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ABSTRACT 
Mining for association rules between items in large 

transactional databases is a central problem in the field of 

knowledge discovery. It has crucial applications in decision 

support and marketing strategy. Centralized and Distributed 

Association Rules Mining (DARM) include two phases of 

frequent itemset extraction and strong rule generation. The most 

important part of ARM is Frequent Itemsets Mining (FIM)and 

because of its importance in recent years, there have been many 

algorithms implemented for it. In this paper, we have focused 

on distributed Apriori-Like frequent itemsets mining and 

proposed a distributed algorithm, called New Dynamic 

Distributed Frequent Itemsets Mining (NDD-FIM), for 

geographically distributed data sets. NDD-FIM has a merger 

site to reduce communication overhead and eliminates size of 

dataset partitions dynamically. The experimental results show 

that our algorithm generates support counts of candidate 

itemsets quickerthan other DARM algorithms and reduces the 

size of average transactions, datasets, and messageexchanges. 

Keywords 
Distributed Data Mining;Frequent Itemsets;Association Rule; 

Apriori Algorithm 

1. INTRODUCTION 
Frequent itemsets mining is at the core of various applications 

in the data mining area. It is majorly applied in association rules 

mining [1,2], correlation analysis, sequential patterns mining 

[3], multi-dimensional patterns mining [4], among others. 

The best known such task is the association rules discovery. 

Anassociation rule is a rule which implies certain association 

relationships among a set of items in a database. The meaning 

of an association XY, where X and Y are set of items, is that 

transactions of the database which contain X tend to contain Y. 

However, there could be a lot of associations among the data 

which may not be able to deduce from common knowledge. 

Therefore, since association ruless inception, many sequential 

and distributed frequent itemset mining algorithms have been 

proposed in the literature [5-15], etc. Many of them are 

correlated to the Apriori algorithm [10] which is a well-known 

method. However, it is costly to find candidate itemsets. Thus, 

many researchers have been trying to improve it.  

Basically, frequent itemsets generation algorithms search the 

dataset to determine which combination of items occurs 

together frequently. Considering the commonly known market 

basket analysis; ARM analyses customer buying habits by 

finding frequent itemsets and associations between the different 

items that customers place in their "shopping baskets". For 

instance, if customers are buying milk, how likely are they 

going to also buy bread on the same trip to the supermarket? 

Each customer buys a set of items as his/her basket that is a 

transaction. For a fixed threshold support s, the algorithm 

determineswhich sets of items, of a given size k, are contained 

in at least s of the ttransactionsor baskets. 

Such information can lead to increased sales by helping retailers 

do selective marketing and arrange their shelf space. 

Most enterprises collect huge amounts of business data from 

daily transactions and store them in distributed datasets; 

specially, for security issues and communication overhead, 

those distributed datasets are usually not allowed to be 

transmitted or joined together, therefore, in this study we are 

focusing on Apriori-based algorithms and discovering frequent 

itemsets on extremely large and distributeddatasets over 

different geographic locations and will present a well-adapted 

distributed approach for this purpose, based on both analytical 

and experimental approaches. 

Like other data mining techniques that must process enormous 

datasets, FIM is inherently disk-I/O intensive.These I/O costs 

can be reduced byeliminating infrequent items, finding more 

identical transactions, and reducing the number of times the 

database needs to be scanned. 

In a distributed environment the practical implications of 

communication overhead, the effect of the underlying 

architecture, and the dynamic behavior of the system are issues 

that contribute to the complexity of a distributed environment 

[16]. 

The partitioning of a task and subsequent migration of some of 

the resulting subtasks will result in increased communications 

overhead. Therefore, a most important problem of distributed 

architectures and algorithms is overheads cost in inter-site 

communications among processors. Some of the distributed 

algorithms like CD [5], FDM [6], and FPM [8] do not have any 

merger site and message exchange is all to all which is not a 

strong architecture. But, DDM [9] and ODAM [15] have used a 

merger site to collect local counts from other sites. This method 

reduces communication overhead significantly when compared 

to other algorithms. Generally speaking, the algorithm must 

balance the overhead communication cost against the resulting 

improvement in the throughput.  

The worst-case work and communication needed by a classical 

distribution of the Apriori algorithm can be exponential in the 

size of the input. Considering the case where every transaction, 

in every node, contains every item, the algorithm must output 

and may communicate each subset of I items, at each level. This 

can be due to remote support counts collections for global 

pruning purposes. In this case, many of the communications are 

completely unnecessary.  

Based on these observations, the proposed approach has three 

phases: the local mining phase, the communication phase, and 

the global mining phase. Also elimination of infrequent items 

and finding similar transaction is a dynamic background action. 

In the first phase, we consider only counting and a local pruning 

strategy. In thesecond phase, each node sends support counts of 

a collection of locally frequentitemsetsto the merger node. The 

merger node collects frequent counts and asks other node by 

necessity. The overhead related to communicationphase in 
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classical approaches can then be highly reduced using a 

constrained collectionphase with much fewer passes. Moreover 

speed of the counting phase will be increased by elimination of 

the infrequent items. 

Also generation of candidate itemsets will be performed by the 

merger site not by all nodes.   

While our performance study focuses on the Apriori-

baseddistribution, we believe that the key reasoning of this 

study will hold for many other frequentitemsets generation 

tasks, since it is partly related to the dataset properties. 

The rest of this article is organized as follows. Section 2 

provides the preliminaries of basic concepts and their notations 

to facilitate the description the well-known algorithms. Section 

3 surveys works related to distributed frequent itemsets mining. 

In Section 4, we define our proposed algorithm in detail. 

Section 5 reports the experimental results. Finally the 

conclusion of this work and future works are given in Section 6. 

2. PROBLEM DEFINITION 

In this Section, we define frequent itemsets mining problem, its 

distribution aspect, and properties.   

The frequent itemsets generation problem can be stated as 

follows.Let I={  ,     …   } be a set of mitems and D be a  

database of transactions, where each transaction T consists of a 

set of items such that T  I. Given an itemsetx I of size k 

that is known as k-itemset, a transaction T contains x if and only 

if x  T. For an itemsetx, the support of xdenoted as   (D), is 

defined as the number of transactions in Dwhich x occurs as a 

subset. Let minsup be the minimum support threshold specified 

by user. If   (D) ≥ minsup, x is called a frequent itemset [17]. 

A frequent itemset is maximalif it has nosuperset that 

isfrequent. Some approaches are dedicated to this problem 

[18,19,20].  

A typical architecture of a distributed data mining approach is 

depicted in Figure 1.The first phase involves the analysis of the 

local database at distributed sites. Then, the discovered 

knowledge is usually transmitted to a central site, and the 

integration is performed. The results are transmitted back to the 

local databases. 

In some approaches [5,6,8], instead of a merger site, the 

localmodels are broadcasted to all other sites, so that eachsite 

can in parallel compute the global model. 

 

 

Fig 1: Typical architecture of Distributed Data Mining 

approaches [21] 

 

The distribution aspect of FIM can be described as follows. Let 

Dbe a dataset of transactions partitioned horizontally over M 

nodes {  ,     …   }, and the size of the partition   be   . Let 

  (D) and   (  ) be the support count of the itemsetxin Dand  , 

respectively. For a given minimum support threshold  , called 

minsup, an itemsetxis globally frequent if   (D) is greater than 

  ×|D|, and islocally frequent at a node    if  (  ) is greater 

than   ×   |. 

Two basic properties are described here: 

Property 2.1 A globally frequent itemset must be locally 

frequent in at least one node. 

Proof Let x be an itemset. If    (  )  is smaller than   ×   | for 

i = 1,…,M, then   (D) is smaller than   ×|D| (since 

  (D)=        
 
    and D =   

 
   ), and x cannot beglobally 

frequent. Then, if x is a globally frequent, it must be locally 

frequent in at least onenode  .  

Property 2.2 All subsets of a globally frequent itemset are 

globally frequent. 

Proof Let x be an itemset, and xbe a subset of x. If   (D) is 

smaller than   ×|D|,then   (D) is also smaller than 

  ×|D|(since   (D)≤   (D)), and x cannot be globallyfrequent. 

Then, if x is globally frequent, all its subsets must be frequent. 

3. PREVIOUS WORKS 

Algorithms for the distributed FIM problem usually are 

parallelization of sequential FIM algorithms. CD, FDM, FPM 

and DDM [5,6,8,9] parallelize Apriori [10], PDM [12] 

parallelizes DHP [11], D-Sampling [7] is a combination of 

serialsampling approach [22] and DDM algorithm, parallel FP-

growth [13] is a parallelized version of FP-growth [14], and so 

on.As mentioned before, many frequent itemsets mining 

algorithms, both sequential and distributed, are related to the 

Apriori algorithm [10]. The name of the algorithm is based on 

the fact that it uses prior knowledge of frequent itemsets 

properties. It exploits the observation that all subsets of a 

frequent itemset must be frequent.Apriori is a serial algorithm 

that has a smaller computational complexity when compared 

with other serial algorithms [23]. This algorithm 

performsthreesteps in Fig. 2. (  and   are frequent and 

candidate itemsets of size k, respectively).Step 2 is named as 

apriori_gen function which is used in the other Apriori-Based 

algorithms and is stated in Fig. 3. 

1. Generate  , then iterates steps 2, 3 and 4 

2. Generate  from      

3. Examine   to determine whether the candidate sets meet the 

minsupor not. If the answer is positive, add itemsetto    

4. Stop if      

Fig2:Apriorialgorithm [10] 

Procedure apriori_gen(    ,min_sup) 

1.for each itemset       

2. for each itemset       

3. If (  [1] =   [1])^(  [2] =   [2])^…^ 

    (  [k-2]=  [k-2])^(  [k-1]≠   [k-1]) then { 

4.  c=   ∞  ; // join step 

5.  Ifhas_infrequent_subset(c,    )  

6.  Then delete c; // prune step 

7.  Else add c to  ; 

8.     } 

9.Return   

Fig3:apriori_genfunction [10] 
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The CD (Count Distribution) and DD(Data Distribution) 

algorithms [5]are simple parallelization of the Apriorialgorithm, 

and assume data sets are horizontally partitioned 

amongdifferent nodes and each node has a copy of candidate 

itemsets.CD doesn't exchange data tuples betweenprocessors, 

and only exchanges the counts. Each processor only needs to 

process the data it owns, and generates its local 

candidateitemsets depending on its local partition. Each node 

obtains global counts byexchanging local counts with all other 

processors. The CD's communication complexity is O 

(|  |  )inpass k, where |  | and n are the size of candidate k-

itemsets and number of local sites,respectively.The amount of 

communication, however, increases with processors 

increased.The program fragment of CD at processor    for the 

kth iteration is outlined in Fig. 4. 

1. Generate   from      

2. Scan  to find    (  ) for all x   

3. Exchange    (  ) with all other sites to calculate   (D)  

4.   = {x   |  (D)≥  ×|D|} 

5. Stop if      

Fig4:CD algorithm [5] 

The other one, DD, partitions the candidate itemsets among the 

processors and improves the memory usage rather than CD.It is 

needs to scan the rest of the transactions stored in the memory 

of the other processors in addition to the locally assigned 

transactions. This algorithm was found to be slower than the 

CD, because of each processor sends to all the other processors 

the portion of the database that resides locally and this manner 

has a high communication overhead. 

In order to reduce the communication overhead, FDM was 

proposed in [6]. It is based on the fact that a globally frequent 

itemset must be locally frequent in at least one node. Thus, in 

FDM, every node finds locally frequent itemsetsin its partition 

and exchanges to other nodes. Next, support counts are globally 

summed forthose candidate itemsets which are locally frequent 

by at leastone site. Global frequent itemsetsare used to generate 

the next level candidates. 

If the probability that an itemset has the potential tobe frequent 

is             then the communication complexity of FDM is O 

(           |  |  ) in pass k. A comparison of CD and FDM 

based on candidate set, message size reduction, and execution 

time reduction, shows FDM as performing better. The main 

problem with FDM is that             is not scalable in n and it 

quickly increases to 1 as n increases [8]. 

Another algorithm that is based on Apriori is Distributed 

Mining of Association rules (DMA) algorithm [29]. It is similar 

to FDM but uses polling sites to optimize the exchange of 

support counts among sites and reducing the communication 

complexity in pass k to O (|  |n). 

FDM was further enhanced into another efficient parallel 

algorithm; FPM (Fast Parallel Mining) [8]. It hasincorporated 

two pruning techniques, distributed pruning and global pruning, 

and generates candidate itemsetsless than FDM.For the kth 

iteration of FPM, k >1, the program fragment executed at   is 

described in Fig. 5 (       is used todenote gl-large k-itemsets 

at processor    If an itemsetxis both globally large and locally 

large at processor   , x is called gl-large at processor  ). 

Another Apriori-based algorithm, the Optimized Distributed 

Association rules Mining (ODAM), is proposed in [15]. It 

follows the paradigm of FDM and eliminates all infrequent 

items after the first pass to reduce average size of transactions 

and database and efficiently generate candidate support counts 

in latter passes. Nevertheless, when ODAM removes infrequent 

1-itemsets from database, the chance of finding similar 

transactions increases. Also, at the communication level, it 

minimizes the total message exchange by sending support 

counts of candidate itemsets to a single site, called receiver. The 

receiver broadcasts the globally frequent itemsets back to the 

distributed sites. 

 

1.   =              
             

2.Prune   by global pruning 

3.Scan   to find    (  ) for all x   

4.Exchange    (  ) with all other sites to calculate   (D)  

5.      = {x    |  (D) ≥  ×|D|,   (  ) ≥  ×|  |} for all 

i=1,...,M 

6.  =       
 
     

7. Stop if      

Fig5:FPM algorithm [8] 

Another parallel-distributed algorithm is proposed in [24] based 

on the Trie tree [25]. This algorithm distributes workloads 

according to the first level of the Trietree to balance and speed-

up the computation. However, this may cause the sizes of 

candidate itemsets (workloads) among processors significantly 

varying.  

An efficient frequent-pattern mining algorithm, called EDMA 

[26], is proposed based on the Apriori. EDMA uses the CMatrix 

data structure to store the transactions and minimizes the 

number of candidate sets and reduces the exchange messages by 

local and global pruning. The execution time gets longer when 

the database size is larger, since EDMA will access CMatrix a 

lot of times when calculating candidate itemsets. 

In [27] a Dynamic Distributed Rule Mining (DDRM) is 

implemented that is a dynamic extension of Prefix-based [31] 

algorithm and has used a lattice-theoretic approach for mining 

association rules. Actually DDRMpartitions the lattice into sub 

lattices to be assigned to processors for processing and 

identification of frequent itemsets. At first phase, the partitions 

are transformed from horizontal format to a vertical Tid-list 

format, and the candidates are counted by intersecting the Tid-

lists. Unlike high performance, transferring Tid-list between 

local nodes and the controller node has huge amounts of 

overhead.  Another problem is thatevery nodescans full Tid-List 

which is collection of local Tid-List, to process assigned sub 

lattice. 

 

4. THE NDD-FIMALGORITHM 

A distributed FIM algorithm will performs better if we can 

reduce communication cost, idle time, wait time, and number of 

dataset scans.The performance of Apriori-based algorithms 

degrades for said various reasons.We need to focus on these 

problems. 

4.1 Reduction of number of dataset scans 

All Apriori-based algorithms requirek number of database scans 

to generate a frequent k-itemset. To overcome this problem, 

ODAM algorithm [15] eliminates all infrequent 1-itemsets after 

the first pass and generates candidate support counts of later 

passes efficiently. The number of items in the dataset might be 

large, but only a few will satisfy the support threshold [28].  

This technique not only reduces the average transaction length 

but also reduces the dataset size significantly. Nevertheless, by 

elimination of infrequent 1-itemsets, the chance of finding 

similar transactions increases. 
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We have extended this issue to all passes and eliminated all 

items which have not participated in production of frequent 

itemsets. The method of calculation of non-frequent items in the 

first pass (   ) and non-frequent items in the kth pass (   ) 

has shown as follows: 

   = {  | (   I)^(    )} 

   = {  | (   I)^ (       ) ^ (  l      l)} k ≠ 1 

Consider the sample dataset in Table 1 and specified minimum 

support 0.5. After first pass    and    are infrequent 1-itemset. 

We eliminate them and find more identical transactions (Table 

2).  

 

Table 1.Sample dataset 

Tr. No. Tr. count Items 

1 1        

2 1        

3 1      

4 1          

5 1        

6 1        

7 1        

8 1      

9 1        

10 1          

 

Table 2.Sample dataset after elimination of    and   in first 

pass 

Tr. No. Tr. count Items 

1,4 2        

2,9 2      

3,6 2      

5 1        

7 1      

8 1      

10 1          

 

ODAM stops elimination here, but we keep this technique in all 

of the next passes. At second iteration, we have 2-itemsets 

{    ,     ,     ,     ,     ,     }that only      and      is 

frequent. Furthermore,    = {  } and we can eliminate    from 

dataset (Table 3). This technique not only reduces average 

transaction size but also finds more identical transactions. 

Also, at kth iteration, transactions that are smaller than or equal 

to k can be eliminated. This manner is effective on final 

iterations of mining and real world datasets which variation of 

transactionss size is tremendous. Table 4 shows the result of 

elimination of short transactions in Table 3. 

 

 

Table 3.Sample dataset after elimination of    in second 

pass 

Tr. No. Tr. count Items 

1,4,10 3        

2,9 2      

3,6 2      

5 1      

7 1    

8 1    

 
Table 4.Sample dataset after reduction of transactions 

smaller than or equal to 2 

Tr. No. Tr. count Items 

1,4,10 3        

 

4.2 Reduction of Communication Cost 

A typical architecture of a distributed data mining approach 

wasshown in Figure 1. In summeryas mentioned before, in 

some approaches [9,15,27], the analysis of the local database at 

distributed sites is transmitted to a central site, and the 

integration is performed.For FIM problem, in this situation, the 

communication complexity is O (|  |n)inpass k, where |  | and 

n are the size of candidate k-itemsets and number of local sites, 

respectively. 

In some other approaches [5,6,8], instead of a merger site, the 

local models are broadcasted to all other sites, so that each site 

can in parallel compute the global model.The communication 

complexity is O (|  |  ). Futhermore, we have used a merger 

site in NDD-FIM to reduce communication cost.  

On the other hand, using a powerful pruning technique called 

global pruning that has been developed in FPM algorithm [8], 

can reduces candidate sets and communication cost and 

increases performance.Global pruning is stated in [8] as 

follows: 

Global pruningLet Xbe a candidate k-itemset. At each 

partition  ,   (  ) ≤   (  ), if YX. Therefore the local support 

count of Xis bounded by the value min {   (  ) | Y X; and 

|Y|=k-1}. Since the globalsupport count of X,   (D), is the sum 

of its local support count at all the processors, the value 

     (D) =            
 
    

where 

           = min {   (  ) | Y X; and |Y| = k-1} 

is an upper bound of  (D). If      (D)<minsup×|D|, then X 

can be pruned away.  

Note that global pruning requires the local support counts 

resulted from count exchange in the previous iteration. FPM 

doesn't have a merger site and all processors exchange local 

count and so they contain all counts, but the situation is more 

complex in a distributed environment with merger site.DMA, 

DDM and ODAM algorithms haven't use global pruning. They 

have assigned apriori_gen function to local sites andif they 

intend to use global pruninglike FPM, central site need to send 

all local counts to all sites and it hashuge amounts of 

communication overhead.Since the apriori_gen function has the 
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same process and result in all sites, we can transfer it to the 

merger site easily and use global pruning. 

Note that after global pruning, candidate set in all nodes is 

similar while some items maybe doesn't exist in some node. 

Thus we can perform a new pruning method in NDD-FIM 

called node pruning after global pruning and before sending 

candidate itemsets to each node. 

Node pruning Let   be candidate k-itemsets after global 

pruning. At each partition  , if the value  

           = min {   (  ) | Y X; and |Y| = k-1} 

be equal to zero, then X can be pruned away from   .  

Global pruning and node pruning techniques reduce candidate 

sets and communication cost and increase performance. 

Specially, high data skewness and workload balance would 

increase the chance of candidate set pruning [8]. 

4.3Reduction of idle time  

Elimination of infrequent items and finding similar transaction 

described in section 4-1 is a time-consuming process and 

placing it alongside other operation is not economical. On the 

other hand, the processors are idle when they are waiting the 

results of global processingfrom center site. Also, low-speed 

network for transition oflocal and global results increases idle 

time of processors. 

Furthermore, we have created two threads in local processors. 

First thread is for processing local results and second thread is 

for elimination of infrequent items. 

Second thread is a dynamic background action and every time 

that processor is idle or wistful, it can switch to this thread. 
Moreover, transition of apriori_gen function to the server 

causesthe local processors to be released from a useless and 

repetitive activity and to perform second thread. 

4.4 The NDD-FIM algorithm  
Fig.6 shows NDD-FIM's pseudocode in the local sites. It first 

computes support counts of 1-itemsets from local data set in the 

same manner as it does for the sequential Apriori, then 

broadcasts locally frequent items to the mergersite and starts 

elimination thread. Actually, at first pass, elimination thread 

doesn't have any infrequent items but it can find similar 

transactions. At next passes computed     may be empty or 

not.  

Local site stops elimination thread when receives locally large 

1-itemsets in other site and candidate 2-itemsets from the 

merger.Subsequently, sending support counts, receiving new 

candidates, stopping and resuming elimination thread are 

performed iteratively. 

In Fig. 6,       and        are used to denote candidate and 

locally large k-itemsets at processor  , respectively. Also 

        is locally large k-itemsets at others processors 

except  .Fig. 7 shows NDD-FIM's pseudo code in the merger 

site. It receives locally frequent itemsets from local sites and 

computes summation of support counts. Then it finds some gl-

large itemsets and sends indeterminate itemsets to other sites 

and receives their support counts to determine final gl-large 

collection.  

Subsequently, the merger site executes apriori_gen function to 

generate candidate k-itemsets and prunes them using global 

pruning described in section 4-2. Afterwards it performs node 

pruning for each local site and broadcasts pruned candidate k-

itemsets to all local sites. It discovers the globally frequent 

itemsets of that respective length after every pass.Fig. 8 shows 

the flow diagram of NDD-FIM algorithm. 

Input:   ,i =1, . . . , M ,    

Output: nothing 

1. k=1 

2.       I 

3. While       

{ 

4.       Scan   to find   (  )for all x      

5.       = {x      |  (  ) ≥  ×|  |} 

6.       Send {  (  ) | x       } 

7.       Execute elimination thread 

8. Receive         

9. Send {  (  ) | x        } 

10.       Execute elimination thread 

11.       Receive         

12.  k=k+1 

} 

Fig 6: NDD-FIM algorithm in the local sites 

 

Input:|D|,    

Output: L (globally large itemsets of size 1 to k) 

1. k=1 

2. For i=1 to M 

3.      Receive {  (  ) | x       } 

4.     =       
 
    

5. While     

{ 

6.   (D) =         
 
   , for all x     

7.    = {x    |  (D) ≥  ×|D|} 

8. For i=1 to M 

{   

9.         = { x | x    ^ x               } 

10.            Send         

11. Receive {  (  ) | x        } 

      } 

12.      =        
 
    

13.   (D) =               
 
    , for all x      

14.    =     {x     |  (D) ≥  ×|D|} 

15.       L=L      

16.      =              
           

17. Prune      by global pruning 

18.  For i=1 to M 

      { 

19.         =      

20.             Prune         by node pruning 

21.             Send         

22. Receive {  (  ) | x         } 

       } 

23.       =         
 
    

24. k=k+1 

  } 

25. Return L 

Fig 7: NDD-FIM algorithm in the merger site 
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Fig 8: The flow diagram of NDD-FIM algorithm 

 

5. IMPLEMENTATION & EXPERIMENTAL 

RESULTS 

The proposed algorithm was implemented using Visual Studio 

.Net 2008 and C# language and generated all frequent itemsets 

satisfying the required minimum support indicated by the user. 

It was implemented using an Ethernet LAN consisting of 7 

workstations and one merger site. The configuration of each 

workstation on the network was an AMD Athlon XP 2800+ 

with 2 GB of RAM. Also, the operating system was Windows 

XP Professional SP3. 

The processors were interconnected via a 10/100 Mbps switch. 

The Message Passing Interface for .Net (MPI.Net) was used for 

communications.  

We chose two datasets to test the communication cost of NDD-

FIM versus ODAM algorithm. The datasets are taken from the 

FIM dataset repository page (http://fimi.ua.ac.be). The Connect 

dataset produces many long frequent itemsets even for high 

support and is typical of dense datasets. Meanwhile, Mushroom 

is sparse and uses low support thresholds to generate frequent 

itemsets. Table 5 shows the characteristics of experimental 

datasets. 

 
Table 5.The characteristics of experimental datasets 

Datasets #Items #Records Avg.length Type 

Mushroom 119 8,124 23 sparse 

Connect-4 129 67,557 43 dense 

 

We also used data from the KDD Cup 2000 [30] to generate the 

data used in some experiments and test the performance of 

NDD-FIM versus Prefix, DDRM, and ODAM algorithms. This 

data set was based on click-stream data obtained from a web 

store called Gazelle.com. The size of the data was 4.8 Mbytes 

with 3,465 transactions. It included 220 attributes of customer 

information such as gender, occupation, age, marital status, 

estimated income, home market value, US State, Email, etc.We 

selected some attributes as categories to be investigated. Each 

of these categories was further subdivided into specific items, 

with each item being assigned an integer value used to represent 

it in the data file. 

5.1 Communication cost experiment  
To compare the number of messages that NDD-FIM and 

ODAM exchange among sites to generate the globally frequent 

itemsets in a distributed environment, we partitioned the 

Connect and Mushroom data sets into five partitions. Therefore, 

each site contains approximately 20 percent of the original data 

set's transactions.  

Fig. 9 and 10 depicts the total size of messages that ODAM and 

our algorithm transmit with different support values.  

As Fig. 9 and 10 shows, proposed algorithm exchanges fewer 

messages among sites because of global pruning and 

nodepruning techniques and elimination of infrequent items in 

all iterations. 

5.2 Execution time experiment  
We conducted experiments on a set of data from KDD data set 

with 30 attributes where we vary the support from 4% to 10% 

for NDD-FIM, Prefix, DDRM, and ODAM algorithms. The 

data set was partitioned into 4 parts based on the number of 

processors. The obtained execution times of this experiment are 

shown in Fig. 10. 

5.3 Transaction width experiment  
Fig. 11 shows the results of our experiment to determine the 

impact of varying the transaction width on the execution time. 

The number of selected attributes was varied from 10 to 50 for 

the five sub data sets from KDD that were used in this 

experiment. The number of processors and the support 

threshold were 7 and 8%, respectively. It can be seen from Fig. 

11 that as the transaction size is increased that there is a 

corresponding increase in the processing time. Our algorithm is 

able to process these transactions in a shorter time than the 

other algorithms. 
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Fig 9: Total exchanged messages for Connect-4 dataset 

 

 

Fig 10: Total exchanged messages for Mushroom dataset 

 

 

Fig 11: Execution time for KDD dataset 

 

Fig 12: Execution time for various size of KDD dataset 

 

6. CONCLUSION 

Distributed Data Mining (DDM) enables learning over huge 

amounts of data that are situated at different geographical 

locations. It supports several interesting applications, ranging 

from fraud and intrusion detection, to market basket analysis 

over a wide area, to knowledge discovery from remote sensing 

data around the globe. Frequent Itemsets Mining (FIM) in a 

huge database is a worthwhile research topic in DDM area and 

is, however, very time consuming process. Parallel and 

distributed computation strategies provide suitable solutions to 

this problem.  

In this article, the New Dynamic Distributed Algorithm for FIM 

(NDD-FIM) is proposed. It eliminates all infrequent items after 

every pass and finds more identical transactions. Furthermore, 

NDD-FIM can effectively reduce the required scan iterations to 

a database and accelerate the calculation of itemsets. Also the 

elimination is a dynamic background activity to fill idle time of 

processors. On the other hand, NDD-FIM uses local and global 

pruning and a merger site to reduce the communication 

overhead. Experimental results show that NDD-FIM achieves 

better than some pervious works. 
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