
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

20

Modeling the Navigation Behavior of Dynamic

Web Applications

Sangeeta Sabharwal

NSIT
University of Delhi

India

Priti Bansal
NSIT

University of Delhi
India

Manuj Aggarwal
NSIT

University of Delhi
India

ABSTRACT

In order to manage the growing complexity of web

applications, there is a need to abstract and model different

system behaviors which simplify the process of analysis,

designing, verification, testing and maintenance to improve

the quality and reliability of web applications. Navigation of a

web application is the sequence of web pages that a user can

browse to achieve a desired function. A number of modeling

techniques have been proposed by the researchers in past to

model the navigation behavior of web applications using

forward engineering or reverse engineering based methods.

These models can be used for analysis, design verification and

testing of web applications. In this paper a graph based

modeling technique is proposed to model the navigation

behavior of web applications for the purpose of testing. The

model is created from the information extracted from

requirement and design documents of the web application.

The proposed approach is demonstrated by means of a case

study and is implemented using MetaEdit+ which is a domain

specific modeling tool.

General Terms

Web Application, Modeling

Keywords

Model, Navigation Behavior, Page Scenario, Page Navigation

Graph

1. INTRODUCTION
The wide spread use of Internet in all sectors like finance,

retail, banking etc. has led to a significant rise in demand of

web based applications. The increasing dependence on web

applications for performing critical activities has raised

concerns around issues like reliability, usability, security and

availability. Modern web applications are sophisticated

interactive programs with complex web based user interfaces

which are highly dynamic unlike traditional ones. Web

applications can be written using languages such as Ajax, JSP,

PHP, ASP, .NET technologies with execution capabilities in

heterogeneous environments comprising of varied

combinations of hardware, operating systems, web browsers

and web servers [1] and exhibit greater challenges than

traditional applications. In totality the growing complexity of

modern web applications add new challenges for analyzing,

modeling and testing these applications. Modeling can help us

to understand the system easily by extracting information

which is relevant to our purpose. Modeling can help designers

during design phase, provides support for testing prior to

implementation and can be used for validation, verification

and maintenance in later phases of software development life

cycle.

A web application is a program that runs in whole or in part

on one or more web servers. It consists of a set of web pages

that reside on the server and can be accessed by users through

web browser [2]. A web page is composed of various

components like forms, anchors, frames, applets, and scripts

[3, 4].According to [5] web pages can be classified into two

categories: a) Server pages - pages that reside on the server b)

Client pages - pages that a web server sends back in response

to a client request and can be viewed in a browser. Client page

can further be classified as: a) Static client page - where the

content remains the same for all users b) Dynamic client page

-where the contents depend on the user input, information in

hidden fields, system state, etc. and are generated dynamically

by a web server. As web applications are event driven

software, events can be classified as a) client side events -

events triggered by user (clicking on button), which result in

client side code execution such as client side computations,

resetting of form etc. without the intervention of server or b)

server side events - events triggered by user (submit, link),

which may result in client side code execution for performing

validations at client side followed by server side code

execution [6].Client side events return the control back to the

web page from which the event was triggered while server

side events depending on the result of client side validation

may or may not return the control back to the same web page

[7]. A web page contains a number of widgets that can be

classified into a) Passive widgets: widgets such as text fields,

check boxes etc., on which actions performed by user does not

lead to a transition from the current page b) Active widgets:

widgets such as buttons, links, submit etc., on which action

performed by user, results in a transition from the current

page to either itself or another web page.

In [8] a number of methods for modeling web applications for

the purpose of testing and verification have been analyzed and

categorized by authors into three levels: web navigation, web

content and web behavior modeling. The navigation of a web

application is the sequence of client pages that a user can visit

to achieve a desired functionality. Modeling the navigation

behavior is important as incorrect handling of navigation

result in many errors in a web application. It is a challenging

task to model navigation behavior due to the presence of

dynamically generated web pages. In addition to this,

browsers provide extra navigation features independent of

server which adds to the challenge of modeling the navigation

behavior of web applications. In past various modeling

techniques have been used to model the navigation behavior.

Alalfi et al. [8] have categorized modeling techniques as UML

based models [5,9,10,11,12], graph based models

[2,13,14,15,16], state chart based models [17] and

specification and description (SDL) based models [18],

depending on the modeling notation used by them.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

21

In this paper a graph based modeling technique to model the

navigation behavior of web applications for the purpose of

testing is proposed. The model thus obtained can be used for

generating test sequences for web application testing and

performing page dependency analysis during regression

testing as well. The proposed approach models both static and

dynamic features that are related to the navigational aspect of

web applications. The various artifacts that need to be

modeled include client pages, hyperlinks, forms and transition

between client pages that happens as a result of form

submission or clicking a link. Unlike other modeling

techniques proposed by researchers in past, our modeling

technique captures the location of code execution (client or

server side) when an event is triggered by user. Our model

also capture the transitions that happen as a result of

validation checks done either at client side or server side in

response to a client’s request. Client side validations are

usually done to provide faster response to the user and

reducing network traffic. But some checks can only be done at

server side. So server side validations are done in those cases

where data cannot be validated at client side like verifying

username and password and to protect the system from

malicious users who can easily bypass java script and submit

dangerous inputs to the server or read critical data from the

server. They are also important for compatibility as many

users may have java script disabled at their end. Client side

validations can be done either at field level which provides

immediate validation of the input entered by the user for each

widget in the web page or at form level which is done after

the input is provided by user for all widgets in the form. Form

level validation is usually done when the user submits the

forms [19]. In this paper only form level validations are

considered. There are various ways to display server side

validations. In this paper modal dialog windows are used to

display client side as well as server side messages. Navigation

capabilities provided by browser are ignored in this paper.

The paper is organized as follows: Section 2 presents a brief

related work. Section 3 presents the proposed approach. In

Section 4, a case study is presented. Implementation is

discussed in Section 5. In section 6, conclusion and future

work is discussed.

2. RELATED WORK
In [4], a Web Test Model is developed which consists of

multiple models like Object Relation Diagram (ORD), Object

State Diagram (OSD), Page Navigation Diagram (PND) and

Function Cluster Diagram (FCD). Navigation behavior is

represented using PND which is constructed using forward as

well as reverse engineering tools. PND is a finite state

machine (FSM) where states correspond to client pages and

transition between states represent hyperlink. To detect error

in the navigation behavior, test cases are generated using

navigation tree which is a spanning tree constructed from

PND. Ricca and Tonella [9] have proposed a UML model of

web application which incorporates static and dynamic

aspects of web application. For convenience in analysis and

testing, they re-interpreted the UML model of the application

as a graph. They used the notion of conditional edges to

model the situation when a target page referenced by a

dynamic source page depends upon the value of some input

parameter. They also developed a tool ReWeb that creates a

model of web application using reverse engineering method

and TestWeb that generates and executes a set of test cases

from the model computed by ReWeb. The process of

modeling, test case generation and execution is

semiautomatic. In [13], graph based modeling technique is

used to generate a dynamic navigation testing tool Veriweb

which systematically explores the state spaces of concurrent,

reactive software systems starting from a given URL and

constructs a directed graph where nodes correspond to web

pages and paths in the graph correspond to sequences of

operations (scenarios) that can be observed during execution

of the system. Size of the graph is controlled using a pruning

process. Andrews et al. [2] have used FSM with constraints to

model web application behavior. Unlike approaches proposed

by [4, 9, 13] their approach doesn’t require source code. Their

technique FSMWeb addresses the state explosion problem by

taking a hierarchical collection of aggregated FSM’s. Methods

for deriving tests from FSM’s are also proposed. Higher level

tests sequences are formed by combining test sequences from

lower level FSM’s. The FSMWeb model captures many static

and dynamic features, but doesn’t handle issues related to user

interactions. In [14], a state machine based model for testing

web applications is proposed. They have used web ripper to

construct the state machine by executing the application under

test. Event sequences are then generated by applying a variant

of depth first search algorithm that traverses the state machine

to get a list of longer path sequences. Their algorithm

traversed loops only once. Wang et al. [15] have used

combinatorial approach and reverse engineering method to

build navigation graph. To control page explosion they use the

notion of abstract URL in which a newly encountered URL is

explored if its abstract URL doesn’t yet exist in the navigation

graph. However this may result in some loss of navigation

behavior. They have implemented their approach in a

prototype tool Tansuo. Achkar [16] has proposed a model

based testing technique which uses FSM to model the

navigation behavior of web application in terms of its states

and those actions that change its state. They have used

forward engineering approach for building the model using

various artifacts like requirement documents, site maps,

mock-ups and wireframes. They have implemented their

approach using a tool TestOptimal. In [12], three methods

namely UML notations, Extensible Markup language (XML)

and Record and Playback (R&P) approach are used, out of

which any method can be used to model the navigation

behavior of web application. They have implemented the

approach in a tool Automatic Testing Platform (ATP). Model

constructed using anyone of the modeling methods stated

above is given as input to ATP, which is converted into a

multidigraph. The resultant multidigraph is traversed using

Chinese Postman Problem (CPP) algorithm to generate

independent paths which represent the sequence of web pages

that should be exercised against the web application under

test. Their tool also provides support to generate test data and

test oracle. In [20], state based testing technique is proposed

to address the features associated with AJAX web

applications. FSM is used to abstract DOM manipulated by

AJAX code by dynamic analysis along with information

coming from static analysis. Test cases are generated using

the sequences of semantically interacting events.

3. PROCESS OVRVIEW
The overall proposed process of modeling the navigation

behavior of web applications is shown in figure 1. For each

functional requirement identified during requirement

engineering phase, information from low level design (LLD)

is extracted in the form of page scenarios and window

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

22

scenarios. These page/window scenarios are given as input to

the createPNG algorithm which is used to create the page

navigation graph (PNG).

Fig 1: Modeling Process

3.1 Page Navigation Graph
A Page navigation graph is a directed graph G = (N, E) in

which N is a set of nodes and E = {(n, m)| n, m ϵ N} is a set of

edges representing transitions between nodes. Nodes in a

PNG can be of type start node, page node, reusable page node,

window node, event predicate node, input predicate node and

end node. Different type of edges are used in PNG to

distinguish the transitions resulted from execution of client

side code and server side code. The main elements of PNG are

shown in figure 2. These elements are described in detail in

Table 1. PNG depicts the sequence of client pages/modal

dialog windows traversed as a result of events generated by

the user while performing a desired function. It provides a

convenient way to model the navigation behavior of web

application irrespective of its implementation. It is constructed

by examining all possible set of actions in a web page that a

user might perform and then exploring each one of them in a

systematic manner.

Fig 2: Various constructs of page navigation graph

Table 1 Description of page navigation graph constructs

S.no Element Description

1. Start Node (SN) Indicates the beginning of a navigation activity

2. End Node (EN) Indicates an end of a navigation activity

 3. Event Predicate Node (EPN) A condition node that checks the type of event triggered by user and decide

the next transition

4. Input Predicate Node (IPN) A condition node that checks the inputs entered by user and decide the next

transition

5. Page Node (PN) Corresponds to a client page

6. Reusable Page Node (RPN) Corresponds to an already tested client page which in itself represent a full

functionality and now is been reused in other PNG’s

7. Window Node (WN) Corresponds to modal dialog window that displays client or server side

messages

8. Transition Edge Indicates a transition from a) SN to PN/RPN b)PN/RPN to EPN/IPN or c)

EPN to IPN and guard condition may be used to make clear when this

transition should be taken

9. Client Transition Edge (CTE) Represents a transition that happens as a result of execution of client side

code. Client side transitions can be from EPN/IPN/MVN to PN/RPN/WN

and guard condition may be used to make clear when this transition should

be taken.

10. Server Transition Edge (STE) Represents a transition that happens as a result of execution of server side

code. Server side transitions can be from a) PN/RPN to PN/RPN/EN b)

EPN to PN/RPN/WN/EN c) IPN to PN/RPN/WN and d) WN to PN/RPN.

Guard condition may be used to make clear when this transition should be

taken

Implementation

Low Level
Design

User Requirements

High Level

Design

Requirement Engineering

Designing

Detailed Designing

Page /Window

Scenario

Page Navigation

Graph

CreatePNG

 Web

Application

Extract

Extract

Page-id

Start node End node Input Predicate

node

Event Predicate

node

 Page -id
Window-id

Page node Reusable Page node Window node

[] [] []

Server Transition

Edge

Client Transition

Edge

Transition Edge

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

23

3.2 Proposed Approach
This section illustrates the detail of proposed approach for

modeling the navigation behavior of web applications.

1. Extract functional requirements that are gathered from the

customer during requirement engineering phase. Here the

term requirements and functionality are used interchangeably

to refer to a functional requirement.

2. For each requirement identified in step1, extract

information from LLD about all possible client pages and

modal dialog windows that can be generated as a result of

client or server side code execution in response to various

events triggered by user. The information extracted from LLD

is stored in the form of page scenarios or window scenarios.

Definition 1: A page scenario is a tuple: PS = <Page-id: pid;

Page-name: pname; Parent Page-id: ppid; Passive Widgets:

PW; Active Widgets: AW; Input Required: IR; Id of Child

Node: cid; Category C; Transition Type: TT >.

Definition 2: A window scenario is a tuple WS = <Window-

id: wid; Window name: wname; Parent Page id: ppid; Active

Widgets: AW; Id of Child node: cid, Category C; Transition

Type: TT>.

Where,

Page-id/ Window-id – uniquely identifies a client page or a

modal dialog window.

Page name/ Window name- Name of client page or modal

dialog window.

Parent page id- It is the id of an already visited client

page/modal dialog window, on which an event triggered by

user results in a transition to current page or modal dialog

window.

Parent page id of home page will be 0. In the PNG, a

transition edge is created from the start node to the page node

corresponding to the home page.

Passive Widgets - List of passive widgets within the current

page.

Active Widgets - List of active widgets within the current

page or current modal dialog window.

Input Required - This field is used to check whether a

transition to the child node requires some input data/checking

of hidden parameters value or not. Its value can be ‘Y’ or ‘N’

depending on the requirement of input or not respectively.

Id of child pages/modal windows – They represent the id of

client pages/modal dialog windows that can be generated as a

result of events triggered by user on the current page. Child id

corresponding to events, which causes termination (successful

or unsuccessful) of function currently performed by user and

pass the control back to the home page will be 0. In the PNG,

instead of modeling these transitions as an edge from the

corresponding page node to the home page they are modeled

as an edge from the corresponding page node to the end node.

Category - It denotes the type of child node. ‘P’ is used for

child node of type Page node, ‘RP’ is used for child node of

type reusable page node and ‘W’ is used for child node of

type window node.

Transition Type – It indicates whether the transition to the

child node from the parent node is the result of execution of

code at client side or server side. ’C’ and ‘S’ are used to

denote client side and server side code execution respectively.

While, extracting information from low level design about

child pages of a client page, the two main challenges that need

to be addressed are:

a) Page Explosion problem - A user can navigate from one

client page to another either by submitting a form or

clicking on a link. The resulting client page may be a

static page or generated dynamically by the server as

discussed in Section 1. It means a number of child

pages can be generated dynamically based on the data

passed through forms, links, value of hidden

parameters, navigation history and current state of the

requesting client page, by the same server program in

response to a single request. This may lead to a

generation of infinite number of pages which is known

as page explosion problem [10, 15].

b) Link Explosion problem- As mentioned in [21] a

hyperlink may generate different target pages whose

names are partially generated dynamically and the

generated target pages themselves may also be

dynamic. For example, when a user clicks on a

hyperlink, based on the value of item selected by him in

a list box, the same link may refer to different server

pages which in turn generate different client pages. A

number of different client pages can be generated

depending upon the input given to HREF attribute of

anchor tag in HTML. This problem is referred as link

explosion problem.

Several solutions have been proposed by the researchers [10,

15] for solving page explosion problem. In [10] authors have

used state model for page merging and page unrolling to solve

page explosion problem whereas in [15] the notion of abstract

URL is used. In this paper, page explosion problem is solved

by following the concept given in [10].The behavior of server

pages and their response with respect to various inputs is

exploited by statically analyzing low level design and

classifying the input domain of each parameter in a form into

equivalence classes. Then various combinations of input

values for each parameter in a form are taken and given as

input to the client page. The resulting client pages which are

generated by passing various input combinations and

associated to the similar behavior of server program are

merged together and represented as a single child page

whereas client pages having totally different structure and

behavior are shown as separate child classes. Here the input

data combination is generated manually. Link explosion

problem is also solved by statically analyzing low level design

and checking the various possible inputs that can be passed

dynamically to the HREF attribute of hyperlink. Then a child

page is created corresponding to the response generated by

each distinct server page referred by HREF.

3. Construct a Page navigation graph from the information

extracted in step 2 using the algorithm CreatePNG given in

the Appendix. A start node of type SN marks the beginning of

a navigation activity in the PNG and is connected to the node

corresponding to the home page of web application which is

given as input to the CreatePNG algorithm. This algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

24

takes two inputs: Page Scenario (PS) of home page and

category (C) of node corresponding to the home page which

will be either PN or RPN. The CreatePNG algorithm then

calls an algorithm Buildrecursive which constructs the PNG

recursively. In a web application it is possible that the same

client page may be traversed many times while performing

different functions. Hence while extracting information from

page scenarios; the Buildrecursive algorithm will consider

only those active widgets which are relevant to the current

functionality for which the PNG is constructed. Nodes of

PNG corresponding to page or window scenarios which have

active widgets with child id ‘0’ will have an outgoing

transition edge connected to an end node of type EN apart

from other transition edges.

 The resulting PNG can later be traversed to generate test

sequences (abstract test cases) which can be converted into

concrete test cases by attaching input data. Hence, models that

are generated during design time provide test cases and test

oracles for testing web applications.

4. CASE STUDY
In this Section the proposed approach is illustrated by taking a

case study. We have developed an online railway reservation

system using which a user can book reservation, cancel

reservation, check pnr status etc. The system is developed

using HTML and PHP. In this section the proposed approach

is demonstrated by applying it on the ‘book reservation’

functional requirement of the online railway reservation web

application. For space reason only few mock up screens of

online railway reservation system for booking reservation,

created during LLD and the corresponding page /window

scenarios are shown in figure 3 and figure 4 respectively. The

‘Login’ screen is the home page of the application. Login

page in itself represents a functional requirement and is used

in other functionality also. So, Login page in booking

reservation is used as reusable page in which after entering a

valid user name /password and clicking on Login button, a

new page shown as the screen ‘Plan my Travel’ is generated.

If the user clicks on the Login button without entering the

password, a modal dialog window ‘Message’ will appear as

shown in figure 3. User can choose any option out of the

options given in ‘Plan my Travel’ page to book reservation,

cancel reservation etc. The next screen for the ‘book

reservation’ functional requirement is the screen ‘List of

Trains’ which is generated if the user enters valid information

in ‘Plan my Travel’ and then clicks on the button Find Trains.

Page scenarios and window scenarios extracted from the

screens in figure 3 are shown in figure 4.

Fig 3: Online railway reservation system

Fig 4: Page scenarios and window scenarios

The page /window scenarios extracted from low level design

are given as input to the CreatePNG algorithm, which

constructs a PNG showing the navigation behavior of the web

application for ‘book reservation’ functionality. The resulting

PNG is shown in figure 5. For clarity reason, all paths

containing window nodes generated as a result of client side

events, starting from an IPN and ending at the same PN or

RPN are merged into a single path containing a single window

node which is the representative of all the merged window

nodes. Similar approach is used to merge window nodes

generated as a result of server side execution. As can be seen

in figure 5, transition on the event triggered by clicking on the

previous button from page node 4 to page node 3 is taken as

client transition type whereas transition on the event triggered

by clicking on the back button from page node 6 to page node

5 is treated as server transition. While navigating in a web

application, an event that triggers transition from current page

node to a previously visited page node can be treated as server

or client side event depending upon the requirement of

authenticity from the server for that event. In last few years to

cope up with issues related to web application vulnerabilities

like Cross-Site Scripting (XSS), SQL Injection (SQLi) attacks

and Cross-Site Request Forgery (CSRF), web developers are

developing applications in which events like cancel, previous

etc. that were implemented initially using client side code are

now implemented using server side code which are routed

through the server for validation and verification [22].

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

25

Fig 5: Page Navigation Graph for book reservation

functionality

5. IMPLEMENTATION
MetaEdit+ is used to implement the proposed approach. It is a

domain specific modeling tool that enables the designing of

modeling language: its concepts, rules and symbols. We use

MetaEdit+ to design our own modeling language for the

navigation behavior of web applications, which is stored as a

metamodel in the MetaEdit+ repository. During designing an

object is created corresponding to each node defined in Table

1. Relations between objects identified from the transitions

given in Table 1 are also defined in the modeling language.

The metamodel can later be used by developers to create

PNG. In figure 6, screen shot taken during the use of

metamodel to create PNG is shown. A generator is defined to

create an adjacency list for each node of the PNG, which can

be used during testing to identify navigation paths (test

sequences) in the web application. Figure 7 shows the screen

shot of the generator module. Using generator, adjacency list

of the graph is obtained as shown in figure 8.

Fig 6: Screen shot taken during the use of metamodel to

create PNG

Fig 7: Screen shot of the generator module

Fig 8: Adjacency list of the graph generated by generator

6. CONCLUSION AND FUTURE WORK
In this paper an approach to model the navigation behavior of

web applications from user requirements and low level design

is proposed. An algorithm is developed to build page

navigation graph from the information extracted from

requirements and LLD which can later be used to generate test

sequences. The advantage of our approach is the modeling of

both positive as well as negative workflow sequences, which

enables tester to use PNG for both positive and negative

testing. In this paper the problems related to page explosion

(1)

(2)

[LOGIN]

[valid]

(1)/ (2) (3)

[invalid] [invalid]

[OK] [OK]

[FIND TRAINS]

[RESET]

[invalid]

[invalid]

[OK] [OK]

[valid]

[OK]

[CANCEL]

[invalid]

[OK]

[valid]

(4)

(3)

(9)

(4)/ (5)/(6) (7)/(8)

[PREVIOUS] [CANCEL]

[BOOK]

(5)

[RESET] [REPLAN]

[valid]

(6)

(10) - (24)
(25)

[invalid]
[invalid]

[OK] [OK]

[BACK]

[MAKE PAYMENT]

(7)

[UNSUCCESSFUL]

[SUCCESS]

(8)

[PRINT]

[BOOK ANOTHER

TICKET]

[LOGOUT]

[LOGOUT]

[LOGOUT]

[LOGOUT]

[LOGOUT]

[LOGOUT]

[LOGOUT]

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

26

and link explosion are addressed. Finally the proposed

approach is implemented using MetaEdit+.

In future we plan to propose an algorithm for traversing the

PNG to generate test sequences satisfying a particular

coverage criterion. We also intend to generate input test data

automatically which is used to convert abstract test cases into

concrete test cases.

7. REFERENCES
[1] Di Lucca, G. A. and Fasolino, A. R 2006. Testing Web-

based applications: The state of the art and future trends,

Information & Software Technology, 48(12):1172–1186.

 [2] Andrews, A. A., Offutt, J. and Alexander, R. T 2005.

Testing Web Applications by Modeling with FSMs,

Journal of Software and Systems Modeling, 4 (3): 326-

345.

 [3] Di Lucca, G. A., Di Penta, M., Antoniol, G. and Casazza,

G 2001. An Approach for Reverse Engineering of Web-

Based Applications. In Proceedings of the8th Working

Conference on Reverse Engineering, IEEE CS Press,

Los Alamitos, CA.

[4] Kung, D. C., Liu, C. H. and Hsia P 2000. An Object-

Oriented Web Test Model for Testing Web Applications,

In Proceedings of the 24th International Computer

Software and Applications Conference COMPSAC,

Taipei, Taiwan., pp. 537–542.

[5] Di Lucca, G. A., Fasolino, A. R., Faralli, F. and Carlini,

U. D 2002.Testing Web Applications, In Proceedings of

the 18th ICSM, pp. 310-319.

[6] Bryce, R. C., Sampath, S. and Memon A. M

2011.Developing a single model and test prioritization

strategies for event-driven software, TSE, 37(1):48-64.

[7] Ricca F. and Tonella P 2002. Construction of the System

Dependence Graph for Web Application Slicing, In

Proceedings of the Second IEEE International Workshop

on Source Code Analysis and Manipulation

(SCAM'02),pp.123 – 132.

[8] Alalfi, M. H., Cordy, J. R. and Dean, T. R 2009.

Modeling Methods for web Application Verification and

Testing: State of the ART, Software Testing, Verification

and Reliability, 19:265-296.

[9] Ricca F. and Tonella P 2001. Analysis and Testing of

Web Applications, In Proceedings of the 23rd ICSE, pp.

25-34.

[10] Tonella, P. and Ricca, F 2002. Dynamic model

extraction and statistical analysis of web applications, In

Proceedings of the International Workshop on Web Site

Evolution (WSE), IEEE Computer Society pages,

Montreal, Canada, pp. 43–52.

[11] Knapp, A. and Zhang, G. 2006. Model Transformations

for Integrating and Validating Web Application Models,

In Proceeding of the Modellierung, LNI P-82, pp. 115-

128.

[12]. Garcia, B. and Duenas, J. C 2011. Automated Functional

Testing based on the Navigation of Web Applications, In

Proceedings of the 7th International Workshop on

Automated Specification and Verification of Web

Systems”,.EPTCS 61, pp. 49-65.

[13] Benedikt, M., Freire, J. and Godefroid, P 2002. VeriWeb:

Automatically Testing Dynamic Web Sites, In

Proceedings of the 11th International World Wide Web

Conference, Hawai, U.S.A.

[14] Akinmade, O. and Memon, A. M 2008.Automated

Model-Based Testing of Web Applications, Third

Annual Google Test Automation Conference (GTAC),

Seattle.

[15] Wang, W., Lei, Y., Sampath, S. , Kacker, R., Kuhn, D.

and Lawrence, J 2009. A Combinatorial Approach to

Building Navigation Graphs for Dynamic Web

Applications, In Proceedings of 25th IEEE International

Conference on Software Maintenance, pp. 211-220.

[16] Achkar, H 2010.Model Based Testing of Web

Applications, In Proceedings of 9th annual STANZ,

Australia.

[17] Han, M. and Hofmeister, C 2006. Modeling and

verification of adaptive navigation in web applications,

In Proceedings of the 6th International Conference on

Web Engineering, ICWE, Palo Alto, California, pp. 329–

336.

[18] Syriani, J. A. and Mansour, N 2003.Modeling Web

Systems Using SDL, In Proceedings of the Computer and

Information Sciences - ISCIS, 18th International

Symposium, Lecture Notes in Computer Science, vol.

2869, Yazici A, Sener C (eds.), Springer, pp. 1019–1026.

[19] MSDN 2006.Design guidelines for secure web

application,

http://msdn.microsoft.com/library/default.asp?url=/librar

y/en-us/secmod/html/secmod77.asp.

[20] Marchetto, A., Tonella, P. and Ricca, F 2008. State-based

testing of Ajax web applications, In Proceedings of the

1st IEEE International Conference on Software Testing

Verification and Validation (ICST’08), IEEE Computer

Society.

[21] Tonella, P. and Ricca, F 2004. A 2-Layer Model for the

White-Box Testing of Web Applications, In Proceedings

of the International Workshop on Web Site Evolution,

IEEE Computer Society, pp. 11–19.

[22] Pinter, D 2011.Kentico CMS Security White Paper,

http://devnet.kentico.com/downloads/Kentico-

CMS_Security-White-Paper.pdf.

APPENDIX

Algorithm: CreatePNG

Input: Page Scenario with Pageid=1

Output: Page navigation Graph (PNG)

Global variable: Counter i=0

CreatePNG (Page Scenario:PS, Category: C)

{

 Let G = <V, E> be an empty graph.

 Add node of type SN labeled with SN to V

 if (C ==RP)

 Add node of type RPN labeled with PS.pid to V

 else

 Add node of type PN labeled with PS.pid to V

 Add an edge from node labeled SN to node labeled PS.pid

into E

 Add node of type EN labeled EN to V

 call Buildrecursive(G,PS, C)

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

27

 }

function Buildrecursive (Graph: G, Scenario: S, Category: C)

{

 if (C == ‘P’ || C == ‘RP’){

 id = S.pid

 Remove irrelevant active widgets from S

 /* which are irrelevant wrt the function for which we are

creating PNG */

 }

 else

 id=S.wid

 if (count(S.AW) > 1)){

 increment counter i by 1

 add node of type EPN labeled with EPNi to V

 add an edge of type TE from node labeled id to node N

labeled EPNi into E

 }

Visited (node labeled id) = True.

Set counter j = 0

for each (action a corresponding to AW ϵ S) {

 create empty list L

 for each (cid ϵ S.cid && a generates S.cid && S.cid!= 0){

 if exist (node labeled cid)

 add it to L

 else{

 if (Category == ‘P’)

 add node N of type PN labeled with cid to V

 elseif (Category == ‘RP’)

 add node N of type RPN labeled with cid to V

 else

 add node N of type WN labeled with cid to V

 mark visited (N) as False and add N to L

 }

 }

 if (action a requires input data){

 increment counter j by 1

 add node of type IPN labeled with IPNi.j to V.

 if (exist(EPNi))

 add an edge of type TE from node labeled EPNi to

node labeled IPNi.j
 into E and label it with a.

 else

 add an edge of type TE from node labeled id to node

labeled IPNi.j
 and label it with a.

 for each (cid ϵ L)

 if(cid.TT == ‘C’)

 add an edge of type CTE from node labeled IPNi.j
 to

node labeled cid into E

 else

 add an edge of type STE from node labeled IPNi.j
 to

node labeled cid into E

 if (exist(cid == 0) in S corresponding to a)

 add an edge of type STE from node labeled IPNi.j
 to

node labeled EN into E

 }

 else {

 if (exist(EPNi)&&(exist(cid == 0) in S for a))

 add an edge of type STE from node labeled EPNi to

node labeled EN into E and label it with a

 elseif (exist(EPNi) && S.cid!=0)

 if(cid.TT == ‘C’)

add an edge of type CTE from node labeled EPNi

to node labeled cid into E and label it with a.

 Else

 add an edge of type STE from node labeled EPNi

to node labeled cid into E and label it with a.

 elseif (!exist(EPNi) && S.cid==0)

 add an edge of type STE from node labeled id to

node labeled EN into E and label it with a

 Else

 add an edge of type STE from node labeled id to

node labeled cid into E.

 }

 }

 for each (action a corresponding to AW)

 for each (cid ϵ L where L is a list corresponding to a) {

 if(!visited(node labeled cid)&& category(cid) = =’P’)

 call Buildrecursive(G,PS,’P’)

 //page scenario where page-id = cid

 elseif(!visited(node labeled cid)&&category(cid)==’RP’)

 call Buildrecursive(G,PS,’P’)

 //reusable page scenario where page-id = cid

 else(!visited(node labeled cid)&& category(cid)= = ’W’)

 call Buildrecursive(G,WS,’W’)

 //window scenario where win-id = cid

 }

 }

