
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

21

Applicability of Weyuker’s Property 9 to Inheritance

Metric

Sandip Mal

Birla Institute of Technology
Department of CSE

Ranchi-835 215, India

Kumar Rajnish
Birla Institute of Technology

Department of IT
Ranchi-835215, India

ABSTRACT

In the metric suite for Object-Oriented design put forward by

Chidamber and Kemerer it is observed that Weyuker property

9 is not satisfied by any of the structural Inheritance

Complexity Metrics. The same is also observed for the

candidate structural inheritance complexity metric by Brito

and Carapuca, Li’s inheritance metric suite, Rajnish and

Bhattacherjee inheritance metric. This paper presents two new

inheritance metrics: one is ICC (Inheritance Complexity of

Class) measured at the class level, which does not satisfies

Weyuker property 9 and another one is ICT (Inheritance

Complexity of Tree) measured at the tree level, which

satisfies the Weyuker property 9 (Interaction Increases

Complexity). Examples supporting the applicability of the

property are also presented.

General Terms
Complexity, Design, Methods.

Keywords

Classes, Inheritance Tree, Metrics, Object-Oriented.

1. INTRODUCTION
In order to provide mathematical rigour and an axiomatic

basis to complexity metrics, necessary, though not sufficient,

properties have been set forth by Weyuker [1], and others [12]

[13]. Several researchers have evaluated their metric suites

against Weyuker properties [2] [3] [4] [5] [6] [14] while

others are skeptical about these properties [7] [10] [18].

Research has also been conducted regarding inheritance

metrics by Rajnish and Bhattacherjee in [9] [15] [16] [17].

Weyuker property 9 has been the most controversial property

with respect to Object-Oriented metrics. The property tries to

capture the complexity occurring due to interaction during

composition. It states that there exist compositions which

result in complexity greater than the sum of the complexities

of individual components that are composed.

The rest of the paper is organized as follows: Section 2

presents Weyuker’s properties and assumptions. Section 3

presents Inheritance Metrics and analytical evaluation results.

Section 4 presents new Inheritance Metrics (ICC and ICT)

along with supported examples. Finally Section 5 deals with

conclusion and future work.

2. WEYUKER PROPERTIES
The basic nine properties proposed by Weyuker [1] are listed

in Table 1. The notations used are as follows: P, Q, and R

denote combination of classes P and Q, µ denotes the chosen

metrics, µ (P) denotes the value of the metric for class P, and

P≡Q (P is equivalent to Q) means that two class designs, P

and Q, provide the same functionality. The definition of

combination of two classes is taken here to be same as

suggested by [2], i.e., the combination of two classes results in

another class whose properties are union of the properties of

the component classes. Also, combination stands for

Weyuker’s notion of “concatenation”.

Table 1: Weyuker Property

No Name Description

1 Noncoarseness (P)(Q) (µ(P) ≠ µ(Q))

2 Granularity Let c be a non-negative

number. Then there are

finitely many programs of

complexity c

3 Non-Uniqueness There are distinct programs

P and Q such that µ(P) =

µ(Q)

4 Design Details

Matter
(P)(Q) (P ≡ Q) and µ(P)

≠ µ(Q)

5 Monotonicity For all classes P and Q such

that µ(P) ≤ µ(P+Q) and µ(Q)

≤ µ(P+Q)

6 Nonequivalence

of interaction
(P)(Q)(R) such that

µ(P) = µ(Q) does not imply

that µ(P + R) = µ(Q + R)

7 Interaction

among statements

Not consider for Object-

Oriented metrics.

8 No change on

renaming

If P is a remaining of Q then

µ(P) = µ(Q)

9 Interaction

increases

complexity

(P)(Q) (µ(P) + µ(Q) <

µ(P+Q)

Analytical evaluation is required so as to mathematically

validate the correctness of a measure as an acceptable metric.

For example, Properties 1, 2, and 3 namely Non-

Coarseness, Granularity, and Non-Uniqueness are general

properties to be satisfied by any metric. Property 9 of

Weyuker will not normally be satisfied by any metric for

which high values are an indicator of bad design measured at

the class level. In case it does, this would imply a case of bad

composition and the classes, if combined, need to be

restructured. Having analytically evaluated a metric, one can

proceed to validate it against data.

Assumptions. Some basic assumptions used in section 4.2

have been taken from Chidamber and Kemerer [2] regarding

the distribution of methods and instance variables in the

discussions for the metric properties.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

22

Assumption 1:

Let Xi= the number of methods in a given class i

Yi= the number of methods called from a given method i

Zi= the number of instance variables used by a method i

Xi, Yi, Zi are discrete random variables, each characterized by

some general distribution function. Further, all the Xi’s are

independent and identically distributed within the program.

The same is true for all Yi’s and Zi’s. This suggests that the

number of methods and variables follow a statistical

distribution that is not apparent to an observer of the system.

Further, that observer cannot predict the variables and

methods of one class based on the knowledge of the variables

and methods of another class in the system.

Assumption 2: In general, two classes can have a finite

number of “identical” methods in the sense that a combination

of the two classes into one class would result in one class’s

version of the identical methods becoming redundant. For

example, a class “foo_one” has a method “draw” that is

responsible for drawing an icon on a screen; another class

“foo_two” also has a “draw” method. Now a designer

decides to have a single class “foo” and combine the two

classes. Instead of having two different “draw” methods the

designer can decide to just have one “draw” method.

Assumption 3: the inheritance tree is “full”, i.e. there is a root,

intermediate nodes and leaves. This assumption merely states

that an application does not consist only of standalone classes;

there is some use of sub classing.

3. EXISTING METRICS AND

ANALYTICAL EVALUATION RESULTS
Inheritance metrics proposed by Chidamber and Kemerer [1],

Brito and Carapuca [3], Li’s [11] and Rajnish and

Bhattacherjee [8] have been summarized in Tables 2, 3, 4 and

5 respectively. The analytical evaluation of Li’s inheritance

metric suite [11] against Weyuker properties [1] has been

presented by Rajnish and Bhattacherjee in [9]. Table 6

summarizes the evaluation results for inheritance metrics

proposed by Chidamber and Kemerer, Brito and Carapuca,

Li’s and Rajnish and Bhattacherjee for Weyuker’s Properties.

It is immediately observable that Property 9 is not satisfied by

any of the metrics listed in Table 5. Failing to meet Property

9, means that complexity cannot be reduced by dividing a

class. Since complexity cannot be reduced, it may increase

(but also may stay the same).

Table 2: Chidamber and Kemerer Metrics

Table 3: Li’s Inheritance Metrics

Table 4. Brito and Carapuca Inheritance Metrics

Metrics Description

Depth of Inheritance

Tree (DIT)

The depth of inheritance will be

the maximum length from the

node to the root of the tree.

Number of Children

(NOC)

Number of immediate subclasses

subordinated to a class in the

class inheritance tree is the NOC

for that class.

Metrics Description

Number of

Ancestor Class

(NAC)

The definition of NAC measures

the total number of ancestor

classes from which a class inherits

in the class inheritance tree.

Number of

Descendent Class

(NDC)

The definition of NDC measures

the total number of descendent

classes of a class.

Metrics Description

Total Progeny

Count (TPC)

Number of classes that inherit

directly or indirectly from a class

is the Total Progeny count (TPC)

of that class.

Total Parent Count

(TPAC)

The number of super classes from

which a class inherits directly is

the Total Parent Count (TPAC) of

that class.

Total Ascendancy

Count (TAC)

The number of super classes from

which a class inherits directly or

indirectly is the Total Ascendancy

Count (TAC) of that class.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

23

Table 5. Rajnish and Bhattacherjee Inheritance Metrics

Table 6. Analytical Evaluation results.

4. POINT OF VIEW OF INHERITANCE
In the April 2001 issue of IEEE Transactions on Software

Engineering, a correspondence titled “On the Applicability of

Weyuker property 9 to Object-Oriented Structural Inheritance

Complexity Metrics” by Gurusaran and Roy was published

[4]. In that correspondence Gurusaran and Roy tried to

analyze some particular classes of inheritance metrics through

formalization and prove that the classes of inheritance metrics

can never satisfy property 9 presented by Weyuker [1].

Actually, Gurusaran and Roy’s work was inspired by the

observation that none of the inheritance metrics proposed in

Chidamber and Kemerer [2] and Brito and Carapuca [3]

satisfies property 9 and the arguing for rejection of property 9

for Inheritance Complexity Metrics in Chidamber and

Kemerer [2] and Kitchenham et al [10].

Lu Zhang and Dan Xie [7] pointed out some discrepancies in

Gurusaran and Roy’s conclusion. Finally, they provided two

exceptions to their conclusion.

4.1 Proposed Inheritance Metrics
This section presents proposed inheritance metrics, which are

used to calculate the Complexity of an inheritance hierarchy.

The primary purpose of the proposed metrics is to evaluate the

applicability of Weyuker property 9 to Object-Oriented

inheritance tree at the class level as well as at the entire tree

level. The new inheritance metrics are defined as follows:

 and

Where

Inheritance Complexity of Tree (ICT) is the metric value for

the entire tree and inheritance complexity of class (ICC) is the

metric value of a class of an inheritance tree.

Ci = Classes at the ith level in an inheritance tree.

A (Ci) = Count the number of attributes (protected, private,

public and inherited attributes) at each level in an inheritance

tree.

M (Ci) = Count the number of methods (protected, private,

public and inherited attributes) at each level in an inheritance

tree.

N= Total number of classes in an inheritance tree.

4.2 Examples for Illustration
This section presents three different examples for inheritance

tree for the applicability of Weyuker property 9 to an

inheritance tree at class level as well as at tree level is

presented.

Metrics Description

(DITC)

Depth of Inheritance Tree of a Class (DITC)

metric for class inheritance hierarchy is

measured in terms of sum of the attributes

(Private, Protected, public and inherited) and

Methods (Private, Protected, public and

inherited) at each level. The DITC metric of

a class is calculated as:

 L

 DITC (Ci) = Σ LEVi * i

 i=1

Where,

LEVi= Attribute (Ci) + Method (Ci)

Ci = A class in the ith level of class

inheritance hierarchy.

Attribute (Ci) = Count the total number of

protected, private, public and inherited

attributes within a class in the class

inheritance hierarchy at each level.

Method (Ci) = Count the total number of

protected, private, public and inherited

methods within a class in the class

inheritance hierarchy at each level.

L = Total height in the class inheritance

hierarchy i.e. the maximum distance from

the last node (last level in the class

inheritance hierarchy) to the root node (first

level in the class inheritance hierarchy).

Property

Number

D

I

T

N

O

C

T

P

C

T

P

A

C

T

A

C

N

A

C

N

D

C

D

I

T

C

1 √ √ √ √ √ √ √ √

2 √ √ √ √ √ √ √ √

3 √ √ √ √ √ √ √ √

4 √ √ √ √ √ √ √ √

5 × √ × √ √ × √ ×

6 √ √ √ √ √ √ √ √

7 √ √ √ √ √ √ √ √

8 √ √ √ √ √ √ √ √

9 × × × × × × × ×

√ Indicates that the metric satisfies the

corresponding property.

× Indicates that the metric does not satisfy

the corresponding property.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

24

Case 1: When class P and Class Q are at the same level in an

inheritance tree:

The inheritance metrics for the hierarchies shown in Figures

1a and 1b are calculated as follows:

At Class Level:

ICC (P) =M (P) + A (P) +IF (P)

 = 3 + 3 + 2 = 8.

ICC (Q) =M (Q) + A (Q) +IF (Q)

 = 4 + 2 + 2 = 8.

ICC (P+Q) = M (P+Q) + A (P+Q) + IF (P+Q)

 = 6 + 5 + 4 = 15

From Weyuker Property 9, there exist two classes P and Q

such that ICC (P) + ICC (Q) are not ˂ ICC (P+Q). Hence

Weyuker Property 9 (Interaction Increases Complexity) is not

satisfied.

At Tree Level:

For class P, ICT (P) = 8 / 7 = 1.143.

For class Q, ICT (Q) = 8/ 7 = 1.143.

ICT (P) + ICT (Q) = 1.143 + 1.143 = 2.286.

ICT (P+Q) = 15 / 6 = 2.5.

From Weyuker Property 9, there exist two classes P and Q

such that ICT (P) + ICT (Q) ˂ ICC (P+Q). Hence Weyuker

Property 9 (Interaction Increases Complexity) is satisfied.

Case 2: When class Q is a child of class P in an inheritance

tree:

The inheritance metrics for the hierarchies shown in Figures

2a and 2b are calculated as follows:

At Class Level:

ICC (P) =M (P) + A (P) +IF (P)

 = 3 + 3 + 2 = 8.

ICC (Q) =M (Q) + A (Q) +IF (Q)

 = 3 + 2 = 5.

ICC (P+Q) = M (P+Q) + A (P+Q) + IF (P+Q)

 = 6 + 5 + 1 = 12

From Weyuker Property 9, there exist two classes P and Q

such that ICC (P) + ICC (Q) are not ˂ ICC (P+Q). Hence

Weyuker Property 9 (Interaction Increases Complexity) is not

satisfied.

At Tree Level:

For class P, ICT (P) = 8 / 7 = 1.143

For class Q, ICT (Q) = 5/ 7 = 0.714

ICT (P) + ICT (Q) = 1.143 + 0.714 = 1.857

ICT (P+Q) = 12 / 6 = 2

From Weyuker Property 9, there exist two classes P and Q

such that ICT (P) + ICT (Q) ˂ ICC (P+Q). Hence Weyuker

Property 9 (Interaction Increases Complexity) is satisfied.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

25

Case 3: When class P and Class Q are not the same level in

an inheritance tree and Q is not a child of P:

The inheritance metrics for the hierarchies shown in Figures

3a and 3b are calculated as follows:

At Class Level:

ICC (P) =M (P) + A (P) +IF (P)

 = 3 + 3 + 2 = 8.

ICC (Q) =M (Q) + A (Q) +IF (Q)

 = 2 + 2 = 4.

ICC (P+Q) = M (P+Q) + A (P+Q) + IF (P+Q)

 = 4 + 5 + 2 = 11

From Weyuker Property 9, there exist two classes P and Q

such that ICC (P) + ICC (Q) are not ˂ ICC (P+Q). Hence

Weyuker Property 9 (Interaction Increases Complexity) is not

satisfied.

At Tree Level:

For class P, ICT (P) = 8 / 7 = 1.143

For class Q, ICT (Q) = 4/ 7 = 0.571

ICT (P) + ICT (Q) = 1.143 + 0.571 = 1.714

ICT (P+Q) = 11 / 6 = 1.833

From Weyuker Property 9, there exist two classes P and Q

such that ICT (P) + ICT (Q) ˂ ICC (P+Q). Hence Weyuker

Property 9 (Interaction Increases Complexity) is satisfied.

From the above example illustration it is observed that the

Weyuker property 9 is never satisfied at the class level but at

the tree level Weyuker property 9 is satisfied in all the three

cases of an inheritance tree.

5. CONCLUSION AND FUTURE SCOPE
It is observed that in all the three cases of an inheritance tree,

when two classes are combined, the interaction between

classes can increase the complexity of Inheritance Complexity

of Tree (ICT) value (see Section 4.2). Hence, Weyuker

property 9 (Interaction Increases Complexity) is satisfied in

all the three cases of an inheritance tree. Satisfying property 9

indicate that the complexity of Object-Oriented programs may

increase when number of classes reduced.

The future scope includes the investigation of other metrics

for combination of classes and validation on industrial data.

6. ACKNOWLEDGMENTS
We would like to thanks BIT, MESRA and specially

Department of Computer Science & Engineering for

encouraging us to do this work.

7. REFERENCES
[1] Weyuker E. J., “Evaluating Software Complexity

Measures”, IEEE Trans. on Software Engineering, 14,

(1998), pp.1357-1365.

[2] Chidamber S. R. and Kemerer C. F., “A Metrics Suite for

Object Oriented Design”, IEEE Trans. on Software

Engineering, 20, 6(1994), pp.476 – 493.

[3] Brito A.F. and Carapuca R., “Candidate Metrics for

Object-Oriented Software within a Taxonomy

Framework”, Journal of System Software, vol. 26, 1994,

pp. 87-96.

[4] Gursaran and Roy G, “On the applicability of Weyuker

Property Nine to Object-Oriented Structural Inheritance

Complexity Metrics”, IEEE Transaction on Software

Engineering, Vol.27, no.4, 2001, pp. 361-364.

[5] Cherniavsky J. and.Smith C.” On Weyuker’s Axioms for

Software Complexity Measures”, IEEE Transaction on

Software Engineering, Vol. 17, no-6, 1991, pp. 636-638.

[6] Sharma N., Joshi P., Joshi R.K. “Applicability of

Weyuker’s Property 9 to Object-Oriented Metrics”, IEEE

Transaction on Software Engineering, Vol.32, No.3,

2006, pp. 209-211.

[7] Zhang L. and Xie D., “Comments on ‘On the

applicability of Weyuker Property Nine to Object-

Oriented Structural Inheritance Complexity Metrics”,

IEEE Transaction on Software Engineering, Vol.28,

no.5, 2002, pp. 526-527.

[8] Rajnish K. and Bhattacherjee V., “Class Inheritance

Metrics-An Analytical and Empirical Approach”,

Infocomp Journal of Computer Science, Federal

University of Lavras, Brazil, Vol. 7 No.3, pp. 25-34,

2008.

[9] Rajnish K. and Bhattacherjee V.,” An Analytical

Evaluation on Li's Inheritance Metric Suites against

Weyuker's Properties”, International Journal of

Engineering and Technology Volume 1 No. 1, October,

2011, PP: 80-88.

[10] Kitchenham B, Pfleeger Sl., Fenton NE., “Towards a

framework for software measurement validation”, IEEE

Trans. On Software Engineering 1995; 21(12):929-944.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.12, March 2013

26

[11] Li W. Another metric suite for object-oriented

programming. The Journal of Systems and Software

1998; 44(2):155–162.

[12] Parther R.E., “An Axiomatic Theory of Software

Complexity Measurement”, Computing Journal, vol.27,

No. 4, 1984, PP: 340-346.

[13] Melton A., Gustafson D., Bieman J., and Baker A., “A

Mathematical Perspective for Software Measure

Research”, Journal of Software Engg. Vol. 5, No. 5, 1990

PP: 246-254.

[14] Roy G., “On the Applicability of Weyuker Property Nine

to Object-Oriented Structural Inheritance Complexity

Metrics, M. Tech. Minor Project Report, Faculty of Eng,.

Dayalbagh Educational Inst., Agra, 1997.

[15] Rajnish K. and Bhattacherjee V. “Maintenance of

Metrics through class Inheritance hierarchy”,

Proceedings of International conference on Challenges

and Opportunities in Information Technology Industry”,

PCTE, Ludhiana, 2005, pp.83.

[16] Rajnish K. and Bhattacherjee V. “A New Metric for

Class Inheritance Hierarchy: An Illustration”,

Proceedings of National Conference on Emerging

Principles and Practices of Computer Science &

Information Technology (EPPCSIT’06)”, GNDEC,

Ludhiana, Allied Publishers, 2006, pp.321-325,

[17] Rajnish K. and Bhattacherjee V. “Class Inheritance

Metrics and development Time: A Study”, International

Journal Titled as “PCTE Journal of Computer Science,

Vol.2, Issue 2, July-Dec-06, pp. 22-28.

[18] Fenton N., “Software Measurement: A necessary

scientific basis”, IEEE Transaction on Software

Engineering, Vol.20, No.6, 1994, pp.199-206.

