
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

6

An Empirical Study of Randomized Unit Tests using

Nighthawk System

N.Rajasekaran
Assistant Professor, Department of

Computer Application
Kongu Arts and Science College

Bharathiar University
Tamil Nadu, India

K.K.Sureshkumar
Assistant Professor,
Department of MCA

Kongu Arts and Science College
Bharathiar University

Tamil Nadu, India

N.M.Elango, PhD.
Professor and Head,
Department of MCA

RMK Engineering College
Anna University of Technology

Chennai, India

ABSTRACT

Randomized testing has been shown to be an effective method

for testing software units. However, the thoroughness of

randomized unit testing varies widely according to the input

which is provided by the user. Such as the relative frequencies

with which methods are called to be improved the

thoroughness of randomized unit testing. In this paper the

system, describes genetic algorithm based parameter finding

for randomized unit testing that optimizes test coverage. Here

the unit test data will be generated by nighthawk system. The

system can be viewed as two levels, lower level and upper

level. Randomized unit testing engine is a lower level, which

tests a set of methods according to parameter values specified

as genes in a chromosome, including parameters that encode a

value reuse policy. The upper level is a genetic algorithm

(GA) which uses fitness evaluation, selection, mutation and

recombination of chromosomes in order to find out good

values for the genes. Integrity is evaluated on the basis of test

coverage and number of method calls performed. To find

good parameters users can use Nighthawk and then perform

with randomized unit testing based on those parameters.

Many new test cases can quickly generate by randomized

testing that achieve high coverage, and can continue to do so

for as long as users wish to run it. In this research the test

coverage results of Nighthawk are compared with manual unit

testing results [6]. The Nighthawk system produced maximum

test coverage results in less timing based on the genetic

algorithm comparing with manual unit testing results.

General Terms

Software Testing, Unit testing, Genetic algorithms

Keywords

Randomized Unit Testing, Feature Subset Selection,

Nighthawk. Software under Test (SUT).

1. INTRODUCTION
Software testing involves running a piece of software (the

software under test, or SUT) on selected input data, and

checking the outputs for correctness. The goals of software

testing are to force failures of the SUT, and to be thorough.

The more thoroughly tested an SUT without forcing failures,

the surer produces the reliability of the SUT. Randomized

testing is the practice of using randomization for some aspects

of test input data selection [15]. Various research and studies

have found that randomized testing for software products is

very effective and efficient at forcing failures in even well-

tested units. However, the randomized testing is forcing

failures in even well tested software units but the question will

be raised it’s thorough enough or not. Using various code

coverage measures to measure thoroughness, researchers have

come to varying conclusions about the ability of randomized

testing to be thorough. The thoroughness of randomized unit

testing is highly dependent on parameters that control when

and how randomization is applied. These parameters include

the number of method calls to make, the relative frequency

with which different methods are called, and the ranges from

which numeric arguments are chosen. The manner in which

previously returned value or previously used arguments are

again used in new method calls, which referred to as the value

reuse policy, is also a crucial factor. It will be very difficult to

find out the optimum solutions of the parameter and the

optimal value reuse policy by hand.

1.1 Randomized Unit Testing
Random testing is a form of functional testing that is useful

when the time needed to write & run directed tests is too long

(or the complexity of the problem makes it impossible to test

every combination). Release criteria may include a statement

about the amount of random testing that is required. For

example, we have a requirement that there should be no

random failures for 2 weeks prior to release (that is 2 weeks of

continuous random testing on 50 workstations).One of the big

issues of random testing is to know when a test fails. As with

all testing, an oracle is needed. You could rely in assertions in

the code as your sole oracle (i.e. you throw random inputs at

the code, possibly from multiple threads, and if no GPF

happens in 2 weeks then you assume it's OK). In other

situations, common with hardware development, you have

two different implementations of the same specification (one

is 'the golden model’; the other is 'the implementation'. If they

both agree to a defined accuracy then the test passes. When

doing random testing you must, of course, ensure that your

tests are sufficiently random, and that they cover the spec.

repeating the same test for 2 weeks doesn't tell you anything.

It is often claimed, correctly, that random testing is less

efficient than directed testing. But you must consider the time

needed to write random test generator vs. the time to write a

set of directed tests (or generators). Once you have a random

test generator, you computer(s) can work 24 hours a day

generating new tests.

The rest of the paper is organized as follows. Section 2 of this

paper reveals previous work of genetic algorithms of testing.

Section 3 focuses on the objectives of the study. Section 4

discusses about the proposed system of nighthawk system and

randomized testing level. In Section 5, methodology and

algorithm to construct run test cases are explained. The results

and findings comparison of the manual unit testing and

nighthawk testing are dealt in Section 6. The work is

concluded and possible future enhancements are discussed in

Section 6.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

7

2. LITERATURE REVIEW

2.1 Genetic Algorithms for Testing
Genetic Algorithms (GAs) are adaptive heuristic search

algorithm premised on the evolutionary ideas of natural

selection and genetic. The basic concept of GAs is designed to

simulate processes in natural system necessary for evolution,

specifically those that follow the principles first laid down by

Charles Darwin of survival of the fittest. As such they

represent an intelligent exploitation of a random search within

a defined search space to solve a problem. This algorithm is

purely used for random search in finding solutions and search

too many complex problems. First pioneered by John Holland

in the 60s, Genetic Algorithms has been widely studied,

experimented and applied in many fields in engineering

worlds. Not only does GAs provide alternative methods to

solving problem, it consistently outperforms other traditional

methods in most of the problems link. Many of the real world

problems involved finding optimal parameters, which might

prove difficult for traditional methods but ideal for GAs.

However, because of its outstanding performance in

optimisation, GAs has been wrongly regarded as a function

optimiser. In fact, there are many ways to view genetic

algorithms. The review of Rela’s describes 122 applications

of metaheuristic search in software engineering, 44% of the

software applications related to testing. Approaches to GA

test suite generation can be black-box (requirements-based) or

white-box (code-based); here this paper focus on white-box

approaches, since this approach is coverage-based and

therefore white box testing represent a set of testing data as a

chromosome. In this each genes encode one input value to the

software [21, 22]. Michael.C.C [23] represents the similarity

of test data and comparing various strategies for augmenting

the GA search [9]. Both of the above mentioned two

approaches evaluate the fitness of chromosome the input is to

covering some desired statement or condition direction. Guo

et al [16] generate unique input-output (UIO) sequences for

protocol testing using a genetic algorithm; the sequence of

genes represents a sequence of inputs to a protocol agent, and

the fitness function computes a measure related to the

coverage of the possible states and transitions of the agent.

The GA can of course be re-run to generate more test cases,

but there is a good performance penalty since each run of the

genetic algorithm generates only one new test case. In

contrast, in our approach, each run of the GA results in a

parameter setting for randomized testing which one can be

applied and effective many times to generate many distinct

high-coverage test cases? All analysis-based approaches share

the disadvantage of requiring a robust parser and source code

analyzer that can be updated to reflect changes in the source

language. These complex tools are not often provided by

language providers. Our approach does not require source

code or byte code analysis, instead depending only on the

robust Java reflection mechanism and commonly-available

coverage tools. For instance, our source code was initially

written with Java old versions (1.6) in other old or versions in

mind, but worked seamlessly on the Java 1.7 versions of the

java. util classes, despite the fact that the source code of many

of units had been heavily modified to introduce templates.

However, model-checking approaches have other strengths,

such as the ability to analyze multithreaded code, further

supporting the conclusion that the white box and model-

checking approaches are complementary [25].

3. OBJECTIVES OF THE STUDY
The main objective of this research paper is the Nighthawk

systems unit test data generator. It’s used to generate the high

test coverage in short period. Nighthawk has two levels. The

lower level is a randomized unit testing which test set of

methods according to the parameter specified as input genes

in a particular chromosome. This includes different

parameters that encode value reuse policy. The upper level in

this algorithm is fitness evaluation, selection and mutation and

recombination of chromosomes to find good values for the

genes [19]. Goodness is evaluated on the basis of test

coverage and number of method calls performed [4]. Using

the Nighthawk system the user can find very good argument

and perform randomized unit testing based on those

parameters. The randomized testing can quickly generate

many new test cases that achieve high coverage, and can

continue to do so for as long as users wish to run it. In this

paper, the optimization techniques for genetic algorithms tools

like nighthawk also discussed. Using FSS techniques the

randomization can prune many of Nighthawk’s mutate (gene

types) without compromising coverage. The pruned

Nighthawk tool achieves nearly the same coverage as full

Nighthawk (90%) and does 10 times faster. So this research

should recommends that meta-heuristic search based software

engineering tools should also routinely perform subset

selection.

4. PROPOSED SYSTEM

4.1 Nighthawk System
The Nighthawk system described in this paper significantly

builds on this work by automatically determining various

methods and its parameters used in the given classes, we

developed Nighthawk, a genetic random test data generation

system, using this system further carried out experiments and

comparing it with manual unit testing and finding the optimal

setting of program switches [13,17]. Unlike the methods

discussed in the above Nighthawk’s genetic algorithm does

not result in a single test input. We take a class it used in

inventory application. This class contains many methods with

different arguments. Using Nighthawk “ClassParser” method

we give class name as input, the output will be generated

automatically that is test case. It contains method name and

each its argument list. We can get Output as a test case in

random manner. Using this we can test an application.

The results of our research encouraged to expand the scope of

the GA to include method parameter ranges, value reuse

policy and other randomized testing parameters. The result

was very effective when using Nighthawk implementation of

test data. In this research, first outline the lower randomized-

testing level of Nighthawk, and then describe the chromosome

that controls its operation. After that, depict the genetic-

algorithm level and the end user interface [18]. Finally, it

describes the use of automatically generated test wrappers for

precondition checking, result evaluation and coverage

enhancement.

4.2 Randomized Testing Level
Here randomized testing present a simplified description of

the algorithm that the lower, randomized-testing, level of

Nighthawk uses to construct and run a test case. The

algorithm takes two parameters: a set C of Java classes and a

GA chromosome C appropriate to C. the chromosome controls

aspects of the algorithm’s behavior, such as the number of

method calls to be made. In this paper C is the set of “Class

Name”. And m the type of method corresponding to M is the

following sets of types: All types of receivers, parameters and

return values of methods in M. All primitive types that are the

types of parameters to constructors of other types of interest

[10]. Each type is associated with an array of value pools, and

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

8

each value pool for contains an array of values of type. Each

value pool for a range primitive type (a primitive type other

than Boolean and void) has bounds on the values that can

appear in it. The number of value pools, number of values in

each value pool, and the range primitive type bounds are

specified by the chromosome. The GA algorithm first chooses

initial values for primitive type pools, and then moves on to

non primitive type pools. Here define a constructor method to

be an initialize if it has no parameters, or if all its parameters

are of primitive types. Define a constructor to be a re initialize

if it has no parameters, or if all its parameters are of types and

define the set of callable methods to be the methods in plus

the reinitializes of the types. A call description is an object

representing one method call that has been constructed and

run [7]. It consists of the method name, an indication of

whether the method call succeeded, failed or threw an

exception, and one object description for each of the receiver,

the parameters and the result (if any). A test case is a

sequence of call descriptions, together with an indication of

whether the test case succeeded or failed [2]. Nighthawk’s

randomized testing algorithm is referred to as

constructRunTestCase. It takes a set of target methods and a

chromosome as inputs. It begins by initializing value pools,

and then constructs and runs a test case, and returns the test

case.

Input: a class name Output: generated test case.

Steps:

1) Choose an application for testing.

2) Each application having many modules and many classes.

3) Each Class having many target method

4) Choose any class from a module as genes.

5) Using ClassParser(), getClass, getDeclaredMethods,

method in apache.java as chromosomes.

6) Using the above chromosomes can generarate test case

 Contains method names and its argument list.

5. METHODOLOGY
An auxiliary method called DynamicDataDemo and

ClassParser which takes a class as input, this method calls the

all methods in that and returns a call description. In algorithm

descriptions, the word “Random Data” is always used to

mean specifically a random choice which may partly depend

on the Chromosome. m.getName considers a method call to

fail if and only if it throws an Assertion Error. It does not

consider other exceptions to be failures, since they might be

correct responses to bad input parameters [20]. A separate

mechanism is used for detecting precondition violations and

checking correctness of return values and exceptions. These

concern the treatment of nulls, the treatment of String, and the

treatment of Object. The receiver of a method call cannot be

null, and no parameter can be null unless m.getArgument

Types chooses it to be. If m.getArgumentTypes fails to find a

non-null value when it is looking for one, it reports failure of

the attempt to call the method; ClassParser tolerates a certain

number of these attempt failures before terminating the test

case generation process. Being initialized with “strings”.

Some default strings are supplied by the system, and the user

can supply more. Formal parameters of type java.lang.Object

stand for some arbitrary object, but it is usually sufficient to

use a small number of specific types as actual parameters;

Nighthawk uses only int and string by default. A notable

exception to this rule is the parameter to the equals () method,

which can be treated specially by test wrapper objects.

Java.lang.String is treated as if it is a primitive type, the

values in the value pools chromosomes.

DynamicDataDemo:

Input:Class C Chromosome ch as argument;

Output: a test case.

Steps:

1) If C is not a static and constructor class

2) For each method in a class C

a) Select ClassParser ("class name comes here"); method in

Apche configuration file.

b) Choose a class name as argument chromosome.

c) Class C getting testing method name and its return type.

3) If the method is constructor or static call it with the chosen

arguments. Otherwise call it as receiver.

4) If the method call threw an error, return failure indication.

5) If the method calls other expression, return a call

description using Java Exception handling.

6) Otherwise if the method return type is not void and not

null, the type t is not primitive and returns a call description

with success indication.

Table 1: A Nighthawk gene type and its methods

6. FINDINGS AND RESULTS
In nighthawk system, the time taken to test the

inventory, payroll, billing and CMDB application is (MM:SS)

15:05, 10:23, 11:13 and 18:00 respectively and the utilization

of CPU is 60%, 55%, 50% and 65% respectively. In manual

unit testing, the time taken to test the inventory, payroll,

billing and CMDB application is (MM:SS) 25:55, 22:1, 17:05

Gene type Occurrence Type Description

Nightawk One for whole chromosome int N method call to be made

class.getName() One for each and method Int Getting method name

ClassParser() One for whole chromosome All accepted data types
Initial method for putting class name for

execution

clazz.getMethods One for each position Int, float Get method name

MethodTroubleReturns() Common for all chromosome Int of float
Return any error in the corresponding

methods

ClassNotFound

Exception ex()
One for whole chromosome char

Return error message when the class is

not fount

getInventory() User defined chromosome Int, float It contains many sub method

getPayroll() User defined chromosome Int, float It shows employee payroll

Cmdb() User defined chromosome Int, float Configuration management

Billing() User defined chromosome Int, float Billing system for customers

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

9

and 30:17 respectively and the utilization of CPU is

respectively 110%, 105%, 90% and 115%. Comparing with

manual testing, the nighthawk system saves 10 min 50 Sec for

inventory, 12 Min 22 Sec for payroll, 06 Min 08 Sec for

Billing and 12 Min 17 Sec for CMDB applications. And the

CPU utilization is also reduced approximately 50% in all

applications.

In this research it is found that in nighthawk system,

the CPU utilization and the turnaround time is less than

manual unit testing. The result of the proposed system

Nighthawk was compared with the result of manual unit

testing. The comparison shows, that the Nighthawk system

(with random test data) tests the given application more

quickly and efficiently comparing with the manual unit

testing. The result comparison is given in the Table 2. The

results are represented in the charts as shown in the Fig 1 and

Fig.2.

Table 2: Results Comparison of Manual Unit Testing and Nighthawk Testing

Fig 1: Nighthawk Testing

Fig 2: Manual Unit Testing

6. CONCLUSION AND FUTURE

ENHANCEMENT

6.1 Conclusion
Randomized unit testing is a promising technology

that has been shown to be effective, but whose thoroughness

depends on the settings of test algorithm parameters and test

cases. In this paper, Nighthawk were described, a system in

which use genetic algorithm automatically derives methods

and parameters in a module or a class in any kind of testing

software applications. The comparison shows that Nighthawk

is able to achieve high coverage of complex, real-world Java

units, while retaining the most desirable feature of

randomized testing: the ability to generate many new high-

coverage test cases quickly. In this research the test coverage

results of Nighthawk were compared with manual unit testing

results. The Nighthawk system produced maximum test

coverage results in less timing based on the genetic algorithm

and Feature Subset Selection (FSS) techniques comparing

with manual unit testing results. And this research shows that

we were able to optimize and simplify metaheuristic search

tools. Metaheuristic tools (such as genetic algorithms)

typically mutate some aspect of a candidate solution and

evaluate the results. If the effect of mutating each aspect is

recorded, then each aspect can be considered a feature and is

amenable to the FSS processing. In this way, FSS can be used

to automatically find and remove superfluous parts of the

search control.

6.2 Future Enhancement
Future enhancement includes the integration into

Nighthawk of useful facilities from past systems, such as

failure-preserving or coverage-preserving test case

minimization, and further experiments on the effect of

program options on coverage and efficiency. Also wish to

integrate a feature subset selection learner into the GA level of

the Nighthawk algorithm for dynamic optimization of the GA.

Further, can see a promising line of research where the

cost/benefits of a particular metaheuristic are tuned to the

S.No. Application Name SLOC*
Manual Unit Testing Nighthawk Testing

Turn Around Time CPU Utilization Turn Around Time CPU Utilization

1 Inventory 1123 00:25:55 0 - 110 00:15:05 0 - 60

2 Payroll 956 00:22:17 0 - 105 00:10:23 0 - 55

3 Billing 750 00:17:05 0 - 90 00:11:13 0 - 50

4 CMDB* 1310 00:30:17 0 - 115 00:18:00 0 - 65

SLOC – Source Line of Code

CMDB – Configuration Management Database

Nighthawk Testing

0

20

40

60

80

Time

C
P

U
 U

ti
li

z
a
ti

o
n

Nighthawk

Testing

60 55 50 65

0:15 0:10 0:11 0:18

Manual Unit Testing

0

50

100

150

Time

C
P

U
 U

ti
li

za
ti

o
n

Manual

Testing

100 105 90 115

00:25 00:22 00:17 00:30

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.18, April 2013

10

particulars of a specific problem. This research shows that if

we surrender one 10th of the coverage, we can run Nighthawk

10 times faster. While this is an acceptable trade-off in many

domains, it may unsuitable for safety critical applications.

More work is required to understand how to best match

metaheuristic (with or without FSS) to particular problem

domains.

7. REFERENCES
[1]. Andrews J.H, S. Haldar, Y. Lei, and C.H.F. Li, “Tool

Support for Randomized Unit Testing,” Proc. First Int’l

Workshop Randomized Testing, pp. 36-45, July 2006.

[2]. Andrews J.H and Y. Zhang, “General Test Result

Checking with Log File Analysis,” IEEE Trans. Software

Eng., vol. 29, no. 7, pp. 634-648, July 2003.

[3]. Andrews.J, F. Li, and T. Menzies, “Nighthawk: A Two-

Level Genetic-Random Unit Test Data Generator,” Proc.

22nd IEEE/ACM Int’l Conf. Automated Software Eng.,

[4]. Andrews.J and T. Menzies, “On the Value of Combining

Feature Subset Selection with Genetic Algorithms: Faster

Learning of Coverage Models,” Proc. Fifth Int’l Conf.

Predictor Models in Software Eng.,

[5]. Anatoly’s and R.G. Hamlet, “Automatically Checking an

Implementation against its Formal Specification,” IEEE

Trans. Software Eng., vol. 26, no. 1, pp. 55-69, Jan.

2000.

[6] Ball.T, “A Theory of Predicate-Complete Test Coverage

and Generation,” Proc. Third Int’l Symp. Formal

Methods for Components and Objects, pp. 1-22, Nov.

2004.

[7]. Ciupa.I, A. Leitner, M. Oriol, and B. Meyer, “Artoo:

Adaptive Random Testing for Object-Oriented

Software,” Proc. 30th ACM/ IEEE Int’l Conf. Software

Eng., pp. 71-80, May 2008.

[8]. Claessen.K and J. Hughes, “QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs,” Proc.

Fifth ACM SIGPLAN Int’l Conf. Functional

Programming, pp. 268-279, Sept. 2000.

[9]. Clarke L.A, “A System to Generate Test Data and

Symbolically Execute Programs,” IEEE Trans. Software

Eng., vol. 2, no. 3, pp. 215-222, Sept. 1976.

[10]. Csallner.C and Y. Smaragdakis, “JCrasher: An

Automatic Robustness Tester for Java,” Software

Practice and Experience, vol. 34, no. 11, pp. 1025-1050,

2004.

[11]. Doong.R.K and P.G.Frankl,“The ASTOOT Approach to

Testing Object-Oriented Programs,” ACM Trans.

Software Eng. and Methodology, vol. 3, no. 2, pp. 101-

130, Apr. 1994.

[12]. Ernst M.D., J. Cockrell, W.G. Griswold, and D. Notkin,

“Dynamically Discovering Likely Program Invariants to

Support Program Evolution,” IEEE Trans. Software

Eng., vol. 27, no. 2, pp. 99-123, Feb. 2001.

[13].Godefroid.P, N. Klarlund, and K. Sen, “DART: Directed

Automated Random Testing,” Proc. ACM SIGPLAN

Conf. Programming Language Design and

Implementation, pp. 213-223, June 2005.

[14]. Goldberg.D.E, Genetic Algorithm in Search,

Optimization, and Machine Learning. Addison-Wesley,

1989.

[15]. Groce .A, G.J. Holzmann, and R. Joshi, “Randomized

Differential Testing as a Prelude to Formal Verification,”

Proc. 29th Int’l Conf. Software Eng., pp. 621-631, May

2007.

[16].Guo.Q, R.M. Hierons, M. Harman, and K. Derderian,

“Computing Unique Input/Output Sequences Using

Genetic Algorithms,” Proc. Third Int’l Workshop Formal

Approaches to Testing of Software, pp. 164-177, 2004.

[17].Gupta.N, A.P. Matcher, and M.L. Soffa, “Automated

Test Data Generation Using an Iterative Relaxation

Method,” Proc. Sixth Int’l Symp. Foundations of

Software Eng., pp. 224-232, Nov. 1998.

[18]. Hamlet.R, “Random Testing,” Encyclopedia of Software

Eng., Wiley, pp. 970-978, 1994.

[19]. Holland J.H, Adaptation in Natural and Artificial

Systems. University of Michigan Press, 1975.

[20]. King J.C, “Symbolic Execution and Program Testing,”

Comm. ACM, vol. 19, no. 7, pp. 385-394, 1976. Kira.K

and L. Rendell, “A Practical Approach to Feature

Selection,” Proc. Ninth Int’l Conf. Machine Learning,

pp. 249-256, 1992.

[21]. Korel.B, “Automated Software Test Generation,” IEEE

Trans.Software Eng., vol. 16, no. 8, pp. 870-879, Aug.

1990.

[22]. Leow W.K, S.C. Khoo, and Y. Sun, “Automated

Generation of Test Programs from Closed Specifications

of Classes and Test Cases,” Proc. 26th Int’l Conf.

Software Eng., pp. 96-105, May 2004.

[23]. Michael C.C, G. McGraw, and M.A. Schatz, “Generating

Software Test Data by Evolution,” IEEE Trans. Software

Eng., vol. 27, no. 12, pp. 1085-1110, Dec. 2001.

[24]. Miller B.P, L. Fredriksen, and B. So, “An Empirical

Study of the Reliability of UNIX Utilities,” Comm. ACM,

vol. 33, no. 12, pp. 3244, Dec. 1990.

[25]. Owen.D and T. Menzies, “Lurch: A Lightweight

Alternative to Model Checking,” Proc. 15th Int’l Conf.

Software Eng. and Knowledge Eng., pp. 158-165, July

2003.

