaches, since this approach is coverage-based and 

therefore white box testing represent a set of testing data as a 

chromosome. In this each genes encode one input value to the 

software [21, 22]. Michael.C.C [23] represents the similarity 

of test data and comparing various strategies for augmenting 

the GA search [9]. Both of the above mentioned two 

approaches evaluate the fitness of chromosome the input is to 

covering some desired statement or condition direction. Guo 

et al [16] generate unique input-output (UIO) sequences for 

protocol testing using a genetic algorithm; the sequence of 

genes represents a sequence of inputs to a protocol agent, and 

the fitness function computes a measure related to the 

coverage of the possible states and transitions of the agent. 

The GA can of course be re-run to generate more test cases, 

but there is a good performance penalty since each run of the 

genetic algorithm generates only one new test case. In 

contrast, in our approach, each run of the GA results in a 

parameter setting for randomized testing which one can be 

applied and effective many times to generate many distinct 

high-coverage test cases? All analysis-based approaches share 

the disadvantage of requiring a robust parser and source code 

analyzer that can be updated to reflect changes in the source 

language. These complex tools are not often provided by 

language providers. Our approach does not require source 

code or byte code analysis, instead depending only on the 

robust Java reflection mechanism and commonly-available 

coverage tools. For instance, our source code was initially 

written with Java old versions (1.6) in other old or versions in 

mind, but worked seamlessly on the Java 1.7 versions of the 

java. util classes, despite the fact that the source code of many 

of units had been heavily modified to introduce templates. 

However, model-checking approaches have other strengths, 

such as the ability to analyze multithreaded code, further 

supporting the conclusion that the white box and model-

checking approaches are complementary [25]. 

 

3. OBJECTIVES OF THE STUDY 
The main objective of this research paper is the Nighthawk 

systems unit test data generator. It’s used to generate the high 

test coverage in short period. Nighthawk has two levels. The 

lower level is a randomized unit testing which test set of 

methods according to the parameter specified as input genes 

in a particular chromosome. This includes different 

parameters that encode value reuse policy. The upper level in 

this algorithm is fitness evaluation, selection and mutation and 

recombination of chromosomes to find good values for the 

genes [19]. Goodness is evaluated on the basis of test 

coverage and number of method calls performed [4]. Using 

the Nighthawk system the user can find very good argument 

and perform randomized unit testing based on those 

parameters. The randomized testing can quickly generate 

many new test cases that achieve high coverage, and can 

continue to do so for as long as users wish to run it. In this 

paper, the optimization techniques for genetic algorithms tools 

like nighthawk also discussed. Using FSS techniques the 

randomization can prune many of Nighthawk’s mutate (gene 

types) without compromising coverage. The pruned 

Nighthawk tool achieves nearly the same coverage as full 

Nighthawk (90%) and does 10 times faster. So this research 

should recommends that meta-heuristic search based software 

engineering tools should also routinely perform subset 

selection. 

 

4. PROPOSED SYSTEM 

4.1  Nighthawk System  
The Nighthawk system described in this paper significantly 

builds on this work by automatically determining various 

methods and its parameters used in the given classes, we 

developed Nighthawk, a genetic random test data generation 

system, using this system further carried out experiments and 

comparing it with manual unit testing and finding the optimal 

setting of program switches [13,17]. Unlike the methods 

discussed in the above Nighthawk’s genetic algorithm does 

not result in a single test input. We take a class it used in 

inventory application. This class contains many methods with 

different arguments. Using Nighthawk “ClassParser” method 

we give class name as input, the output will be generated 

automatically that is test case. It contains method name and 

each its argument list. We can get Output as a test case in 

random manner. Using this we can test an application. 

The results of our research encouraged to expand the scope of 

the GA to include method parameter ranges, value reuse 

policy and other randomized testing parameters. The result 

was very effective when using Nighthawk implementation of 

test data. In this research, first outline the lower randomized-

testing level of Nighthawk, and then describe the chromosome 

that controls its operation. After that, depict the genetic-

algorithm level and the end user interface [18]. Finally, it 

describes the use of automatically generated test wrappers for 

precondition checking, result evaluation and coverage 

enhancement. 

4.2 Randomized Testing Level 
Here randomized testing present a simplified description of 

the algorithm that the lower, randomized-testing, level of 

Nighthawk uses to construct and run a test case. The 

algorithm takes two parameters: a set C of Java classes and a 

GA chromosome C appropriate to C. the chromosome controls 

aspects of the algorithm’s behavior, such as the number of 

method calls to be made. In this paper C is the set of “Class 

Name”. And m the type of method corresponding to M is the 

following sets of types: All types of receivers, parameters and 

return values of methods in M. All primitive types that are the 

types of parameters to constructors of other types of interest 

[10]. Each type is associated with an array of value pools, and 
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each value pool for contains an array of values of type. Each 

value pool for a range primitive type (a primitive type other 

than Boolean and void) has bounds on the values that can 

appear in it. The number of value pools, number of values in 

each value pool, and the range primitive type bounds are 

specified by the chromosome. The GA algorithm first chooses 

initial values for primitive type pools, and then moves on to 

non primitive type pools. Here define a constructor method to 

be an initialize if it has no parameters, or if all its parameters 

are of primitive types. Define a constructor to be a re initialize 

if it has no parameters, or if all its parameters are of types and 

define the set of callable methods to be the methods in plus 

the reinitializes of the types. A call description is an object 

representing one method call that has been constructed and 

run [7]. It consists of the method name, an indication of 

whether the method call succeeded, failed or threw an 

exception, and one object description for each of the receiver, 

the parameters and the result (if any). A test case is a 

sequence of call descriptions, together with an indication of 

whether the test case succeeded or failed [2]. Nighthawk’s 

randomized testing algorithm is referred to as 

constructRunTestCase. It takes a set of target methods and a 

chromosome as inputs. It begins by initializing value pools, 

and then constructs and runs a test case, and returns the test 

case. 

Input: a class name Output: generated test case. 

Steps: 

1) Choose an application for testing. 

2) Each application having many modules and many classes. 

3) Each Class having many target method 

4) Choose any class from a module as genes. 

5) Using ClassParser(), getClass, getDeclaredMethods, 

method in apache.java as chromosomes. 

6) Using the above chromosomes can generarate test case 

 Contains method names and its argument list. 

5. METHODOLOGY  
An auxiliary method called DynamicDataDemo and 

ClassParser which takes a class as input, this method calls the 

all methods in that and returns a call description. In algorithm 

descriptions, the word “Random Data” is always used to 

mean specifically a random choice which may partly depend 

on the Chromosome. m.getName considers a method call to 

fail if and only if it throws an Assertion Error. It does not 

consider other exceptions to be failures, since they might be 

correct responses to bad input parameters [20]. A separate 

mechanism is used for detecting precondition violations and 

checking correctness of return values and exceptions. These 

concern the treatment of nulls, the treatment of String, and the 

treatment of Object. The receiver of a method call cannot be 

null, and no parameter can be null unless m.getArgument 

Types chooses it to be. If m.getArgumentTypes fails to find a 

non-null value when it is looking for one, it reports failure of 

the attempt to call the method; ClassParser tolerates a certain 

number of these attempt failures before terminating the test 

case generation process. Being initialized with “strings”. 

Some default strings are supplied by the system, and the user 

can supply more. Formal parameters of type java.lang.Object 

stand for some arbitrary object, but it is usually sufficient to 

use a small number of specific types as actual parameters; 

Nighthawk uses only int and string by default.  A notable 

exception to this rule is the parameter to the equals () method, 

which can be treated specially by test wrapper objects. 

Java.lang.String is treated as if it is a primitive type, the 

values in the value pools chromosomes. 

 

DynamicDataDemo:    

Input:Class C  Chromosome ch as argument;    

Output: a test case. 

Steps: 

1) If C is not a static and constructor class 

2) For each method in a class C 

a) Select ClassParser ("class name comes here"); method in 

Apche configuration file. 

b) Choose a class name as argument chromosome. 

c) Class C getting testing method name and its return type. 

3) If the method is constructor or static call it with the chosen 

arguments. Otherwise call it as receiver. 

4) If the method call threw an error, return failure indication. 

5) If the method calls other expression, return a call 

description using Java Exception handling. 

6) Otherwise if the method return type is not void and not 

null, the type t is not primitive and returns a call description 

with success indication. 

 

Table 1: A Nighthawk gene type and its methods 

 

6.  FINDINGS AND RESULTS 
In nighthawk system, the time taken to test the 

inventory, payroll, billing and CMDB application is (MM:SS) 

15:05, 10:23, 11:13 and 18:00 respectively and the utilization 

of CPU is 60%, 55%, 50% and 65% respectively. In manual 

unit testing, the time taken to test the inventory, payroll, 

billing and CMDB application is (MM:SS) 25:55, 22:1, 17:05 

Gene type Occurrence Type Description 

Nightawk One for whole chromosome int N method call to be made 

class.getName() One for each and method Int Getting method name 

ClassParser() One for whole chromosome All accepted data types 
Initial method for putting class name for 

execution 

clazz.getMethods One for each position Int, float Get method name 

MethodTroubleReturns() Common for all chromosome Int of float 
Return any error in the corresponding 

methods 

ClassNotFound 

Exception ex() 
One for whole chromosome char 

Return error message when the class is 

not fount 

getInventory() User defined chromosome Int, float It contains many sub method  

getPayroll() User defined chromosome Int, float It shows employee payroll 

Cmdb() User defined chromosome Int, float Configuration management 

Billing() User defined chromosome Int, float Billing system for customers 
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and 30:17 respectively and the utilization of CPU is 

respectively 110%, 105%, 90% and 115%. Comparing with 

manual testing, the nighthawk system saves 10 min 50 Sec for 

inventory, 12 Min 22 Sec for payroll, 06 Min 08 Sec for 

Billing and 12 Min 17 Sec for CMDB applications. And the 

CPU utilization is also reduced approximately 50% in all 

applications. 

In this research it is found that in nighthawk system, 

the CPU utilization and the turnaround time is less than 

manual unit testing. The result of the proposed system 

Nighthawk was compared with the result of manual unit 

testing. The comparison shows, that the Nighthawk system 

(with random test data) tests the given application more 

quickly and efficiently comparing with the manual unit 

testing. The result comparison is given in the Table 2. The 

results are represented in the charts as shown in the Fig 1 and 

Fig.2.  

 

 

Table 2: Results Comparison of Manual Unit Testing and Nighthawk Testing 

 

 

Fig 1: Nighthawk Testing 

 

 

Fig 2: Manual Unit Testing 

6. CONCLUSION AND FUTURE 

ENHANCEMENT 

6.1 Conclusion  
Randomized unit testing is a promising technology 

that has been shown to be effective, but whose thoroughness 

depends on the settings of test algorithm parameters and test 

cases. In this paper, Nighthawk were described, a system in 

which use genetic algorithm automatically derives methods 

and parameters in a module or a class in any kind of testing 

software applications. The comparison shows that Nighthawk 

is able to achieve high coverage of complex, real-world Java 

units, while retaining the most desirable feature of 

randomized testing: the ability to generate many new high-

coverage test cases quickly. In this research the test coverage 

results of Nighthawk were compared with manual unit testing 

results. The Nighthawk system produced maximum test 

coverage results in less timing based on the genetic algorithm 

and Feature Subset Selection (FSS) techniques comparing 

with manual unit testing results. And this research shows that 

we were able to optimize and simplify metaheuristic search 

tools. Metaheuristic tools (such as genetic algorithms) 

typically mutate some aspect of a candidate solution and 

evaluate the results. If the effect of mutating each aspect is 

recorded, then each aspect can be considered a feature and is 

amenable to the FSS processing. In this way, FSS can be used 

to automatically find and remove superfluous parts of the 

search control.  

6.2 Future Enhancement 
Future enhancement includes the integration into 

Nighthawk of useful facilities from past systems, such as 

failure-preserving or coverage-preserving test case 

minimization, and further experiments on the effect of 

program options on coverage and efficiency. Also wish to 

integrate a feature subset selection learner into the GA level of 

the Nighthawk algorithm for dynamic optimization of the GA. 

Further, can see a promising line of research where the 

cost/benefits of a particular metaheuristic are tuned to the 

S.No. Application Name SLOC* 
Manual Unit Testing Nighthawk Testing 

Turn Around Time CPU Utilization Turn Around Time CPU Utilization 

1 Inventory 1123 00:25:55 0 - 110 00:15:05 0 - 60 

2 Payroll 956 00:22:17 0 - 105 00:10:23 0 - 55 

3 Billing 750 00:17:05 0 - 90 00:11:13 0 - 50 

4 CMDB* 1310 00:30:17 0 - 115 00:18:00 0 - 65 

SLOC – Source Line of Code 

CMDB – Configuration Management Database 
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particulars of a specific problem.  This research shows that if 

we surrender one 10th of the coverage, we can run Nighthawk 

10 times faster. While this is an acceptable trade-off in many 

domains, it may unsuitable for safety critical applications. 

More work is required to understand how to best match 

metaheuristic (with or without FSS) to particular problem 

domains. 
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