
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

21

A New Dynamic Distributed Algorithm for Frequent
Itemsets Mining

Azam Adelpoor

Department of Computer, Science and Research
BranchIslamic Azad University, Khouzestan, Iran

Mohammad Saniee Abadeh
Department of Electrical and ComputerEngineering

TarbiatModares University, Tehran, Iran

ABSTRACT
Mining for association rules between items in large

transactional databases is a central problem in the field of

knowledge discovery. It has crucial applications in decision

support and marketing strategy. Centralized and Distributed

Association Rules Mining (DARM) include two phases of

frequent itemset extraction and strong rule generation. The most

important part of ARM is Frequent Itemsets Mining (FIM)and

because of its importance in recent years, there have been many

algorithms implemented for it. In this paper, we have focused

on distributed Apriori-Like frequent itemsets mining and

proposed a distributed algorithm, called New Dynamic

Distributed Frequent Itemsets Mining (NDD-FIM), for

geographically distributed data sets. NDD-FIM has a merger

site to reduce communication overhead and eliminates size of

dataset partitions dynamically. The experimental results show

that our algorithm generates support counts of candidate

itemsets quickerthan other DARM algorithms and reduces the

size of average transactions, datasets, and messageexchanges.

Keywords
Distributed Data Mining;Frequent Itemsets;Association Rule;

Apriori Algorithm

1. INTRODUCTION
Frequent itemsets mining is at the core of various applications

in the data mining area. It is majorly applied in association rules

mining [1,2], correlation analysis, sequential patterns mining

[3], multi-dimensional patterns mining [4], among others.

The best known such task is the association rules discovery.

Anassociation rule is a rule which implies certain association

relationships among a set of items in a database. The meaning

of an association XY, where X and Y are set of items, is that

transactions of the database which contain X tend to contain Y.

However, there could be a lot of associations among the data

which may not be able to deduce from common knowledge.

Therefore, since association ruless inception, many sequential

and distributed frequent itemset mining algorithms have been

proposed in the literature [5-15], etc. Many of them are

correlated to the Apriori algorithm [10] which is a well-known

method. However, it is costly to find candidate itemsets. Thus,

many researchers have been trying to improve it.

Basically, frequent itemsets generation algorithms search the

dataset to determine which combination of items occurs

together frequently. Considering the commonly known market

basket analysis; ARM analyses customer buying habits by

finding frequent itemsets and associations between the different

items that customers place in their "shopping baskets". For

instance, if customers are buying milk, how likely are they

going to also buy bread on the same trip to the supermarket?

Each customer buys a set of items as his/her basket that is a

transaction. For a fixed threshold support s, the algorithm

determineswhich sets of items, of a given size k, are contained

in at least s of the ttransactionsor baskets.

Such information can lead to increased sales by helping retailers

do selective marketing and arrange their shelf space.

Most enterprises collect huge amounts of business data from

daily transactions and store them in distributed datasets;

specially, for security issues and communication overhead,

those distributed datasets are usually not allowed to be

transmitted or joined together, therefore, in this study we are

focusing on Apriori-based algorithms and discovering frequent

itemsets on extremely large and distributeddatasets over

different geographic locations and will present a well-adapted

distributed approach for this purpose, based on both analytical

and experimental approaches.

Like other data mining techniques that must process enormous

datasets, FIM is inherently disk-I/O intensive.These I/O costs

can be reduced byeliminating infrequent items, finding more

identical transactions, and reducing the number of times the

database needs to be scanned.

In a distributed environment the practical implications of

communication overhead, the effect of the underlying

architecture, and the dynamic behavior of the system are issues

that contribute to the complexity of a distributed environment

[16].

The partitioning of a task and subsequent migration of some of

the resulting subtasks will result in increased communications

overhead. Therefore, a most important problem of distributed

architectures and algorithms is overheads cost in inter-site

communications among processors. Some of the distributed

algorithms like CD [5], FDM [6], and FPM [8] do not have any

merger site and message exchange is all to all which is not a

strong architecture. But, DDM [9] and ODAM [15] have used a

merger site to collect local counts from other sites. This method

reduces communication overhead significantly when compared

to other algorithms. Generally speaking, the algorithm must

balance the overhead communication cost against the resulting

improvement in the throughput.

The worst-case work and communication needed by a classical

distribution of the Apriori algorithm can be exponential in the

size of the input. Considering the case where every transaction,

in every node, contains every item, the algorithm must output

and may communicate each subset of I items, at each level. This

can be due to remote support counts collections for global

pruning purposes. In this case, many of the communications are

completely unnecessary.

Based on these observations, the proposed approach has three

phases: the local mining phase, the communication phase, and

the global mining phase. Also elimination of infrequent items

and finding similar transaction is a dynamic background action.

In the first phase, we consider only counting and a local pruning

strategy. In thesecond phase, each node sends support counts of

a collection of locally frequentitemsetsto the merger node. The

merger node collects frequent counts and asks other node by

necessity. The overhead related to communicationphase in

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

22

classical approaches can then be highly reduced using a

constrained collectionphase with much fewer passes. Moreover

speed of the counting phase will be increased by elimination of

the infrequent items.

Also generation of candidate itemsets will be performed by the

merger site not by all nodes.

While our performance study focuses on the Apriori-

baseddistribution, we believe that the key reasoning of this

study will hold for many other frequentitemsets generation

tasks, since it is partly related to the dataset properties.

The rest of this article is organized as follows. Section 2

provides the preliminaries of basic concepts and their notations

to facilitate the description the well-known algorithms. Section

3 surveys works related to distributed frequent itemsets mining.

In Section 4, we define our proposed algorithm in detail.

Section 5 reports the experimental results. Finally the

conclusion of this work and future works are given in Section 6.

2. PROBLEM DEFINITION

In this Section, we define frequent itemsets mining problem, its

distribution aspect, and properties.

The frequent itemsets generation problem can be stated as

follows.Let I={ , … } be a set of mitems and D be a

database of transactions, where each transaction T consists of a

set of items such that T I. Given an itemsetx I of size k

that is known as k-itemset, a transaction T contains x if and only

if x T. For an itemsetx, the support of xdenoted as (D), is

defined as the number of transactions in Dwhich x occurs as a

subset. Let minsup be the minimum support threshold specified

by user. If (D) ≥ minsup, x is called a frequent itemset [17].

A frequent itemset is maximalif it has nosuperset that

isfrequent. Some approaches are dedicated to this problem

[18,19,20].

A typical architecture of a distributed data mining approach is

depicted in Figure 1.The first phase involves the analysis of the

local database at distributed sites. Then, the discovered

knowledge is usually transmitted to a central site, and the

integration is performed. The results are transmitted back to the

local databases.

In some approaches [5,6,8], instead of a merger site, the

localmodels are broadcasted to all other sites, so that eachsite

can in parallel compute the global model.

Fig 1: Typical architecture of Distributed Data Mining

approaches [21]

The distribution aspect of FIM can be described as follows. Let

Dbe a dataset of transactions partitioned horizontally over M

nodes { , … }, and the size of the partition be . Let

 (D) and () be the support count of the itemsetxin Dand ,

respectively. For a given minimum support threshold , called

minsup, an itemsetxis globally frequent if (D) is greater than

 ×|D|, and islocally frequent at a node if () is greater

than × |.

Two basic properties are described here:

Property 2.1 A globally frequent itemset must be locally

frequent in at least one node.

Proof Let x be an itemset. If () is smaller than × | for

i = 1,…,M, then (D) is smaller than ×|D| (since

 (D)=

 and D =

), and x cannot beglobally

frequent. Then, if x is a globally frequent, it must be locally

frequent in at least onenode .

Property 2.2 All subsets of a globally frequent itemset are

globally frequent.

Proof Let x be an itemset, and xbe a subset of x. If (D) is

smaller than ×|D|,then (D) is also smaller than

 ×|D|(since (D)≤ (D)), and x cannot be globallyfrequent.

Then, if x is globally frequent, all its subsets must be frequent.

3. PREVIOUS WORKS

Algorithms for the distributed FIM problem usually are

parallelization of sequential FIM algorithms. CD, FDM, FPM

and DDM [5,6,8,9] parallelize Apriori [10], PDM [12]

parallelizes DHP [11], D-Sampling [7] is a combination of

serialsampling approach [22] and DDM algorithm, parallel FP-

growth [13] is a parallelized version of FP-growth [14], and so

on.As mentioned before, many frequent itemsets mining

algorithms, both sequential and distributed, are related to the

Apriori algorithm [10]. The name of the algorithm is based on

the fact that it uses prior knowledge of frequent itemsets

properties. It exploits the observation that all subsets of a

frequent itemset must be frequent.Apriori is a serial algorithm

that has a smaller computational complexity when compared

with other serial algorithms [23]. This algorithm

performsthreesteps in Fig. 2. (and are frequent and

candidate itemsets of size k, respectively).Step 2 is named as

apriori_gen function which is used in the other Apriori-Based

algorithms and is stated in Fig. 3.

1. Generate , then iterates steps 2, 3 and 4

2. Generate from

3. Examine to determine whether the candidate sets meet the

minsupor not. If the answer is positive, add itemsetto

4. Stop if 

Fig2:Apriorialgorithm [10]

Procedure apriori_gen(,min_sup)

1.for each itemset

2. for each itemset

3. If ([1] = [1])^([2] = [2])^…^

 ([k-2]= [k-2])^([k-1]≠ [k-1]) then {

4. c= ∞ ; // join step

5. Ifhas_infrequent_subset(c,)

6. Then delete c; // prune step

7. Else add c to ;

8. }

9.Return

Fig3:apriori_genfunction [10]

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

23

The CD (Count Distribution) and DD(Data Distribution)

algorithms [5]are simple parallelization of the Apriorialgorithm,

and assume data sets are horizontally partitioned

amongdifferent nodes and each node has a copy of candidate

itemsets.CD doesn't exchange data tuples betweenprocessors,

and only exchanges the counts. Each processor only needs to

process the data it owns, and generates its local

candidateitemsets depending on its local partition. Each node

obtains global counts byexchanging local counts with all other

processors. The CD's communication complexity is O

(| |)inpass k, where | | and n are the size of candidate k-

itemsets and number of local sites,respectively.The amount of

communication, however, increases with processors

increased.The program fragment of CD at processor for the

kth iteration is outlined in Fig. 4.

1. Generate from

2. Scan to find () for all x

3. Exchange () with all other sites to calculate (D)

4. = {x | (D)≥ ×|D|}

5. Stop if 

Fig4:CD algorithm [5]

The other one, DD, partitions the candidate itemsets among the

processors and improves the memory usage rather than CD.It is

needs to scan the rest of the transactions stored in the memory

of the other processors in addition to the locally assigned

transactions. This algorithm was found to be slower than the

CD, because of each processor sends to all the other processors

the portion of the database that resides locally and this manner

has a high communication overhead.

In order to reduce the communication overhead, FDM was

proposed in [6]. It is based on the fact that a globally frequent

itemset must be locally frequent in at least one node. Thus, in

FDM, every node finds locally frequent itemsetsin its partition

and exchanges to other nodes. Next, support counts are globally

summed forthose candidate itemsets which are locally frequent

by at leastone site. Global frequent itemsetsare used to generate

the next level candidates.

If the probability that an itemset has the potential tobe frequent

is then the communication complexity of FDM is O

(| |) in pass k. A comparison of CD and FDM

based on candidate set, message size reduction, and execution

time reduction, shows FDM as performing better. The main

problem with FDM is that is not scalable in n and it

quickly increases to 1 as n increases [8].

Another algorithm that is based on Apriori is Distributed

Mining of Association rules (DMA) algorithm [29]. It is similar

to FDM but uses polling sites to optimize the exchange of

support counts among sites and reducing the communication

complexity in pass k to O (| |n).

FDM was further enhanced into another efficient parallel

algorithm; FPM (Fast Parallel Mining) [8]. It hasincorporated

two pruning techniques, distributed pruning and global pruning,

and generates candidate itemsetsless than FDM.For the kth

iteration of FPM, k >1, the program fragment executed at is

described in Fig. 5 (is used todenote gl-large k-itemsets

at processor If an itemsetxis both globally large and locally

large at processor , x is called gl-large at processor).

Another Apriori-based algorithm, the Optimized Distributed

Association rules Mining (ODAM), is proposed in [15]. It

follows the paradigm of FDM and eliminates all infrequent

items after the first pass to reduce average size of transactions

and database and efficiently generate candidate support counts

in latter passes. Nevertheless, when ODAM removes infrequent

1-itemsets from database, the chance of finding similar

transactions increases. Also, at the communication level, it

minimizes the total message exchange by sending support

counts of candidate itemsets to a single site, called receiver. The

receiver broadcasts the globally frequent itemsets back to the

distributed sites.

1. =

2.Prune by global pruning

3.Scan to find () for all x

4.Exchange () with all other sites to calculate (D)

5. = {x | (D) ≥ ×|D|, () ≥ ×| |} for all

i=1,...,M

6. =

7. Stop if 

Fig5:FPM algorithm [8]

Another parallel-distributed algorithm is proposed in [24] based

on the Trie tree [25]. This algorithm distributes workloads

according to the first level of the Trietree to balance and speed-

up the computation. However, this may cause the sizes of

candidate itemsets (workloads) among processors significantly

varying.

An efficient frequent-pattern mining algorithm, called EDMA

[26], is proposed based on the Apriori. EDMA uses the CMatrix

data structure to store the transactions and minimizes the

number of candidate sets and reduces the exchange messages by

local and global pruning. The execution time gets longer when

the database size is larger, since EDMA will access CMatrix a

lot of times when calculating candidate itemsets.

In [27] a Dynamic Distributed Rule Mining (DDRM) is

implemented that is a dynamic extension of Prefix-based [31]

algorithm and has used a lattice-theoretic approach for mining

association rules. Actually DDRMpartitions the lattice into sub

lattices to be assigned to processors for processing and

identification of frequent itemsets. At first phase, the partitions

are transformed from horizontal format to a vertical Tid-list

format, and the candidates are counted by intersecting the Tid-

lists. Unlike high performance, transferring Tid-list between

local nodes and the controller node has huge amounts of

overhead. Another problem is thatevery nodescans full Tid-List

which is collection of local Tid-List, to process assigned sub

lattice.

4. THE NDD-FIMALGORITHM

A distributed FIM algorithm will performs better if we can

reduce communication cost, idle time, wait time, and number of

dataset scans.The performance of Apriori-based algorithms

degrades for said various reasons.We need to focus on these

problems.

4.1 Reduction of number of dataset scans

All Apriori-based algorithms requirek number of database scans

to generate a frequent k-itemset. To overcome this problem,

ODAM algorithm [15] eliminates all infrequent 1-itemsets after

the first pass and generates candidate support counts of later

passes efficiently. The number of items in the dataset might be

large, but only a few will satisfy the support threshold [28].

This technique not only reduces the average transaction length

but also reduces the dataset size significantly. Nevertheless, by

elimination of infrequent 1-itemsets, the chance of finding

similar transactions increases.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

24

We have extended this issue to all passes and eliminated all

items which have not participated in production of frequent

itemsets. The method of calculation of non-frequent items in the

first pass () and non-frequent items in the kth pass ()

has shown as follows:

 = { | (I)^()}

 = { | (I)^ () ^ (l  l)} k ≠ 1

Consider the sample dataset in Table 1 and specified minimum

support 0.5. After first pass and are infrequent 1-itemset.

We eliminate them and find more identical transactions (Table

2).

Table 1.Sample dataset

Tr. No. Tr. count Items

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

Table 2.Sample dataset after elimination of and in first

pass

Tr. No. Tr. count Items

1,4 2

2,9 2

3,6 2

5 1

7 1

8 1

10 1

ODAM stops elimination here, but we keep this technique in all

of the next passes. At second iteration, we have 2-itemsets

{ , , , , , }that only and is

frequent. Furthermore, = { } and we can eliminate from

dataset (Table 3). This technique not only reduces average

transaction size but also finds more identical transactions.

Also, at kth iteration, transactions that are smaller than or equal

to k can be eliminated. This manner is effective on final

iterations of mining and real world datasets which variation of

transactionss size is tremendous. Table 4 shows the result of

elimination of short transactions in Table 3.

Table 3.Sample dataset after elimination of in second

pass

Tr. No. Tr. count Items

1,4,10 3

2,9 2

3,6 2

5 1

7 1

8 1

Table 4.Sample dataset after reduction of transactions

smaller than or equal to 2

Tr. No. Tr. count Items

1,4,10 3

4.2 Reduction of Communication Cost

A typical architecture of a distributed data mining approach

wasshown in Figure 1. In summeryas mentioned before, in

some approaches [9,15,27], the analysis of the local database at

distributed sites is transmitted to a central site, and the

integration is performed.For FIM problem, in this situation, the

communication complexity is O (| |n)inpass k, where | | and

n are the size of candidate k-itemsets and number of local sites,

respectively.

In some other approaches [5,6,8], instead of a merger site, the

local models are broadcasted to all other sites, so that each site

can in parallel compute the global model.The communication

complexity is O (| |). Futhermore, we have used a merger

site in NDD-FIM to reduce communication cost.

On the other hand, using a powerful pruning technique called

global pruning that has been developed in FPM algorithm [8],

can reduces candidate sets and communication cost and

increases performance.Global pruning is stated in [8] as

follows:

Global pruningLet Xbe a candidate k-itemset. At each

partition , () ≤ (), if YX. Therefore the local support

count of Xis bounded by the value min { () | Y X; and

|Y|=k-1}. Since the globalsupport count of X, (D), is the sum

of its local support count at all the processors, the value

 (D) =

where

 = min { () | Y X; and |Y| = k-1}

is an upper bound of (D). If (D)<minsup×|D|, then X

can be pruned away.

Note that global pruning requires the local support counts

resulted from count exchange in the previous iteration. FPM

doesn't have a merger site and all processors exchange local

count and so they contain all counts, but the situation is more

complex in a distributed environment with merger site.DMA,

DDM and ODAM algorithms haven't use global pruning. They

have assigned apriori_gen function to local sites andif they

intend to use global pruninglike FPM, central site need to send

all local counts to all sites and it hashuge amounts of

communication overhead.Since the apriori_gen function has the

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

25

same process and result in all sites, we can transfer it to the

merger site easily and use global pruning.

Note that after global pruning, candidate set in all nodes is

similar while some items maybe doesn't exist in some node.

Thus we can perform a new pruning method in NDD-FIM

called node pruning after global pruning and before sending

candidate itemsets to each node.

Node pruning Let be candidate k-itemsets after global

pruning. At each partition , if the value

 = min { () | Y X; and |Y| = k-1}

be equal to zero, then X can be pruned away from .

Global pruning and node pruning techniques reduce candidate

sets and communication cost and increase performance.

Specially, high data skewness and workload balance would

increase the chance of candidate set pruning [8].

4.3Reduction of idle time

Elimination of infrequent items and finding similar transaction

described in section 4-1 is a time-consuming process and

placing it alongside other operation is not economical. On the

other hand, the processors are idle when they are waiting the

results of global processingfrom center site. Also, low-speed

network for transition oflocal and global results increases idle

time of processors.

Furthermore, we have created two threads in local processors.

First thread is for processing local results and second thread is

for elimination of infrequent items.

Second thread is a dynamic background action and every time

that processor is idle or wistful, it can switch to this thread.
Moreover, transition of apriori_gen function to the server

causesthe local processors to be released from a useless and

repetitive activity and to perform second thread.

4.4 The NDD-FIM algorithm
Fig.6 shows NDD-FIM's pseudocode in the local sites. It first

computes support counts of 1-itemsets from local data set in the

same manner as it does for the sequential Apriori, then

broadcasts locally frequent items to the mergersite and starts

elimination thread. Actually, at first pass, elimination thread

doesn't have any infrequent items but it can find similar

transactions. At next passes computed may be empty or

not.

Local site stops elimination thread when receives locally large

1-itemsets in other site and candidate 2-itemsets from the

merger.Subsequently, sending support counts, receiving new

candidates, stopping and resuming elimination thread are

performed iteratively.

In Fig. 6, and are used to denote candidate and

locally large k-itemsets at processor , respectively. Also

 is locally large k-itemsets at others processors

except .Fig. 7 shows NDD-FIM's pseudo code in the merger

site. It receives locally frequent itemsets from local sites and

computes summation of support counts. Then it finds some gl-

large itemsets and sends indeterminate itemsets to other sites

and receives their support counts to determine final gl-large

collection.

Subsequently, the merger site executes apriori_gen function to

generate candidate k-itemsets and prunes them using global

pruning described in section 4-2. Afterwards it performs node

pruning for each local site and broadcasts pruned candidate k-

itemsets to all local sites. It discovers the globally frequent

itemsets of that respective length after every pass.Fig. 8 shows

the flow diagram of NDD-FIM algorithm.

Input: ,i =1, . . . , M ,

Output: nothing

1. k=1

2. I

3. While 

{

4. Scan to find ()for all x

5. = {x | () ≥ ×| |}

6. Send { () | x }

7. Execute elimination thread

8. Receive

9. Send { () | x }

10. Execute elimination thread

11. Receive

12. k=k+1

}

Fig 6: NDD-FIM algorithm in the local sites

Input:|D|,

Output: L (globally large itemsets of size 1 to k)

1. k=1

2. For i=1 to M

3. Receive { () | x }

4. =

5. While 

{

6. (D) =

 , for all x

7. = {x | (D) ≥ ×|D|}

8. For i=1 to M

{

9. = { x | x ^ x  }

10. Send

11. Receive { () | x }

 }

12. =

13. (D) =

 , for all x

14. = {x | (D) ≥ ×|D|}

15. L=L

16. =

17. Prune by global pruning

18. For i=1 to M

 {

19. =

20. Prune by node pruning

21. Send

22. Receive { () | x }

 }

23. =

24. k=k+1

 }

25. Return L

Fig 7: NDD-FIM algorithm in the merger site

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

26

Fig 8: The flow diagram of NDD-FIM algorithm

5. IMPLEMENTATION & EXPERIMENTAL

RESULTS

The proposed algorithm was implemented using Visual Studio

.Net 2008 and C# language and generated all frequent itemsets

satisfying the required minimum support indicated by the user.

It was implemented using an Ethernet LAN consisting of 7

workstations and one merger site. The configuration of each

workstation on the network was an AMD Athlon XP 2800+

with 2 GB of RAM. Also, the operating system was Windows

XP Professional SP3.

The processors were interconnected via a 10/100 Mbps switch.

The Message Passing Interface for .Net (MPI.Net) was used for

communications.

We chose two datasets to test the communication cost of NDD-

FIM versus ODAM algorithm. The datasets are taken from the

FIM dataset repository page (http://fimi.ua.ac.be). The Connect

dataset produces many long frequent itemsets even for high

support and is typical of dense datasets. Meanwhile, Mushroom

is sparse and uses low support thresholds to generate frequent

itemsets. Table 5 shows the characteristics of experimental

datasets.

Table 5.The characteristics of experimental datasets

Datasets #Items #Records Avg.length Type

Mushroom 119 8,124 23 sparse

Connect-4 129 67,557 43 dense

We also used data from the KDD Cup 2000 [30] to generate the

data used in some experiments and test the performance of

NDD-FIM versus Prefix, DDRM, and ODAM algorithms. This

data set was based on click-stream data obtained from a web

store called Gazelle.com. The size of the data was 4.8 Mbytes

with 3,465 transactions. It included 220 attributes of customer

information such as gender, occupation, age, marital status,

estimated income, home market value, US State, Email, etc.We

selected some attributes as categories to be investigated. Each

of these categories was further subdivided into specific items,

with each item being assigned an integer value used to represent

it in the data file.

5.1 Communication cost experiment
To compare the number of messages that NDD-FIM and

ODAM exchange among sites to generate the globally frequent

itemsets in a distributed environment, we partitioned the

Connect and Mushroom data sets into five partitions. Therefore,

each site contains approximately 20 percent of the original data

set's transactions.

Fig. 9 and 10 depicts the total size of messages that ODAM and

our algorithm transmit with different support values.

As Fig. 9 and 10 shows, proposed algorithm exchanges fewer

messages among sites because of global pruning and

nodepruning techniques and elimination of infrequent items in

all iterations.

5.2 Execution time experiment
We conducted experiments on a set of data from KDD data set

with 30 attributes where we vary the support from 4% to 10%

for NDD-FIM, Prefix, DDRM, and ODAM algorithms. The

data set was partitioned into 4 parts based on the number of

processors. The obtained execution times of this experiment are

shown in Fig. 10.

5.3 Transaction width experiment
Fig. 11 shows the results of our experiment to determine the

impact of varying the transaction width on the execution time.

The number of selected attributes was varied from 10 to 50 for

the five sub data sets from KDD that were used in this

experiment. The number of processors and the support

threshold were 7 and 8%, respectively. It can be seen from Fig.

11 that as the transaction size is increased that there is a

corresponding increase in the processing time. Our algorithm is

able to process these transactions in a shorter time than the

other algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

27

Fig 9: Total exchanged messages for Connect-4 dataset

Fig 10: Total exchanged messages for Mushroom dataset

Fig 11: Execution time for KDD dataset

Fig 12: Execution time for various size of KDD dataset

6. CONCLUSION

Distributed Data Mining (DDM) enables learning over huge

amounts of data that are situated at different geographical

locations. It supports several interesting applications, ranging

from fraud and intrusion detection, to market basket analysis

over a wide area, to knowledge discovery from remote sensing

data around the globe. Frequent Itemsets Mining (FIM) in a

huge database is a worthwhile research topic in DDM area and

is, however, very time consuming process. Parallel and

distributed computation strategies provide suitable solutions to

this problem.

In this article, the New Dynamic Distributed Algorithm for FIM

(NDD-FIM) is proposed. It eliminates all infrequent items after

every pass and finds more identical transactions. Furthermore,

NDD-FIM can effectively reduce the required scan iterations to

a database and accelerate the calculation of itemsets. Also the

elimination is a dynamic background activity to fill idle time of

processors. On the other hand, NDD-FIM uses local and global

pruning and a merger site to reduce the communication

overhead. Experimental results show that NDD-FIM achieves

better than some pervious works.

7. ACKNOWLEDGMENTS

We would like to thank Blue Martini Software for contributing

the KDD Cup 2000 data.

8. REFERENCES

[1] Ailing,W.2011. An Improved Distributed Mining

Algorithm of Association Rules, JCIT: Journal of

Convergence Information Technology, 6(4) 118-122.

[2] Roy, S., Bhattacharyya, D.K.2008. OPAM: An Efficient

One Pass Association Mining Technique without

Candidate Generation, JCIT: Journal of Convergence

Information Technology, 3(3) 32-38.

75 80 85 90

ODAM 61 19 7 2

NDD-FIM 36 14 4 2

0
10
20
30
40
50
60
70

M
es

sa
g

e
S

iz
e

(b
y

te
s)

Minsup(%)

ODAM NDD-FIM

×106

0.04 0.06 0.08 0.1

ODAM 79 33 9 5

NDD-FIM 56 24 7 4

0

20

40

60

80

100

M
es

sa
g

e
S

iz
e

(b
y

te
s)

Minsup(%)

ODAM NDD-FIM

×106

10% 8% 6% 4%

Prefix 731 2116 3470 5385

DDARM 565 2100 2813 5173

ODAM 380 1475 2240 4482

NDD-FIM 294 1238 1640 3083

0

1000

2000

3000

4000

5000

6000

E
x

ec
u

ti
o
n

 T
im

e
(s

)

Minsup(%)

Prefix DDARM ODAM NDD-FIM

kdd10 kdd20 kdd30 kdd40 kdd50

Prefix 59 744 2944 7133 7133

DDRM 14 509 1685 3512 3477

ODAM 19 422 1350 2845 3282

NDD-FIM 11 368 925 2150 2261

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x

ec
u

ti
o
n

 T
im

e
(s

)
Datasets

Prefix DDRM ODAM NDD-FIM

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

28

[3] Li, Y., Sun, L., Yin, J., Bao, W., Gu,M.2010. Multi-Level

Weighted Sequential Pattern Mining Based on Prime

Encoding, JDCTA: International Journal of Digital

Content Technology and its Applications, 4(9) 8-16.

[4] Lin, F., Le, W.,Bocor, J. 2010. Research on Maximal

Frequent Pattern Outlier Factor for Online High-

Dimensional Time-Series Outlier Detection, JCIT: Journal

of Convergence Information Technology, 5(10) 66-71.

[5] Agrawal, R., Shafer,J.C. 1996. Parallel mining of

association rules, IEEE Transactions on Knowledge and

Data Engineering, 8(6) 962-969.

[6] Cheung, D.W., Han, J., Ng, V.T., Fu, A.W., Fu, Y. 1996.

A fast distributed algorithm for mining association rules,

In Proceedings of the Fourth International Conference on

Parallel and Distributed Information Systems, 31-42.

[7] Schuster, A., Wolff, R., Trock,D. 2005. A high-

performance distributed algorithm for mining association

rules, Knowledge Information System, 7(4) 458–475.

[8] Cheung, D., Xiao, Y. 1998. Effect of data skewness in

parallel mining of association rules, In 12th Pacific-Asia

Conference on Knowledge Discovery and Data Mining,

Melbourne, Australia, April,48-60.

[9] Schuster, A., Wolff, R. 2001. Communication-efficient

distributed mining of association rules, In Proceedings of

the 2001 ACM SIGMOD International Conference on

Management of Data, Santa Barbara, California, May,473-

484.

[10] Agrawal, R.,Srikant, R. 1994. Fast algorithms for mining

association rules, In Proceedings of the 20th International

Conference on Very Large Databases (VLDB94),

Santiago, Chile, September,487-499.

[11] Park,J.S., Chen,M., Yu,P.S. 1995. An effective hash-based

algorithm for mining association rules, In Proceedings of

ACM SIGMOD International Conference on Management

of Data, San Jose, California, May,175-186.

[12] Park, J.S., Chen, M., Yu, P.S. 1995. Efficient parallel data

mining for association rules, in Proceedings of ACM

International Conference on Information and Knowledge

Management, Baltimore, MD, November,31-36.

[13] Pramudiono, I., Kitsuregawa, M. 2003. Parallel FP-Growth

on PC cluster, In Proceedings of the 7th Pacific–Asia

Conference of Knowledge Discovery and Data Mining,

(PAKDD03)467- 473.

[14] Han, J., Pei, J., Yin, Y. 1999. Mining frequent patterns

without candidate generation, Technical Report, Simon

Fraser University, October,99-102.

[15] Ashrafi, M.Z., Taniar, D., Smith, K.A. 2004. ODAM: an

optimized distributed association rule mining algorithm,

IEEE Distributed Systems Online, 5(3).

[16] Zaki, M.J. 2000b. Parallel and distributed data mining: An

introduction, In M.J. Zaki, C. Ho, (Eds.), Large-Scale

Parallel Data Mining. New York, NY: Springer-Verlag. 1-

23.

[17] Agrawal, R., Imielinski, T., Swami, A. 1993. Mining

association rules between sets of items in large databases,

In Proceedings of ACM SIGMOD International

Conference on Management of Data, 207-216.

[18] Chung, S.M.,Congnan, L. 2008. Efficient mining of

maximal frequent itemsets from databases on a cluster of

workstations, Knowledge Information System, 16(3) 359–

391.

[19] Congnan, L., Chung, S.M. 2008. A scalable algorithm for

mining maximal frequent sequences using a sample,

Knowledge Information System, 15(2) 149–179.

[20] Lian, W., Cheung, D.W., Yiu,S.M. 2007. Maintenance of

Maximal Frequent Itemsets in Large Databases, In

Proceedings of 2007 ACM Symposium on Applied

Computing (SAC’07), Seoul, 388-392.

[21] Tsoumakas,G., Vlahavas, I. 2009. Distributed Data

Mining, Database Technologies: Concepts, Methodologies,

Tools, and Applications,Page-710.

[22] Toivonen, H. 1996. Sampling large databases for

association rules, In Proceedings of 22th International

Conference on Very Large Data Bases (VLDB’96),

Bombay, India, 134-145.

[23] Brin, S.,Motwani,R., Ullman, J.D., Tsur, S.1997. Dynamic

itemset counting and implication rules for market basket

data, In Proceedings of ACM SIGMOD International

Conference on Management of Data, 255-264.

[24] Ye, Y., Chiang, C.C.2006. A parallel apriori algorithm for

frequent itemsets mining, In Proceedings of the Fourth

International Conference on Software Engineering

Research, Management and Applications,87–94.

[25] Bodon, F. 2003. A fast apriori implementation, In

Proceedings of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations.

[26] Wu, J., Li,X.M.2008. An efficient association rule mining

algorithm in distributed database, In International

Workshop on Knowledge Discovery and Data Mining

(WKDD),108–113.

[27] Wessel, T.2009. Parallel mining of association rules using

a lattice based approach [dissertation], Nova Southeastern

University.

[28] Aggarwal, C.C., Yu, P.S.2001. A new approach to online

generation of association rules, IEEE Transactions

Knowledge and Data Engineering, 13(4)527-540.

[29] Cheung, D.W., Ng, V.T., Fu, A.W., Fu, Y. 1996. Efficient

mining of association rules in distributed databases, IEEE

Transactions on Knowledge and Data Engineering, 8(6)

911-922.

[30] Kohavi, R., Bradley, C.E., Frasca, B., Mason, L., Zheng,

Z. 2000. KDD-Cup 2000 organizers Report: Peeling the

Onion. SIGKDD Exploration 2(2) 86–93.

[31] Zaki, M.J. 2000c. Hierarchical parallel algorithms for

association mining, In Kargupta,H & Chan P. (Eds.),

Advances in Distributed and Parallel Knowledge

Discovery, Cambridge, MA: MIT Press 339-336.

