
International Journal of Computer Applications (0975 – 8887)  

Volume 66– No.13, March 2013 

32 

‘Ads’ Algorithm for Subset Sum Problem 

 
Adarsh Kumar Verma 

Student,Galgotias College Of Engineering and Technology 
Greater Noida, G. B. Nagar 

201306, India 

 

ABSTRACT 

The Subset Sum Problem is an important problem in 

Complexity Theory, Bin Packing and Cryptography. The 

Subset Sum Problem is NP Complete. In this paper we are 

introducing a new technique to find the solution of Subset 

Sum Problem. There are many algorithms based on greedy 

approach and lattice based reduction and many more 

approaches has been suggested earlier but suggested approach 

is based on the simple mathematics concept and binary search. 
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1. INTRODUCTION 
Subset Sum problems are special case of binary knapsack 

problems. One interesting special case of subset sum is 

the Partition Problem, in which half of the sum of all elements 

in the set. In the SSP we have to find a subset ‘s’ of the given 

set S={ S1, S2, S3, S4,……Sn } where the elements of the set 

are n positive integers in such a manner such that subset s ∈ S 

and the elements are in the increasing order and sum of the 

elements of subset s is equal to some positive integer X. 

The current upper bound for Subset Sum is apparently O( 2n/2 

) when size of the input set (denoted n) is used as the 

complexity parameter . When the maximum value in the set 

(denoted m) is used as the complexity parameter, dynamic 

programming can be used to solve the problem in O(m3) time. 

The SSP is known to be NP Complete [1] and hence difficult 

problem to solve generally. Cook, Karp and others, defined 

such class of problems as NP Hard problem [2]. Some of the 

NP Hard problems include Travelling Salesman Problem 

(TSP), Boolean Satisfiability Problem, Knapsack Problem, 

Hamiltonian Path Problem, Post Correspondence Problem 

(PCP), and Vertex Cover Problem (VCP). There are several 

ways to solve SSP in exponential and polynomial time. A 

naive algorithm with time complexity O(n2n) solves SSP by 

iterating all the possible subsets and each for its subset 

comparing its sum with target X. A better algorithm proposed 

in 1974 using the Horowitz and Sahni decomposition scheme 

which achieves time O(n2n/2). If the target T is relatively small 

then there exist dynamic programming algorithms that can run 

much faster. A classic Pseudo-Polynomial algorithm Bellman 

Recursion solves SSP in both time and space O(nc). And there 

are many other algorithms, for example Ibam and Kim [3] 

developed a fully polynomial approximation scheme for the 

SSP in 1975. It was improved upon by Lawler [4] and Lam by 

Martello and Toth [5]. Martello and Toth reported very good 

results for several approximation schemes in their survey and 

experimental analysis [6]. 

In this paper we’d study about a simple SSP solution based on 

arithmetic and binary search with O (n2logn) time complexity 

and with linear space complexity. 

2. BACKGROUND 

2.1 Sorting 
Sorting is any process of arranging items in some sequence, 

which can be done by sorting algorithms. A sorting algorithm 

is an algorithm that puts elements of a list in a certain order. 

In computer science, sorting is one of the most extensively 

researched subjects because of the need to speed up the 

operation on thousands or millions of records during a search 

operation. For subset sum problem we need to arrange the 

elements in non-decreasing order, then subset sum problem 

can be solved by ‘Ads’ algorithm. 

Sorting of the list can be done by various algorithms of 

sorting and the complexity depends on the type of algorithm 

we are using. If there are less elements in the list then we can 

use simple sorting algorithm like Bubble sort with worst case 

complexity O ( n2 ) or we can use efficient quick sort with 

average case complexity O( n logn ) or merge sort with 

complexity O ( n log n ) for more numbers. 

2.2 Binary Search 
Binary Search or half-interval search algorithm search the 

specified value within the sorted array. It is based on divide 

and conquer approach. Binary search will require far fewer 

comparisons than linear search, if the list to be searched 

contains more than a dozen elements. But it imposes the 

requirement that the list should be sorted. In each step, the 

algorithm compares the input value with the key value of the 

middle element. If these keys match, then matching element 

has been found. The position and the key is returned. 

Otherwise, if the sought key is less than the middle elements 

key, then algorithm repeat its action on the sub array to the 

left of the middle element, or if the input key is greater than 

the middle element’s key then algorithm repeat its action to 

the right sub array. If the remaining array to be searched is 

reduced to zero, then key not found in the array and a “Key 

not found ” indication is returned. 

Binary search halves the number of items to check with each 

iteration, so locating an item (or determining its absence) 

takes logarithmic time. The worst case performance of binary 

search is O ( log(n) ) and best case is O(1), And the worst 

space complexity is O(1). 

3. THE COMPLETE ALGORTITHM 
With the Subset Sum problem, however, we do not find a 

mutual dependence between the number of objects in the set 

and the Target X. But using the basic concepts of mathematics 

we found a method to solve it. So, the procedure is, first we 

have to sort the given list to solve it by Ads algorithm or we 
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can say the proposed algorithm is only for sorted array or list. 

Suppose if list is not already sorted then we can sort it by 

efficient sorting algorithms. After sorting we will apply Ads 

algorithm for solving subset sum problem. 

 

The algorithm uses simple mathematics, like, if sum of two 

numbers A, B is C then we can find B by subtracting it from 

C, such that B = C – A. Similarly if sum of three  numbers A, 

B, C from the set { A, B, C, D } is X then we can also find the 

C by subtracting  (A + B ) from X such that C = X – ( A + B ). 

And we can search C by binary search from the sorted list. 

We will apply binary search in the list from the element 3 of 

the list, because we have already taken A, B. Searching will 

be in the remaining set { C, D }. Hence the set will be { A, B, 

C} whose sum is X. 

3.1 Pseudo code for ‘Ads’ algorithm 
Input : Set of n sorted positive integers e = { e1, e2, e3,…en } 

where e1, e2, e3, e4,…….en are in non-decreasing order. 

Target positive integer X. 

ads ( e, X ) 

1. for ( i = 0 ; i < n-1 ; i++) 

2.        sum = 0  

3.        for ( j = i ; j < n - 1 ; j++ )              

4.   sum = sum + e [ j ] 

5.   c = X – sum 

6.   if ( c > e [ j ] ) 

7.          flag = binarySearch ( c, j, n-1 ) 

8.                        if  flag = 1 

9.                              “ subset found with target sum X” 

10.                             for ( k = i, l=0 ; k < = j ; k++, l++ ) 

11.                                          s [ l ] = e [ k ] 

12.              l++ 

13.                             s [ l ] = c 

14.              display( s ) 

15.   else 

16.          break 

17. if flag = - 1 

18. “ no subset found”  

In Pseudo code binarysearch() searches the difference of the 

list elements from the target X, display() function displays the 

subset found with target sum X.  

3.2 Pseudo code for binary search : 
Input: array e , lower bound, upper bound 

binarySearch ( c, j, n-1) 

1. low = j,        high= n – 1 

2. while  ( low < = high ) 

3.           mid = ( low + high ) / 2 

4.           if ( c > = e[ mid ] ) 

5.                 if ( c = mid ) 

6.                       return ( 1 ) 

7.                 else 

8.                       low = mid + 1 

9.  

10.           else  

11.                high = mid - 1  

12. return( - 1 ) 

3.3 Analysis of ‘Ads’ Algorithm 
It is very convenient to classify algorithms based on the 

relative amount of time or relative amount of space they 

require and specify the growth of time/space requirements as 

a function of the input size. 

3.3.1 Time complexity 
Running time of the algorithm as a function of the size of 

input. In computing time complexity, one good approach to 

count primitive operations. Some examples of primitive 

operations are assigning value to a variable, indexing into an 

array, calling a method, performing an arithmetic operation, 

returning from a method. 

The time complexity of ‘Ads’ algorithm depends on the two 

for loops and the method binary search, first for loop runs 0 to 

( n – 1 ) in i, similarly second for loop runs j = i to ( n – 1 ). 

Hence due to two for loops primitive operations will occur ( n 

– 1 ) x ( n – 1 ), that will be O ( n2). But due to binary search 

inside the for loops it will be O ( n2 log ( n ) ). 

3.3.2 Space Complexity: 
Some forms of analysis of algorithms could be done on how 

much space an algorithm needs to complete its task. The 

space complexity analysis was critical in the early days of 

computing when storage space on the computers was limited. 

When considering space complexity, algorithms are divided 

into those that need extra space to do their work. 

The space complexity of Ads algorithm is linear O ( n ) due to 

single array required for it’s execution. 

3.4 Computational Results 
Problem : - Given a set e  = { 2, 3, 6, 7, 10 } and Target sum 

X = 13. Find a subset whose sum is equal to X. 

Solution :-  Number of elements in set n = 5, we are 

considering the array from 0 to 4. 

Pass 1 : i = 0 

sum=0 ,  

1. j = i = 0, e[0] = 2 

sum = sum + e[j] = 0 + 2 = 2 

  c = X – sum = 13 – 2 =  11 

  check if (11 > 2) , yes 

  flag = binarySearch(c)  

binarySearch(11) from index 1 to 4 

  flag = -1 

2. j = 1, e[1]= 3 

  sum = sum + e[j] = 2 + 3 = 5 

  c = X – sum = 13 – 5 =  8 

  check if ( 8 > 3), yes 

  flag = binarySearch(c)  

binarySearch(8) from index 2 to 4 

  flag = - 1 
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3. j = 2 , e[2] = 6 

sum = sum + e[j] = 5 + 6 = 11 

c = X – sum = 13 – 11 =  2 

  check if ( 2 > 3), no 

break. 

Pass 2 :  i = 1 

 sum = 0 

1. j = i = 1, e[1]= 3 

  sum = sum + e[j] = 0 + 3 = 3 

  c = X – sum = 13 – 3 =  10 

  check if ( 10 > 3), yes 

  flag = binarySearch(c)  

binarySearch(10) from index 2 to 4 

  flag = 1 

  hence, subset found S = { 3, 10 } 

2. j = 2, e[2] = 6 

 

sum = sum + e[j] = 3 + 6 = 9 

 

c = X – sum = 13 – 9 = 4 

 

check if (4 > 6), no 

 

break 

Pass 3 :  i = 2 

 sum = 0 

1. j = i = 2, e[2] = 6 

  sum = sum + e[j] = 0 + 6 = 6 

  c = X – sum = 13 – 6 =  7 

  check if ( 7 > 6), yes 

  flag = binarySearch(c)  

binarySearch(7) from index 3 to 4 

  flag = 1 

  hence, subset found S = { 6, 7 } 

2. j = 3, e[3] = 7 

 

sum = sum + e[j] = 6 + 7 = 13 

 

c = X – sum = 13 – 13 = 0 

check if (0 > 6), no 

break , 

Pass 4 :  i = 3 

 sum = 0 

1. j = i = 3, e[3] = 7 

  sum = sum + e[j] = 0 + 7 = 7 

  c = X – sum = 13 – 7 =  6 

  check if ( 6 > 7), no 

  break. 

Hence by suggested algorithm we get two subsets whose sum 

is X = 13 and subsets are { 3, 10 } and { 6, 7 }. 

4. CONCLUSION AND FUTURE SCOPE 
We have presented a simple mathematics based solution for 

Subset Sum problem with time complexity O (n2log n) and 

space complexity O ( n ). The Subset Sum problem is NP-

complete problem and that can execute in polynomial time. It 

can be argued that Subset Sum problem is easier than the 

other NP-complete problems, based on algorithms that solve 

the problem in sub-exponential time. We identify a generic 

construction of cryptosystems based on the Subset Sum 

Problem. The suggested approach can be used for the 

implementation of SSP-based cryptosystems and application 

of these cryptosystems in defining an efficient RFID (Radio- 

Frequency Identification) security and privacy solutions. 
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