
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.13, March 2013

32

‘Ads’ Algorithm for Subset Sum Problem

Adarsh Kumar Verma

Student,Galgotias College Of Engineering and Technology
Greater Noida, G. B. Nagar

201306, India

ABSTRACT

The Subset Sum Problem is an important problem in

Complexity Theory, Bin Packing and Cryptography. The

Subset Sum Problem is NP Complete. In this paper we are

introducing a new technique to find the solution of Subset

Sum Problem. There are many algorithms based on greedy

approach and lattice based reduction and many more

approaches has been suggested earlier but suggested approach

is based on the simple mathematics concept and binary search.

General Terms

Algorithm, NP Complete.

Keywords

Subset Sum, binary search.

1. INTRODUCTION
Subset Sum problems are special case of binary knapsack

problems. One interesting special case of subset sum is

the Partition Problem, in which half of the sum of all elements

in the set. In the SSP we have to find a subset ‘s’ of the given

set S={ S1, S2, S3, S4,……Sn } where the elements of the set

are n positive integers in such a manner such that subset s ∈ S

and the elements are in the increasing order and sum of the

elements of subset s is equal to some positive integer X.

The current upper bound for Subset Sum is apparently O(2n/2

) when size of the input set (denoted n) is used as the

complexity parameter . When the maximum value in the set

(denoted m) is used as the complexity parameter, dynamic

programming can be used to solve the problem in O(m3) time.

The SSP is known to be NP Complete [1] and hence difficult

problem to solve generally. Cook, Karp and others, defined

such class of problems as NP Hard problem [2]. Some of the

NP Hard problems include Travelling Salesman Problem

(TSP), Boolean Satisfiability Problem, Knapsack Problem,

Hamiltonian Path Problem, Post Correspondence Problem

(PCP), and Vertex Cover Problem (VCP). There are several

ways to solve SSP in exponential and polynomial time. A

naive algorithm with time complexity O(n2n) solves SSP by

iterating all the possible subsets and each for its subset

comparing its sum with target X. A better algorithm proposed

in 1974 using the Horowitz and Sahni decomposition scheme

which achieves time O(n2n/2). If the target T is relatively small

then there exist dynamic programming algorithms that can run

much faster. A classic Pseudo-Polynomial algorithm Bellman

Recursion solves SSP in both time and space O(nc). And there

are many other algorithms, for example Ibam and Kim [3]

developed a fully polynomial approximation scheme for the

SSP in 1975. It was improved upon by Lawler [4] and Lam by

Martello and Toth [5]. Martello and Toth reported very good

results for several approximation schemes in their survey and

experimental analysis [6].

In this paper we’d study about a simple SSP solution based on

arithmetic and binary search with O (n2logn) time complexity

and with linear space complexity.

2. BACKGROUND

2.1 Sorting
Sorting is any process of arranging items in some sequence,

which can be done by sorting algorithms. A sorting algorithm

is an algorithm that puts elements of a list in a certain order.

In computer science, sorting is one of the most extensively

researched subjects because of the need to speed up the

operation on thousands or millions of records during a search

operation. For subset sum problem we need to arrange the

elements in non-decreasing order, then subset sum problem

can be solved by ‘Ads’ algorithm.

Sorting of the list can be done by various algorithms of

sorting and the complexity depends on the type of algorithm

we are using. If there are less elements in the list then we can

use simple sorting algorithm like Bubble sort with worst case

complexity O (n2) or we can use efficient quick sort with

average case complexity O(n logn) or merge sort with

complexity O (n log n) for more numbers.

2.2 Binary Search
Binary Search or half-interval search algorithm search the

specified value within the sorted array. It is based on divide

and conquer approach. Binary search will require far fewer

comparisons than linear search, if the list to be searched

contains more than a dozen elements. But it imposes the

requirement that the list should be sorted. In each step, the

algorithm compares the input value with the key value of the

middle element. If these keys match, then matching element

has been found. The position and the key is returned.

Otherwise, if the sought key is less than the middle elements

key, then algorithm repeat its action on the sub array to the

left of the middle element, or if the input key is greater than

the middle element’s key then algorithm repeat its action to

the right sub array. If the remaining array to be searched is

reduced to zero, then key not found in the array and a “Key

not found ” indication is returned.

Binary search halves the number of items to check with each

iteration, so locating an item (or determining its absence)

takes logarithmic time. The worst case performance of binary

search is O (log(n)) and best case is O(1), And the worst

space complexity is O(1).

3. THE COMPLETE ALGORTITHM
With the Subset Sum problem, however, we do not find a

mutual dependence between the number of objects in the set

and the Target X. But using the basic concepts of mathematics

we found a method to solve it. So, the procedure is, first we

have to sort the given list to solve it by Ads algorithm or we

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.13, March 2013

33

can say the proposed algorithm is only for sorted array or list.

Suppose if list is not already sorted then we can sort it by

efficient sorting algorithms. After sorting we will apply Ads

algorithm for solving subset sum problem.

The algorithm uses simple mathematics, like, if sum of two

numbers A, B is C then we can find B by subtracting it from

C, such that B = C – A. Similarly if sum of three numbers A,

B, C from the set { A, B, C, D } is X then we can also find the

C by subtracting (A + B) from X such that C = X – (A + B).

And we can search C by binary search from the sorted list.

We will apply binary search in the list from the element 3 of

the list, because we have already taken A, B. Searching will

be in the remaining set { C, D }. Hence the set will be { A, B,

C} whose sum is X.

3.1 Pseudo code for ‘Ads’ algorithm
Input : Set of n sorted positive integers e = { e1, e2, e3,…en }

where e1, e2, e3, e4,…….en are in non-decreasing order.

Target positive integer X.

ads (e, X)

1. for (i = 0 ; i < n-1 ; i++)

2. sum = 0

3. for (j = i ; j < n - 1 ; j++)

4. sum = sum + e [j]

5. c = X – sum

6. if (c > e [j])

7. flag = binarySearch (c, j, n-1)

8. if flag = 1

9. “ subset found with target sum X”

10. for (k = i, l=0 ; k < = j ; k++, l++)

11. s [l] = e [k]

12. l++

13. s [l] = c

14. display(s)

15. else

16. break

17. if flag = - 1

18. “ no subset found”

In Pseudo code binarysearch() searches the difference of the

list elements from the target X, display() function displays the

subset found with target sum X.

3.2 Pseudo code for binary search :
Input: array e , lower bound, upper bound

binarySearch (c, j, n-1)

1. low = j, high= n – 1

2. while (low < = high)

3. mid = (low + high) / 2

4. if (c > = e[mid])

5. if (c = mid)

6. return (1)

7. else

8. low = mid + 1

9.

10. else

11. high = mid - 1

12. return(- 1)

3.3 Analysis of ‘Ads’ Algorithm
It is very convenient to classify algorithms based on the

relative amount of time or relative amount of space they

require and specify the growth of time/space requirements as

a function of the input size.

3.3.1 Time complexity
Running time of the algorithm as a function of the size of

input. In computing time complexity, one good approach to

count primitive operations. Some examples of primitive

operations are assigning value to a variable, indexing into an

array, calling a method, performing an arithmetic operation,

returning from a method.

The time complexity of ‘Ads’ algorithm depends on the two

for loops and the method binary search, first for loop runs 0 to

(n – 1) in i, similarly second for loop runs j = i to (n – 1).

Hence due to two for loops primitive operations will occur (n

– 1) x (n – 1), that will be O (n2). But due to binary search

inside the for loops it will be O (n2 log (n)).

3.3.2 Space Complexity:
Some forms of analysis of algorithms could be done on how

much space an algorithm needs to complete its task. The

space complexity analysis was critical in the early days of

computing when storage space on the computers was limited.

When considering space complexity, algorithms are divided

into those that need extra space to do their work.

The space complexity of Ads algorithm is linear O (n) due to

single array required for it’s execution.

3.4 Computational Results
Problem : - Given a set e = { 2, 3, 6, 7, 10 } and Target sum

X = 13. Find a subset whose sum is equal to X.

Solution :- Number of elements in set n = 5, we are

considering the array from 0 to 4.

Pass 1 : i = 0

sum=0 ,

1. j = i = 0, e[0] = 2

sum = sum + e[j] = 0 + 2 = 2

 c = X – sum = 13 – 2 = 11

 check if (11 > 2) , yes

 flag = binarySearch(c)

binarySearch(11) from index 1 to 4

 flag = -1

2. j = 1, e[1]= 3

 sum = sum + e[j] = 2 + 3 = 5

 c = X – sum = 13 – 5 = 8

 check if (8 > 3), yes

 flag = binarySearch(c)

binarySearch(8) from index 2 to 4

 flag = - 1

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.13, March 2013

34

3. j = 2 , e[2] = 6

sum = sum + e[j] = 5 + 6 = 11

c = X – sum = 13 – 11 = 2

 check if (2 > 3), no

break.

Pass 2 : i = 1

 sum = 0

1. j = i = 1, e[1]= 3

 sum = sum + e[j] = 0 + 3 = 3

 c = X – sum = 13 – 3 = 10

 check if (10 > 3), yes

 flag = binarySearch(c)

binarySearch(10) from index 2 to 4

 flag = 1

 hence, subset found S = { 3, 10 }

2. j = 2, e[2] = 6

sum = sum + e[j] = 3 + 6 = 9

c = X – sum = 13 – 9 = 4

check if (4 > 6), no

break

Pass 3 : i = 2

 sum = 0

1. j = i = 2, e[2] = 6

 sum = sum + e[j] = 0 + 6 = 6

 c = X – sum = 13 – 6 = 7

 check if (7 > 6), yes

 flag = binarySearch(c)

binarySearch(7) from index 3 to 4

 flag = 1

 hence, subset found S = { 6, 7 }

2. j = 3, e[3] = 7

sum = sum + e[j] = 6 + 7 = 13

c = X – sum = 13 – 13 = 0

check if (0 > 6), no

break ,

Pass 4 : i = 3

 sum = 0

1. j = i = 3, e[3] = 7

 sum = sum + e[j] = 0 + 7 = 7

 c = X – sum = 13 – 7 = 6

 check if (6 > 7), no

 break.

Hence by suggested algorithm we get two subsets whose sum

is X = 13 and subsets are { 3, 10 } and { 6, 7 }.

4. CONCLUSION AND FUTURE SCOPE
We have presented a simple mathematics based solution for

Subset Sum problem with time complexity O (n2log n) and

space complexity O (n). The Subset Sum problem is NP-

complete problem and that can execute in polynomial time. It

can be argued that Subset Sum problem is easier than the

other NP-complete problems, based on algorithms that solve

the problem in sub-exponential time. We identify a generic

construction of cryptosystems based on the Subset Sum

Problem. The suggested approach can be used for the

implementation of SSP-based cryptosystems and application

of these cryptosystems in defining an efficient RFID (Radio-

Frequency Identification) security and privacy solutions.

5. ACKNOWLEDGMENTS
I am very thankful to Monica Batham (Student, Computer

Science and Engineering Department, Galgotias college of

Engineering and Technology) for programming suggestions.

6. REFERENCES
[1] M. R. Garey& D. S. Johnson, Computers and

Intractibility: A Guide to the theory of NP Completeness,

W. H. Freeman and Company, New York (1979).

[2] Harsh Bhasin and NehaSingla, “Harnessing Cellular

Automata and Genetic Algorithms to solve Travelling

Salesman Problem”.

[3] O. H. Ibarra and C. E. Kim, Fast approximation

algorithms for knapsack and sum of subset problem,

journal of the ACM, 22, 463-468(1975).

[4] E. L. Lawler, Fast approximation algorithms for

Knapsack problems, Mathematics of operation research,

4,339-356 (1979)

[5] S. Martello and P. Toth, Worst case analysis of greedy

algorithms for the subset sum problem, Mathematical

Programming, 28,198-205 (1984).

[6] S. Martello and P. Toth, Approximation schemes for the

subset-sum problem: Survey and experimental analysis,

European Journal of Operational Research, 22,56-69

(1985)

